Towards a General Framework for Modeling,
Simulating and Building Sensor/Actuator
Systems and Robots for the Web of Things

Ion Mircea Diaconescu' and Gerd Wagner!

!Chair of Internet Technology
Institute of Informatics
Brandenburg University of Technology, Germany
{M.Diaconescu, G.Wagner }@b-tu.de

Abstract. The Web of Things (WoT) refers to those parts of the web
consisting of special web application systems connected to the real world
via sensors or actuators. These WoT systems include robots connected
to the web as a special case. We propose a general framework for model-
ing, simulating, designing and building WoT systems. We propose a core
ontology for WoT systems, which is the basis for our modeling and sim-
ulation approach. The modeling and simulation part of our framework is
independent of the WoT and could also be employed in the engineering
of other forms of embedded systems and robots. As a test case and a
proof of concept we present an example of a green house WoT system.

Keywords: Web of Things - sensors - actuators - robots - ontology - modeling
- simulation.

1 Introduction

The Web of Things (WoT) is a subset of the Internet of Things (IoT'). While in
the IoT, all kinds of Internet technologies can be used for building sensor-based
information systems and device control applications, the WoT is based on web
technologies only: foremost DNS, HTTP and HTTP-compatible protocols like
Web Sockets and the Constrained Application Protocol (CoAP), and the user
interface and frontend computing technologies HTML, CSS and JavaScript. The
WoT consists of special web application systems connected to the real world via
sensors or actuators, including robots connected to the web as a special case.
There are three recent trends promoting the WoT. First, the web’s infrastruc-
ture has progressed dramatically 1) by extending the internet’s address space
with TPV6, 2) by continuously increasing the speed and bandwidth of inter-
net connections, and 3) by improving the speed of HTTP with HTTP 2.0 as
well as introducing near-real-time web protocols like Web Sockets. Second, the
widespread use of smartphones and tablets, containing various sensors, has cre-
ated a large pool of sensing and computing resources for the WoT. Third, the

Entity

name[0..1] : String

N

participants | I

I Event | | Message |

* *
1
receiver |CommunicationEvent |7

sender

PhysicalAgent

Fig. 1. Top-level concepts of WoTCO

increasing availability of many kinds of cheap sensors, actuators and other elec-
tronics components has led to the development of a large Do It Yourself (DIY)
robotics and WoT community, creating lots of open source software and hard-
ware, and publishing a great variety of DIY projectsﬂ The availability of all these
resources, and, in particular, of low-cost hardware, creates new opportunities for
WoT and robotics-related research and education.

For instance, a simple WoT project can be the temperature monitoring of a
room by using a cheap temperature sensor, like the Texas Instruments LMSEﬂ
(available for about 1 Euro), attached to a Raspberry Pi microcomputer (avail-
able for about 30 Euro) running a NodeJS-based web application on top of Linux
and connected to the Internet via WiFi. More complex WoT systems, like a home
security and monitoring system or a home robot that is able to move around
and talk to people, can be built with hardware costs of a few hundreds Euro,
only, possibly using a no-longer-needed smartphone as the control computer and
exploiting its (GSM/3G and WiFi) communication and its (GPS, microphone,
camera) sensing capabilities.

A critical issue for any kind of web application, and even more for device
control applications in the WoT, is security. However, in this paper we do not
treat security issues.

In the robotics and WoT research literature, as well as in the DIY robotics
and WoT literature, there is still a lack of methodologies, including general ap-
proaches to modeling and simulation. Our aim is to develop a general framework
for modeling, simulating, designing and building WoT systems (WoT'S). The ba-
sis of this framework is a WoTS core ontology defining such concepts as event,
object, agent, sensor, actuator, etc.

! See, e.g., http://www.instructables.com/tag/type-id/category-technology/
2 Centigrade Temperature Sensor: http://www.ti.com/lit/ds/symlink/1m35.pdf

http://www.instructables.com/tag/type-id/category-technology/
http://www.ti.com/lit/ds/symlink/lm35.pdf

The last section presents a proof of concept implementation of a WoT sys-
tem controlling a green house using our open source Java/Android-based WoTS
implementation framework.

