Towards a Deep, Domain-specific Modeling
Framework for Robot Applications

Colin Atkinson, Ralph Gerbig, Katharina Markert, Mariia Zrianina, Alexander
Egurnov, and Fabian Kajzar

University of Mannheim, Germany,
{atkinson, gerbig}@informatik.uni-mannheim.de;
{kmarkert, mzrianin, aegurnov, fkajzar}@mail.uni—mannheim.de

Abstract. In the future, robots will play an increasingly important role
in many areas of human society from domestic housekeeping and geriatric
care to manufacturing and running businesses. To best exploit these new
opportunities, and allow third party developers to create new robot appli-
cations in as simple and efficient a manner as possible, new user-friendly
approaches for describing desired robot behavior need to be supported.
This paper introduces a prototype domain-specific modeling framework
designed to support the quick, simple and reliable creation of control soft-
ware for standard robot platforms. To provide the best mix of general
purpose and domain-specific language features the framework leverages
the deep modeling paradigm and accommodates the execution phases as
well as design phases of a robot application’s lifecycle.

Keywords: Deep modeling, ontological classification, linguistic classifi-
cation, domain-specific languages

1 Introduction
As robots become more ubiquitous and embedded in our environment there is a
need to simplify the creation of software systems to control them. Today this is a
highly specialized and time-consuming task, involving the laborious handcrafting
of new applications using low-level programming techniques. However, as more
quasi-standard robot platforms emerge (such as the NAO [2], Turtlebot [19] and
Lego Mindstorm [21] platforms on the hardware side and the Robot Operating
System (ROS) [17] on the software side), the development of robot applications
should become easier and more accessible. This, in turn, should encourage the
emergence of communities of “robot app” developers offering robot-controlling
software on open marketplaces similar to those for smartphone apps today.
Several important developments in software engineering environments need
to take place before this vision can become a reality, however. First, a small
number of truly ubiquitous “standard” robot platforms need to emerge, sup-
ported by rich software frameworks. Such frameworks need to include a lean,
efficient execution platform, a rich library of predefined routines and a clean,
general-purpose programming/modeling language for applying them. Second,
these general-purpose language features need to be augmented with domain-
specific modeling capabilities that allow developers to describe their programs
using concepts and notations that fit their application domain. Ideally, these
languages should be synergistic. Finally, the information represented in these

languages should seamlessly accommodate all phases of an application’s life cy-
cle, from design and implementation to installation and operation. This in turn,
requires, information modeling techniques that can seamlessly represent multiple
levels of classification.

The modeling approach that offers the most intuitive, flexible and yet sta-
ble way of supporting such a software engineering environment is the deep (or
multi-level) modeling approach [7]. This has been designed from the ground up
to support the uniform and level-agnostic representation of domain concepts at
multiple abstraction levels, and makes it possible for them to be visualized in
both domain-specific and general purpose notations interchangeably. For the pur-
pose of developing robot applications, therefore, what is needed is a predefined
framework of robot-control model elements (i.e types and instances) carefully
arranged among the multiple classification levels within a deep modeling envi-
ronment, each represented by appropriate domain-specific symbols. Each level
in such a multi-level framework can be regarded as a language in its own right,
and where appropriate we will use this term. However, we prefer to use the term
“framework” to refer to the whole multi-level ensemble of models. In this paper,
we present an early version of a deep modeling framework for robot applications.
Developers wishing to create their own robot applications can take this frame-
work and extend/customize the types and objects within it to their own needs.
The term “framework” is therefore used in the sense of previous reusable envi-
ronments such as the San Francisco Framework [11] etc. However, our framework
supports more powerful and flexible extension mechanisms.

The remainder of this paper is structured as follows. In the next section,
Section 2, we provide a brief overview of deep modeling and the main concepts
that are needed to support it. In Section 3, we then provide an overview of the
proposed deep robot modeling framework, and the different levels of classification
that it embodies. In particular, we elaborate on the role and nature of each of the
four individual ontological classification levels within the framework and discuss
the kinds of model elements that they contain. In Section 4, we briefly discuss
the main related work and in Section 5 we conclude with some final remarks.