«invariant» Il Event

{startTime] occurrenceTime[1] : Integer q—{_Activity
= occurrenceTime -

duration[0..1] : Integer

duration} startTime[0..1] : Integer
*
«invariant»
{duration = 0} — — qlInstantaneousEvent
/\
cause
*
EnvironmentEvent
AgentEvent
* 0.1 7
CausedEvent ExternalActionEvent
7\ . InternalPerceptionEvent |
ExogenousEvent
OutMessageEvent InternalActionEvent
| ExternalPerceptionEvent | 0.1
/\ ! 7\
* InMessageEvent Message
0.1 1 1 akto PeriodicTimeEvent
perceiver 1

[Agent }; ReminderEvent

Fig. 2. Top-level event categories in WoTCO

2 A Core Ontology for WoT Systems and Robotics

An ontology is a system of inter-related categories for classifying the things that
inhabit (some part of) our real world. A foundational (or upper-level) ontology
identifies the most fundamental categories such as objects and events, while a
core ontology defines the core concepts of a domain, based on a foundational
ontology. We use the Unified Foundational Ontology (UFO) proposed by Guiz-
zardi and Wagner in [6/7]8], and we call our core ontology for WoT Systems and
Robotics WoTCO.

As can be seen in Figure[I} The most important top-level category in WoTCO
is the category of PhysicalAgent, which is derived from both PhysicalObject
and Agent. As a physical object, a physical agent is in time and space (and
has physical attributes such as mass, spatial coordinates, velocity, etc.), and
participates in events. As an agent, a physical agent has reactive behavior and

may participate in out-message events as sender, and in in-message events as
receiver.

As defined in Figure[3] a WoT system is a physical agent. A WoTS component
may be a sensor, an actuator or a human-interface device (HID).

PhysicalAgent

WebRobot

«invariant»
{Components contain at least one sensor
coupled to at least one actuator.}

Fig. 3. WoTS components as physical agents

As defined in Figure [2] and [4] we distinguish between environment events,
which occur in (and are used for simulating) the environment, and agent events,
which occur internally in agents. Our high-level view of the perception-action
cycle of a WoTS can be described in WoTCO terms as follows. An external per-
ception event, as an environment event, corresponds to a potential perception
event enabled by physical causality. A sensor of a WoTS maps such an external
perception event to an internal perception event (or sensor event). Then a reac-
tive behavior rule maps this sensor event to an internal action event (or actuator
command), which is mapped to an external action event via the used actuator.
The newly created external action event can then cause another external per-
ception event, which starts the cycle over again.

3 Related Work

The IoT-A project has collected a report on the existing frameworks and archi-
tectures [1] providing an overview of the current state of the art, and has defined
an architectural reference model[2], which is very generic.

The issues of searchability, shareability and composability of WoT systems
are discussed in [3].

An attempt to define a core ontology for robotics based on the foundational
ontology SUMO is made by the IEEE working group Ontologies for Robotics
and Automation (ORA) in [9]. Remarkably, this ontology does not include any
specific concepts for sensors and actuators, which are subsumed under ”Robot
Part”. Many top-level concepts of the ORA ontology are similar to our WoTCO
categories, but WoTCO is much more complete.

inputs cause

ExternalPerceptionEvent | | EnvironmentEvent|

* 0.1
outputs

InternaIPerceptionEvent|

*

* resultingEvent

1 inputs

InternalActionEvent |

outputs

ExternalActionEvent |

Fig. 4. Sensor/actuator events

4 An Architecture for WoTS and WoTS Simulations

Our goal is to develop a general architecture for modeling, simulating, designing
and implementing WoT systems. This means that a WoTS model specifes both
both the WoT system to be realized and its simulations, which may be partial in
the sense that any number of its components may be present in its configuration
while all others are simulated.