2 Deep Modeling

Deep modeling involves the creation of models spanning multiple classification
levels. One of the most well known modeling architectures supporting this ap-
proach is the orthogonal classification architecture (OCA) [7] which distinguishes
two fundamental types of classification — linguistic classification, defining which
construct in the underlying modeling language a model element is an instance
of and ontological classification defining which domain concept in the problem
domain a model element is an instance of. By arranging these different kinds
of classification into two separate, orthogonal dimensions, the OCA manages
to provide the flexibility of multiple (i.e. more than two) classification levels
whilst retaining the benefits of strict modeling. In contrast, state-of-the-art meta-
modeling approaches allow only one pair of class/instance levels to be modeled
at a time (e.g. an My meta-model which is then instantiated by an M; model).

These are therefore commonly characterized as two-level modeling technologies
and generally mix linguistic and ontological classification in one dimension.

One important consequence of multi-level modeling is that elements in the
middle levels are usually classes and objects at the same time - that is, they
usually have both a type facet and an instance facet. To accommodate this,
deep models are usually constructed from so called “clabjects” that have an
inherent type/instance duality. To support deep instantiation — the instantia-
tion of model elements across multiple classification levels — each clabject has
a non-negative Integer attribute called potency that captures its “typeness”.
The potency specifies over how many consecutive levels a clabject can be in-
stantiated. Attributes and their values also have a potency. The potency of an
attribute (also known as its durability) specifies over how many instantiation
steps an attribute can endure (i.e. be passed to instances). On the other hand,
the potency of an attribute’s value (also known as its mutability) defines over
how many levels that value can be changed. The values for all three kinds of
potency can be either a non negative integer or “*” representing infinity. When
instantiating a clabject, the potency of the clabject and the durability and muta-
bility of its attributes are reduced by one. When instantiating a clabject with “*”
potency, the potency of the instance can be “*” again or a non-negative integer.
Clabjects with a potency of zero cannot be further instantiated, attributes with
a durability of zero are not passed on to instances of the containing clabjects and
a mutability of zero rules out any further changes to the value of an attribute.

Figure 1 gives a schematic illustration of how models are represented in the
OCA [7]. There are always three linguistic levels, Lo - Lo, where the top most
level, Lo, represents the Pan-level Model (PLM) which is the single, overarch-
ing linguistic (meta) model describing the abstract syntax of the deep modeling
methodology. The middle level, L;, contains the domain model content created
by users, and Lg, represents the real world representation of the modeled con-
tent in the sense of the “Four-Layer Metamodel Hierarchy” in the UML [18].
The levels Og - O, rendered in the Level-agnostic Modeling Language (LML)
[8], are the ontological classification levels which exist within the L; linguistic
level and are therefore orthogonal to it. This model shows only three ontological
levels for space reasons, the maximum number of ontological levels depends on
the modeled problem domain and is unlimited. In this figure, linguistic classifi-
cation is represented by vertically dashed arrows while ontological classification
is represented by horizontally dotted lines. However in a real-world model these
two representations of classification are usually not used for two reasons. Firstly,
the linguistic model is not displayed since the linguistic classification information
is already captured by the symbol used to represent model elements. Secondly,
representing classification by means of edges clutters diagrams and introduces
unnecessary visual complexity. Hence, ontological classification is usually shown
using the colon notation as in Figure 1. Deep instantiation is captured by means
of the potency value attached to clabjects which in the LML is represented as a
superscript to the right of a clabject’s name.

L |Clabject|

2 I\

@)

1

®)

2

l 1
L [RobotType?l<- | -[Nao"RobotType] < | - - - [Naomi®Nao]

Fig. 1. An example of a deep model.

The example in Figure 1 shows how the clabjects in a robot application would
be arranged in the deep robot modeling framework presented in the following
sections. On the highest (i.e. most abstract) ontological level 0y, the concept of a
RobotType is introduced. Specific robot types, such as the NAO robot type from
Aldebaran Robotics [2] are modeled as instances of RobotType at the next level
of abstraction O;. The clabject NAO is thus an ontological instance of RobotType
and at the same time a type for robot instances in the following levels. The most
concrete ontological level in Figure 1, O, contains specific robot individuals,
such as a robot called Naomi, which is an ontological instance of NAO. Notice
that each clabject’s potency, represented as superscript after the clabject’s name,
is always one less than that of its ontological type resulting in a specific robot at
0> which cannot be further instantiated since it has a potency of 0. All model
elements are also indicated as being an instance of Clabject which defines their
linguistic type. Other linguistic types such as generalization or attribute are also
available but are not shown in this small schematic illustration. The bottom
linguistic level, Ly, contains the real world entities that are actually represented
by the clabjects in L. Note that Naomi is a physical object, while NAO and
RobotType are conceptual entities (i.e. types) in the domain.

3 Deep Robot Modeling Framework

The overall structure of the proposed Deep Robot Modeling Framework (DRMF)
is presented in Figure 2 which essentially shows the L; linguistic level of the
framework, but rotated anti-clockwise relative to Figure 1 and, thus, represented
vertically rather than horizontally. The framework is composed of four ontolog-
ical levels with the most abstract level Og, depicted at the top and the most
concrete, Oz, depicted at the bottom. The different levels of the model define
languages which are used for different purposes. Their purposes are explained in
their own dedicated subsections in the following.

The prototype realization of the framework has been implemented using the
Melanee [4] deep modeling framework under development at the University of
Mannheim. It is therefore based on the linguistic Lo model of Melanee which is
an EMF implementation of the PLM. The PLM is the vertical linguistic level on
the left hand, spanning all ontological levels in the center. Similarly, the “real

Op
Robot Modeling Language Types
(RMLT)
z P
2 Robot Modeling Language
& (RML) 3
S S
= W) s
o B 2 =
— -
o Robot Behavior Model &
'S (RBM)
o
{=1
= [0;
BehaviorcEnactment Model
(BEM)
o~ - o
- - -

Fig. 2. An overview of the deep robot modeling framework.

world”, Ly, containing the objects and concepts in the real world (in this case
the robot application) is a vertical linguistic level on the right hand side.

Since the whole framework is based on Melanee, the framework is able to
offer some advanced modeling concepts which are only partially supported, if at
all, by other comparable modeling infrastructures and environments. The first is
the support for symbiotic general-purpose and domain-specific languages. This
feature is made possible because Melanee allows domain-specific symbols to be
associated with clabjects directly within the ontological levels. The option of
rendering clabjects in one or more domain-specific ways is therefore always ad-
ditional to the option of rendering clabjects in the general purpose LML notation
which is Melanee’s built in concrete syntax for clabjects. When choosing how a
clabject should be rendered, therefore, users are able to switch between all the
defined domain-specific symbols or the built-in LML symbol at the click of a but-
ton. The Melanee rendering mechanism is fully reflexive, which means that when
looking for a symbol to render a clabject, Melanee searches up the hierarchy of
supertypes and (ontological) types of the clabject to be rendered, looking for the
closest associated symbol. As a last resort, if no domain-specific symbol has been
found, the built in LML notation is used. The rendering algorithm also supports
concepts of aspect-orient modeling. Join points can be defined in visualizers for
which aspects can then be provided in other visualizers. The visualizer search
algorithm then merges aspects into join points when working out which symbol
to use for a clabjet. The domain-specific modeling language features are used to
provide a standard graphical and textual representation at the Robot Modeling
Language Types level (Og) which can then be further refined by aspects provided
at lower levels of abstraction e.g. the Robot Modeling Language (O1), the Robot
Behavior Model (Oz) or the Behavior Enactment Model (O3).