4.1 Simulating WoTS Components

Our prototype WoT system presented in the next section is based on the archi-
tecture metamodel shown in which is derived from the Agent-Object-
Relationship Simulation Metamodel[dl]5]. The central concept of this metamodel
is WoTSComponent, which represents entities that have physical properties (e.g.,
position, size, speed, etc) and whose reactive behaviors can be described by
reaction rules triggered by events. For instance, a motor controller starts its
activity when an internal action event "GO” occurs. As shown in a
WoTSComponent can be simultaneously an event source and an event listener.

A component can be atomic (a Sensor, an Actuator or a Hid) or composite,
like, for example, a robot arm composed of a set of interconnected sensors and
actuators. Even sensors can be composite devices, as for example a humidity
and temperature sensor in a single unit with a single communication interface.

A WoTComponent (sensor, actuator, HID) or WoTSystem can contain a set of
custom defined rules. The rule definition specifies the type of the event which
activate it. The project author is free to build simple or complex rules by using
the capabilities of the used system implementation programming language.

«interface» Event «enumeration»
EventListener EventPriority

occurrenceTime[1] : Date
priority[1] : EventPriority VERY_HIGH

on(in event : Event)

N 0.1 source |duration[0..1] : Integer HIGH
: MEDIUM
| LOW
- ———-WoTSComponent VERY LOW
I 1 * -
N
«interface»
EventSource

addListener(in linstener : WoTSComponent)
trigger(in listener : Event)

Fig. 5. General architecture model

Also the behavior of a WoT system is defined by reaction rules (e.g., trigger
the alarm when an intruder is detected or start watering the flowers when the
soil moisture is under a threshold value).

4.2 Sensors

Sensors are mostly used to collect data. In general a sensor can be an atomic com-
ponent, having just one specific function (e.g., a LM35 centigrade temperature
sensor) or a composite one, where multiple sensors are packed in one unit and
all of them use the same communication interface (e.g., 1-wire DHT22 temper-
ature and humidity sensor). Sensors can be divided in categories based on their
types. Our category divisions (see were obtained by selecting the most
relevant types of sensors, according to [II]. In some cases, one category may be
further divided, as for example in the case of WeatherSensor category, we have:
TemperatureSensor, HuniditySensor, MoistureSensor, BarometerSensor and
so on. For each sensor category (or sub-category) a related builtin event type,
or set of event types are defined. The events are forwarded to the registered
listeners, responsible to evaluate and use the sensor data by using their rules.

4.3 Actuators

Actuators are in general simple electro-mechanical devices that require a signal
(voltage, current or a specific protocols) to activate or deactivate them. The
most relevant categories, according to [10], are captured in our model, as shown

in [Figure 7
4.4 Human Interface Devices

According to [12], Human Interface Devices (HIDs), represent a special type of
WoT Components, and their main purpose is to provide an interface between the

ResistiveSoilMoistureSensor
;E resistance : Double

SoilMoistureSensor

TemperatureSensor

temperature : Double

moisture : Double ChemicalSensor

!

W AcousticSensor getLuxValue() : Double

|
I

OpticalSensor PhotoResistorSensor

|<

resistance : Double

| Sensor |<]—| ForceSensor |

/\ — -
M ElectricSensor VT93N1
LM35 ProximitySensor MagneticSensor

NavigationSensor

RadioSensor

RadiationSensor

|
i

FluidFlow

Fig. 6. Sensors architecture model

ActuatorStateChangeEvent

Actuator

PWMController

frequency : Double
dutyCycle : Double

ElectricActuator
/\

]
| PneumaticActuatorl | HydraulicActuator

[

PullDownRelayActuator

[
Motor | | Electrovalve | | Relay qustate : Boolean

Fig. 7. Actuators architecture model

system and a human user who needs to interact with the system. Such devices can
either be input or output devices, but can also be composite devices (providing
multiple inputs, multiple outputs or multiple inputs and outputs). Examples of
HIDs are displays (with or without touch screen), LEDs, keyboards, etc.

5 Test Case: The Green House Project

This section presents a project as a proof of concept for the proposed archi-
tecture. The project is about the implementation of a Green House, which is
monitored and controlled by a WoT System. Specific needs in terms of temper-
ature, water and light have to be considered for the Green House. The system
provides the following functionality:

— soil moisture sensors measure from dry up to flooded soil.

the temperature is monitored and an automatic cooling system is activated
to control the temperature (air flux may come from outdoors).