The second advanced modeling feature is the uniform and balanced support
for textual as well as graphical visualization of clabjects. This is made possible
by Melanee’s support for full projective editing [5], which means that all visual-

izations, whether textual or graphical are derived by projecting the underlying
model content into a particular representational form by selecting a particular
set of visualizers. This is a very powerful feature because it means that the same
underlying model can be viewed and edited in a graphical way (using graphical
visualizers) and in a textual way (using textual visualizers) depending on the
skills and goals of the stakeholder concerned. Moreover, each visualization is
generated on the fly, when needed, so that changes to the model input through
one view are automatically updated in all other open views. The textual visual-
ization of the model content is particularly important since it allows the DRMF
to interact with existing text-driven technologies. In general, any textual output
can be generated, be it code in a high-level programming language like Java or
C++ (as in our implementation), XML, JSON or any general-purpose language
(e.g. python, perl, LUA, bash) or specialized scripting language (e.g. Urbi script
[9]). By having textual representations of the model, users can apply any kind
of algorithm to a model, run it on the robot or load it into other tools.

The third advanced modeling feature supported by Melanee is the ability to
model equally and uniformly at all ontological classification levels, with changes
at one level immediately impacting all other dependent levels. This makes it pos-
sible for modelers to dynamically customize (on-the-fly) the different languages
provided by the DRMF to their specific needs. Hence, new types and default
renderings can be introduced at the RMLT level or new features to model new
behaviors can be introduced into the RML. An emendation service [6] is provided
to help users handle the impact of model changes at any level. This service scans
the whole model for model elements which are impacted by a change and sug-
gests automatic amendments to ensure that all the classification relationships
valid before the change remain valid.

3.1 Op — Robot Modeling Language Types (RMLT)

The Robot Modeling Language Types (RMLT) model defines the general concepts
needed to create a robot programing language based on a state transition system.
More specifically, it defines the types that can make up a robot and general
algorithm description concepts such as ActionType or VariableType.

TypeJName I8
A | 1
executionTime;successful, TypeName' (J) name: tye

executes

|PartType3|<— — RobotType’—=—> ActlonType3 uses VarlabIeType3

Oo

utlllzes'}* "I)'Iy;:?Nar?\le“ 14 . “| type
atformName name
Y —
FlowType? [STpos T I*Acﬂow 1Apost N

executionTime
successful4 |ControIFIowType3| type name

Fig. 3. Level Og of the DRMF, the Robot Modeling Language Types.

An excerpt of the RMLT is shown in Figure 3. It provides four basic types:
PartType, RobotType, VariableType and FlowType which is specialized by the sub-

classes ActionType and ControlFlowType. The central model element is RobotType
which is a type for representing a specific kind of robot and its behavior. The
left hand side of the RobotType provides types for describing its structure (i.e.
PartType). This is needed as some Robots do not have a static structure but can
be changed depending on the task they are required to perform. The right hand
side of RobotType defines types for the set of actions that a robot can execute (i.e
the behavior). The underlying idea is that a program consists of a set of actions
and control flow statements. Similar to the parts of a robot, the blocks of the
program are attached to a robot. Each ActionType can be connected to another
ActionType facilitating the creation of sequences of action types. Furthermore, an
ActionType allows instances to use a variable for reading or storing information.
ActionTypes represent all types of actions that a robot can perform ranging from
sensing, waiting for events to actions like moving an arm. In addition to the
ActionType, a ControlFlowType is provided representing the the execution order
of actions (e.g. parallel execution and repetition). Default textual and graphical
renderings are provided by the RMLT which are represented schematically by
the clouds in the example. Points for extending these are offered by join points
(represented by the grey Js in Figure 3). The RMLT can also be extended with
new types by leveraging the full power of the deep modeling approach.

3.2 0O; — Robot Modeling Language (RML)

The Robot Modeling Language (RML), at level O1, defines the set of actions which
can be used to define applications for a robot. This level allows language engi-
neers to define types needed to build robotic applications and to solve particular
tasks. The RML can then be used by an end-user to build robotic applications
at level O5. To define a language that can be used by an end user the types of
the RMLT need to be instantiated. These instantiations include a robot with
such information as connection parameters (e.g. IP attributes) and if necessary
the parts that are available for modifying the robot. Additionally the action and
flow control elements available in the RML are instantiated from the FlowType
subclasses provided by the RMLT. An executable textual definition and graphical
renderings can be defined by a language engineer for the robot specific actions
and control elements. For this task the renderings provided by the RMLT can be
modified by providing aspects or by defining completely new renderings. Using
the RMLT, different languages can be defined to create applications for different
kinds of robots such as humanoid robots, industrial robots and vacuum cleaners
etc. The RML can be either created for a specific robot or for a family of robots.
When defining a language for a family of robots specific implementation types
are provided by subclassing more general model elements.

Figure 4 shows a RML defined specially for the NAO robot type. In general,
the RML contains a family of types for each kind of robot. However, in Figure
4 we have shown a NAO example model for space reasons. Because the NAO
robot’s body structure is fixed and cannot be modified the details of the robot
and its parts are left out. A NetworkRobot, representing the concept of a NAO
robot running over a network is instantiated from RobotType with an additional
String attribute for storing its IP. Actions for the NAO which are instantiated

successful

7.

0y FlowElement? st_, NetworkRobot%RobotType
DEeS [occdornes [S1
Jo=Ah2
>

‘while('condition"){'

Posture?ActionType [1 post | st
TypeName = 'posture’ D[Action? i . ControlFlow’ Y
posture:Postures TSI bost
RestZActionType| =—Repetition’:ControlFlowType] i \
— |_DetectRedBall2ActionType | N
J;p;'::tr:;e: rest [TypeName = ‘detect_red_balr | |_[Condition”ControlFlowType| , . [ConditionalRepetition®ControlFlowType|
7 [condition:stri ™ | [condition:String
MoveZActionType / —
TypeName = ‘mov»;p - / Split®ControlFlowType
A

Intege e) — —
:;Inége: uses'="TypeName(); JCondit :ControlFlowType|
Lyuses [ANDZ ControlFiowType| LY

theta:Integer ~
Ob: /[%VariableType [. £

Tn = X=y='y ;theta="theta > T 1

JA A type = boolean’ »{XOR :ControlFlowType] [or 2ControlFlowType]

name = 'detected"

Fig. 4. Example for a O; level of the DRMF, the Robot Modeling Language for NAO.

from ActionType include default operations provided by the API (e.g. Move),
custom implementations (e.g. Posture) and actions for sensing and reacting on
events (e.g. DetectRedBall). The commonly known concepts for control flow (e.g.
XOR, Repetition) are instantiated from ControlFlowType. The graphical and textual
renderings are adapted by providing aspects for join points which is indicated
through clouds containing the name of the join point followed by the information
provided by the aspect. The defined types can now be used to define applications
on the next level.

3.3 0Oz — Robot Behavior Model (RBM)

To model behavior for a robot the RML located at O; is instantiated at O5 as
shown in the example in Figure 5. The example shows a simple program for
a robot called Naomi, a NAO robot which is available under the IP address
192.168.1.19. The program instructs Naomi to first move forward and detect a
red ball. If a ball it detected the robot will execute the Agree behavior and if not
the Disagree behavior. The application then instructs the robot to sit down and
terminates.

Naomi (192.168.1.19)

Move *)_ 'I *j_ uzes 8
—a=2 6-them= . Detect Red Ball -
E(_“’y_z's’them_m% ballDetected:boolean
|
é true + falsey \5
- ? — i

SitRelax e

Fig. 5. Level Oz of the DRMF, the Robot Behavior Model.