— a specific light intensity is required for an optimal production.

the water system can be started or stopped by using an electrovalve.

shows the model instance of the Green House project, according with
the architecture model discussed in this paper.

| moistureSensor : moisture::ResistiveSoiIMoistureSensor|

|tempSensor : temperature::LM35| |ph0t0ResistorSensor : optical::VT93N1|
| ! GreenHouse : component::WoTSystem ! |
|coo|erReIav : eIectric::PuIIDownReIavActuator| |IightPWMContro|Ier : eIectric::PWMControllerl

|waterVaIveReIav : electric::PuIIDownReIavActuator|

Fig. 8. Green House test case model instance

5.1 Interfacing with Sensors and Actuators

A WoT project consists of a set of sensors that perceive the environment, a set
of actuators with the purpose of performing physical actions, and a computer
device connected to them and to the web via a web application. In general,
a normal computer or smart device cannot be directly connected to sensors or
actuators, but rather an interface board is needed for this purpose. Such a board
is a device which allows to communicate via specific protocols (e.g., USB, Serial,
Parallel, etc) with the computer and in the same time provides I/O channels (via

GPIO pins) to interface with sensors and actuators. Examples of such boards are:
1010-OTP| and Arduind®} One can also use development boards which provide
a combination of mini-computers and interface boards in just one device, such
as Beaglebomﬂ and Raspberry PI ﬁ There are some disadvantages in this case
since usually the number of available GPIO pins is limited (e.g., Raspberry PI
provides only 8, neither having analog capabilities) and others requires advanced
programming skills to control the GPIO pins (e.g., Beaglebone requires advanced
C/C++ and Assembler knowledges for more than blinking a led projects).

For our project we use the IOIO-OTG interface board, which allows to con-
nect a smart device running Android v2.3 or higher with external components
(e.g., sensors and actuators) by using the 46 GPIO pins. It provides multiple in-
terfacing capabilities, such as communication via 12C, SPI and UART protocols,
analog data reading (reads voltage within 0-3.3V range) and PWM (pulse width
modulation) control with possibility of changing the frequency and duty cycle.
The board is connected with the Android device via USB cable or bluetooth. For
an optimal usage of the IOIO-OTG interface board, the Android device must
have 512MB or more RAM memory and a CPU with a frequency over 1GHz.

The board itself does not require custom software to interface with exter-
nal components. Instead it interfaces with the Android device via a Java API,
which is rather generic and does not provide specific implementation to interface
with sensors or actuators, this being part of the custom project software imple-
mentation. Our Java prototype of the proposed WoT architecture includes the
IOIO-OTG API and extends it with specific sensors and actuators implementa-
tion, as the ones (but not only) used for the Green House project.

5.2 Hardware Configuration
The system consists of the following hardware parts:

— A Samsung Galaxy S (GT-19000) smartphone running Android version 4.3.1.

— A IOIO-OTG board is used as an interface between the smartphone and the
system. It connects with the smartphone via bluetooth or USB cable.

— The LM35 centigrade analog sensor is used to monitor the temperature.
It represents a specific TemperatureSensor implementation, part of the
WeatherSensor category (see [Figure 6| and [Figure §)).

— The VT93N1 photo-resistor sensor, is used to detect the light intensity.
It represents a specific PhotoResistorSensor implementation, part of the
OpticalSensor category (see [Figure 6| and [Figure &)).

— DIY custom soil moisture sensors are created with the help of nickeled nails,
wires and resistors. Those sensors represents a specific implementation of
ResistiveSoilMoistureSensor, a specific subclass of SoilMoistureSensor,
part of the WeatherSensor category (see [Figure 6| and [Figure 8).