To execute the application it is translated into an executable textual format
by interpreting the visualizers provided by the RMLT and RML. If needed these
can even be adapted at the RBM level. In the prototype realization the appli-
cation is translated into an internal C++ domain-specific language, compiled
and then executed. Other tool chains could also be invoked. The domain-specific
language code created for the application in Figure 5 is shown in Listing 1.

#include "naoAPI.h"
void NAOProgram::script () {
move_navigation (4.0, 2.6, 0.785);
boolean ballDetected = detect_red_ball();
if (ballDetected)
agree () ;
else
disagree () ;
posture ("SitRelax");

Listing 1. The source code generated from the model displayed in Figure 5.

3.4 O3 — Behavior Enactment Model (BEM)

Robotic behaviors themselves serve as types for the execution of a robotic be-
havior. In other words, each behavior can be executed (i.e. instantiated) multiple
times, with each instance represented as a separate object. Such an instance of
a RBM is called an Behavior Enactment Model (BEM). The models are usually
retrieved from logging information that was created during the execution of a
RBM. A possible enactment model of the application presented in Figure 5 is
shown in Figure 6. The example shows the application that was executed by
Naomi available under 192.168.1.19 starting with a move at 1.22pm which was
finished with success. After the move, the Detect Red Ball was switched on at
1.23pm and finished with success resulting in the red ball detection. The robot
then made an Agree gesture at 1.23pm before sitting down at 1.24pm.

Naomi (192.168.1.19)

Move A D A wses 8
. ¥ . etect Red Ball .
x=4;y=2.6;theta=0.785 [~ =P 1.23pm; success P baliDetected:boolean
1.22pm; success value=true

v

true
o & €
1.23pm; success ballDetected
H
&
SitRelax
1.24pm; success

Fig. 6. Level O3 of the DRMF, the Behavior Enactment Model.

It can be observed that the rendering in Figure 6 uses the whole palette of
visualization possibilities defined at the levels above. The RBM in contrast did
not use the visualization possibilities for the executionTime and the successful flag
as there were no values for these attributes at the time of application definition.

4 Related Work

In recent years several software frameworks have been developed to provide
simple and intuitive ways of writing software applications for quasi-standard
robot platforms. This includes academic research (e.g. [10] [12] [20]) as well as
industrial products. One of the most well known is Lego Mindstorms Evolution 3,
developed especially for the Lego robots which can be built out of the Lego model
kits. This is an extremely flexible and powerful system which allows anyone to
build a robot using a few standard parts like motors, color sensors, touch sensors,
infrared sensors and other Lego elements. These parts only have to be plugged to

the so called brink — “a small computer that controls the motors and sensors”
[21]. Afterwards, the user can graphically implement a program by choosing the
desired activities from the pallet of available blocks. The software is advertised
as having an “easy, intuitive and icon-based programming interface” [14] which
gives first-time programmers hands-on access to information technology. Because
of this target group, the software only has a limited set of functions and cannot be
extended in any way. Evolution 3 only supports the creation of software for Lego
robots, and thus cannot be regarded as a general robot modeling framework.

Choregraphe is an environment developed by Aldebaran Robotics, the man-
ufacturer of the NAO humanoid robot, to allow robots to be programmed by
graphical applications [3]. It also supports code reuse and debugging capabili-
ties and makes it possible to monitor and control NAO robots manually. The
program uses an intuitive drag-and-drop interface in which a program is cre-
ated using boxes that can be combined into a kind of flow diagram. Aldebaran
Robotics provides several tutorials as well as online documentation which simpli-
fies the use of the tool [1]. In summary, although it is easy to use, Choregraphe
allows the creation of complex programs. Like Lego Mindstorms Evolution 3,
Choregraphe can only be used in combination with the NAO robot and thus
cannot be regarded as a general robot modeling framework.