3 I01I0/I0T0-OTG - https://github.com/ytai/ioio/wiki

4 Arduino - http://www.arduino.cc/

5 Beaglebone - http://beagleboard.org/Products/BeagleBone
5 Raspberry PI - http://www.raspberrypi.org/

https://github.com/ytai/ioio/wiki
http://www.arduino.cc/
http://beagleboard.org/Products/BeagleBone
http://www.raspberrypi.org/

— The electrovalve used to start/stop watter supply is activated and deacti-
vated by using a PullDownRelayActuator (see[Figure 7|and [Figure 8)). Such
a relay type is closed by default, and is activated by connecting it to the
ground of the power supply, from here its ”pull down” name.

— A set of mains powered coolers are used to keep the temperature in a specified
range. PullDownRelayActuator relays are used to control their on/off states.
The airflow used to adjust the temperature level comes from outdoors.

— A recycled ATX PC power supply (provides 12V and 5V at high current
levels) is used to power all components except the ones being connected to
mains power supply (cooling system).

The total cost of the system is about 200€ , from which the sensors and the IOIO
interface board cost about 50€. The rest of the price is for the electrovalve,
relays, coolers and dimmable lights. The smartphone price is not included, but
is currently evaluated to about 50-60€ on the market.

5.3 Software Configuration

Our WoT Java/Android implementation is used to implement the system soft-
ware. It contains the code required to read the sensors and control the actuators.
As already discussed in this paper, our architecture uses an event based com-
munication between components and the system behavior is defined by using
reactive rules. For this project a set of rules are used to control the actuator
components based on various sensor readings. For readability reasons, a pseudo-
code version of the rule is shown in this paper, but its Java version (as used by
our architecture implementation) is also simple to write.

Temperature and Soil moisture Control: The LM35 sensor is used in AUTO
mode, thus creating TemperatureSensorEvents (builtin event type which car-
ries the temperature value) only when temperature value changed compared
with latest known value. Controlling the cooling system is performed by using a
rule shown below:

WHEN TemperatureSensorEvent event

if (event.getTemperature() < lowRange)
then CREATE DisableRelayEvent(CoolerRelay)
elseif (event.getTemperature() > highRange)
then CREATE EnableRelayEvent(CoolerRelay)

The coolers are started if a high temperature is detected. When the tem-
perature goes back in the normal range, the coolers are stopped. The temper-
ature is maintained in the specified range with the condition that outdoors
temperature (from where the airflux come) is below the highest temperature
value specified by our system. The same considerations are used to control the
soil moisture, the differences being the type of event which triggers the rule
(SoilMoistureSensorEvent) and the moisture threshold values.

Lights Control: Using PWM (pulse width modulation) one can control a light
system to have not only light on and light off light states, but also various
intermediate light intensity levels. Using the IOIO board we generate the PWM
signals to control a set of PWM controlled dimmable lights. The following rule
allows to control the light by changing the PWM duty cycle:

WHEN LightSensorEvent event

if (event.getLuxValue() > highRange)

then CREATE DisablePWMEvent(PWMLight)

else DEFINE VAR dutyCycle = (targetLuxValue - event.getLuXValue()) / 100
CREATE ChangePWMDutyCycleEvent(PWMLight, dutyCycle)

The sensor returns values between 0 Ohm (direct sun light) and 300K Ohm
(complete dark) which are internally converted to LUX values. Increasing the
PWM duty cycle results in higher light levels. The targetLuxValue represents
the target light intensity value (in LUX) for our Green House.

Safety Comnsiderations: A WoT system presents safety risks in some cases.
For example the malfunction of the soil moisture sensor in the case of the Green
House project may result in flooding the plants. We are working on a solution
to categorize the WoT components and events so that posible safety risks are
limited as much as possible. Additionally, implementing some WoT systems may
require to work with possible dangerous voltage levels for the human body, e.g.,
using mains power. Such safety risks must be considered by the hardware project
author.

Project Enhancements: The project was prototyped in a room by replacing
the mains powered coolers with PC coolers and the electrovalves with LEDs.
The project will be improved by allowing a human user to interfere with the
automated actions if required (e.g manually start or stop the water or coolers).
Additionally, a data collector component will be added to have statistics about
the expenses by monitoring the consumed water and electricity. This is possi-
ble by using sensors to read and monitor consumed electrical power and water
volume.