Robotino View 2 is a visual development environment provided by Festo Di-
dactic exclusively for Robotino robots. It supports a slightly different way of vi-
sualizing programs than other tools, allowing it to provide some unique features.
In particular, Robotino View 2 programs resemble electrical circuit diagrams
rather than classical data flow chart. This makes them easier to understand for
engineers, but creates a larger learning curve for programmers familiar with tra-
ditional langauges. Another unique feature allows users to draw complex lines
from several segments. This comes in handy when models grow large and helps
minimize intersections. Like Choregraphe, Robotino View 2 allows users to create
custom blocks by including C++ code. It also uses two levels of programming,
though they are very different to one another. The Block library includes all the
blocks needed to create both simple and sophisticated programs, and the simu-
lation environment is freely available from developer’s website. Robotino View
2 shares the same limitation as the two previously mentioned frameworks — it
is proprietary and can only be used with one kind of robot.

Microsoft Robotics Developer Studio 4 (MRDS4) [16] is another program-
ming environment for building robotics applications. It provides a Visual Pro-
gramming Language with an intuitive drag-and-drop interface for hobbyists and
support for Microsoft Visual Studio for professional developers. MRDS4 has
several significant advantages. First, numerous robots such as Lego Mindstorms
NXT, Roomba [13] and Reference Platform [15] are supported. Second, a high-
fidelity simulation environment is provided by Visual Simulation Environment
(VSE), powered by NVIDIA PhysX engine, and the functionality of MRDS4
can be extended by providing additional libraries and services. Third, extensive
documentation, samples and tutorials are available “out of the box”. The main
disadvantages of MRDS4 is the computational overhead resulting from the use of

the simulation environment to control real robots. Another problem is that sim-
ulations tend to be overly simplified and do not take into account environment
parameters such as surface type and weather.

Although these different languages and platforms are superficially very dif-
ferent, at a high enough level of abstraction they all contain the same basic con-
structs — predefined types representing the components and actions from which
the structure and behavior of individual robots are constructed. The same is
true of the Robot Operating System [17] which represents an attempt to define
a standard set of component and action types by the Open Source Robotics
Foundation. In principle, therefore, they could all be brought together under the
umbrella of a single, unified robot modeling framework, where common types
and specific types are arranged in inheritance hierarchies in the usual way. The
great advantage of using deep modeling technology for such a unified robot mod-
eling framework is that new types can be added, and existing types modified,
at any time, on the fly, by simply instantiating the predefined meta types. All
the information in the framework is therefore directly manipulable data, but
nevertheless can be created and verified using the advantages of a strong typing
system.

5 Conclusion

In order to open up the creation of robot applications to a wider range of devel-
opers, and encourage the emergence of a community of third party “robot app”
developers, it is necessary to offer a robot modeling framework that is efficient,
extensible, easy-to-use and able to support the description of applications in a
variety of languages. The environment should also support the modeling and
visualization of all information relevant to a robot, including dynamic informa-
tion that is used to control and monitor its operation at run-time. These goals
can best be achieved using a deep modeling environment, augmented with sup-
port for symbiotic languages, concurrent textual and graphical concrete syntaxes
and on-the-fly visualization customization via aspect-orientation. In this paper
we have presented a prototype framework, known as the Deep Robot Modeling
Framework (DRMF), which supports these capabilities using the Melanee deep
modeling environment under development at the University of Mannheim. The
current version of the prototype supports a rudimentary implementation of all of
these features in the context of the NAO robot platform developed by Alderbaran
Robots, although the basic framework is platform independent. Applications de-
veloped using the NAO-specific languages are automatically mapped into C++
code that can be loaded onto, and used to drive, individual NAO robots. In
the future, we plan to extend the environment to exploit other advanced fea-
tures of Melenee such as the integrated support for exploratory and constructive
modeling.

References

1. Aldebaran: Choregraphe user guide - nao software 1.14.5 documentation.
https://community.aldebaran—-robotics.com/doc/1-14/software/
choregraphe/index.html (2014)

10.

11.

12.

13.
14.

15.

16.

17.
18.

19.

20.

21.

. Aldebaran Robotics: Aldebaran robotics — humanoid robotics & programmable

robots. http://www.aldebaran.com (2014)

Aldebaran Robotics: Choreographe overview. https://community.
aldebaran-robotics.com/doc/1-14/software/choregraphe/
choregraphe_overview.html\#choregraphe-overview (2014)

Atkinson, C., Gerbig, R.: Melanie: Multi-level modeling and ontology engineering
environment. In: Proceedings of the 2Nd International Master Class on Model-
Driven Engineering: Modeling Wizards. pp. 7:1-7:2. MW ’12, ACM, New York,
NY, USA (2012)

Atkinson, C., Gerbig, R.: Harmonizing textual and graphical visualizations of do-
main specific models. In: Proceedings of the Second Workshop on Graphical Mod-
eling Language Development. pp. 32-41. GMLD ’13, ACM, New York, NY, USA
2013

Ethin)son, C., Gerbig, R., Kennel, B.: On-the-fly emendation of multi-level mod-
els. In: Vallecillo, A., Tolvanen, J.P., Kindler, E., Strrle, H., Kolovos, D. (eds.)
Modelling Foundations and Applications, Lecture Notes in Computer Science, vol.
7349, pp. 194-209. Springer Berlin Heidelberg (2012)

Atkinson, C., Gutheil, M., Kennel, B.: A flexible infrastructure for multilevel lan-
guage engineering. IEEE Trans. Softw. Eng. 35(6) (2009)

Atkinson, C., Kennel, B., Go8}, B.: The level-agnostic modeling language. In: Mal-
loy, B., Staab, S., Brand, M. (eds.) Software Language Engineering, Lecture Notes
in Computer Science, vol. 6563. Springer Berlin Heidelberg (2011)

Baillie, J.C.: Urbi: Towards a universal robotic low-level programming language. In:
Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International
Conference on. pp. 820-825 (2005)

Banyasad, O., Cox, P.T.: Visual programming of subsumption-based reactive
behaviour. In: Technical Report CS-2008-03. pp. 365-380. Dalhousie University
2008

](30hre)r, K., Johnson, V., Nilsson, A., Rubin, B.: The san francisco project: An
object-oriented framework approach to building business applications. In: Com-
puter Software and Applications Conference, 1997. COMPSAC ’97. Proceedings.,
The Twenty-First Annual International. pp. 416-424 (Aug 1997)

Cox, P., Smedley, T.: Visual programming for robot control. In: Visual Languages,
1998. Proceedings. 1998 IEEE Symposium on. pp. 217-224 (1998)

Kurt, T.E.: Hacking Roomba. Wiley (2006)

LEGO: Website, available online at http://shop.lego.com/en-US/
LEGO-MINDSTORMS—-EV3-31313; visited on April 13th 2014.

Microsoft Robotics Group: Robotics Developer Studio: Reference Platform Design
V1.0. Microsoft Robotics Group (2012)

Morgen, S.: Programming Microsoft Robotics Studio. Microsoft Press, 1st edn.
2008

E)’Kazle, J.M.: A Gentle Introduction to ROS. Independently published (2013)
OMG: Uml infrastructure 2.4.1. http://www.omg.org/spec/UML/2.4.1
2011

E)pen)Source Robotics Foundation: Turtlebot. http://www.turtlebot.com/
(2014)

Simpson, J., Jacobsen, C.L.: Visual process-oriented programming for robotics.
In: Communicating Process Architectures 2008, volume 66 of Concurrent Systems
Engineering. pp. 365-380. IOS Press (2008)

Valk, L.: The Lego Mindstroms NXT 2.0 Discovery Book A Beginners Guide to
Building and Programming Robots. William Pollock (2010)