6 Conclusions

We have presented an ontology and metamodels for modeling, designing and
simulating WoT systems. A simple, but illustrative, test case implementation
was shown as a proof of concept. We still have to make our framework more
complete, e.g., by developing a general approach how to create simulation models
for specific sensors and actuators based on their technical specification provided
by the vendor.

References

10.
11.
12.

Consorzio Ferrara Ricerche. Project Deliverable D1.1 - SOTA report on existing
integration frameworks/architectures for WSN, RFID and other emerging IoT re-
lated Technologies, Alessandro Bassi (Eds.), 2011, http://www.iot-a.eu/public/
public-documents/documents-1/1/1/d1.1/at_download/file

. FhG IML. Deliverable D1.3 Updated reference model for IoT v1.5, An-

dreas Nettstrter (Eds.), 2012, http://www.iot-a.eu/public/public-documents/
documents-1/1/1/D1.3/at_download/file

Dominique Guinard. A Web of Things Application Architecture - Integrating the
Real-World into the Web, 2011, https://www.webofthings.org/dom/thesis.pdf
Gerd Wagner. AOR Modelling and Simulation Towards a General Architecture
for Agent-Based Discrete Event Simulation. In P. Giorgini et al. (Eds.): Agent-
Oriented Information Systems, Springer-Verlag LNAT 3030, pp. 174188, 2004.
Gerd Wagner. A Short Introduction to the ER/AOR Simulation Framework. http:
//hydrogen.informatik.tu-cottbus.de/talks/AORS-Tutorial/

Giancarlo Guizzardi and Gerd Wagner. A Unified Foundational Ontology and some
Applications of it in Business Modeling. In Proceedings of the CAiSE’04 Work-
shops, edited by J. Grundspenkis and M. Kirikova, 3:129-143. Faculty of Computer
Science and Information Technology, Riga Technical University, Riga, Latvia. June
7-11, 2004.

Giancarlo Guizzardi. Ontological Foundations for Structural Conceptual Models.
PhD Thesis, University of Twente, The Netherlands. 2005.

Giancarlo Guizzardi and Gerd Wagner. Using the Unified Foundational Ontol-
ogy (UFO) as a Foundation for General Conceptual Modeling Languages. In
Roberto Poli (Ed.), Theory and Application of Ontologies, 175-196. Springer-
Verlag Berlin/Heidelberg, 2010.

Edson Prestes and Joel Luis Carbonera and Sandro Rama Fiorini and Vitor A. M.
Jorge and Mara Abel and Raj Madhavanb, Angela Locoro and Paulo Goncalves
and Marcos E. Barreto and Maki Habibg and Abdelghani Chibani and Sbastien
Grard and Yacine Amirat and Craig Schlenoff. Towards a core ontology for robotics
and automation. Robotics and Autonomous Systems 61 (2013), 1193-1204.
Wikipedia: Actuator, http://en.wikipedia.org/wiki/Actuator.

Wikipedia: List of sensors, http://en.wikipedia.org/wiki/List_of_sensors.
Wikipedia: Human interface device, http://en.wikipedia.org/wiki/Human_
interface_device.

http://www.iot-a.eu/public/public-documents/documents-1/1/1/d1.1/at_download/file
http://www.iot-a.eu/public/public-documents/documents-1/1/1/d1.1/at_download/file
http://www.iot-a.eu/public/public-documents/documents-1/1/1/D1.3/at_download/file
http://www.iot-a.eu/public/public-documents/documents-1/1/1/D1.3/at_download/file
https://www.webofthings.org/dom/thesis.pdf
http://hydrogen.informatik.tu-cottbus.de/talks/AORS-Tutorial/
http://hydrogen.informatik.tu-cottbus.de/talks/AORS-Tutorial/
http://en.wikipedia.org/wiki/Actuator
http://en.wikipedia.org/wiki/List_of_sensors
http://en.wikipedia.org/wiki/Human_interface_device
http://en.wikipedia.org/wiki/Human_interface_device

	Towards a General Framework for Modeling, Simulating and Building Sensor/Actuator Systems and Robots for the Web of Things
	Ion Mircea Diaconescu1 and Gerd Wagner1

