
Graphity: generic processor for declarative Linked Data

applications

Martynas Jusevičius

Graphity

martynas@graphity.org

Abstract. In this paper we describe a novel approach to read-write Linked Data

design. By combining URI-to-query mapping with SPIN, XSLT, and

RDF/POST, many advanced Web application features can be implemented

declaratively. Such architecture is standard-compliant and provides a rapid way

to build life-science Linked Data apps from reusable components.

Keywords: Life sciences · Linked Data · Declarative · Web Applications · RDF

· SPARQL · Graphity · SPIN · XSLT · Linked Data Platform · REST · OWL

1. Introduction

The volume of life-science related RDF data is set to grow [1]. Data publishers

providing Linked Data access often choose to develop new software, which is costly.

Usability expectations are high. We address these issues with a novel software design

that makes the components reusable and the development rapid by reducing the

functionality into simple operations on semantic data.

In Graphity [2], we implemented a declarative approach which maps read-write

Linked Data HTTP access to SPARQL operations on RDF stores. The W3C has done

related work based on XML [3], but has not applied it to RDF. The Linked Data

Platform [4] has similar aims, but lacks the mapping to SPARQL.

2. Approach

In RESTful applications, resources that share the same URI structure usually share

the same representation pattern. In our case, the representation is RDF, with views

defined in SPARQL. Let us consider a simple Linked Data request, to which the

server responds with a query result:

GET <resource> → DESCRIBE <resource>

We can generalize this into a mapping between resource URIs and SPARQL

queries by using templates of the form:

http://graphityhq.com/
mailto:martynas@graphity.org

/{path} → DESCRIBE ?this

Special query variable ?this stands for the request URI that matches the

template. A collection of such mappings is application-specific and called a sitemap.

3. Implementation

Each application instance embeds a processor, which interprets the sitemap on each

HTTP request and executes queries on a SPARQL endpoint. No domain-specific

object layer is present: the triplestore acts as an MVC model via HTTP, while the

processor is the controller, and XSLT is the optional view layer. All components

operate on RDF natively and directly.

1.1 Sitemap and templates

Resource template is an OWL class, which maps a URI template to a SPARQL

query. For that we use regex-like JAX-RS syntax [5] and SPIN RDF [6] syntax,

respectively:

gp:Resource a owl:Class, gp:Template ;

 rdfs:subClassOf foaf:Document ;

 gp:uriTemplate "/{path: .*}" ;

 spin:query gp:Describe .

gp:Describe a sp:Describe, sp:Query ;

 sp:text """DESCRIBE ?this"""^^xsd:string .

This example shows a catch-all URI template mapped to a default query. In real-

world applications both the URI templates and the queries are more specialized. The

query forms are limited to DESCRIBE and CONSTRUCT, as the required result is

RDF graph.

1.2 Processing model

Each request URI is first matched against the set of URI templates in the sitemap,

using the JAX-RS precedence algorithm. ?this in the query of the matching

template is bound to request URI. The query is then executed on the endpoint, and the

result is returned as the representation of the requested resource. If no template

matches, 404 Not Found is returned.

It is often useful to arrange resources in a hierarchical fashion. Folders and files in

the filesystem is well known example. We implement this using container resources

that have children resources. Container queries must contain SELECT subqueries to

provide paginated access to its children by dynamically setting LIMIT and OFFSET

modifiers. Ordering is implemented using ORDER BY. Default modifier values are

specified in the resource template and overridden by request query parameter values:

<#Container> a owl:Class, gp:Template ;

 gp:limit 20 ;

 gp:offset 100 ;

 gp:orderBy "title"^^xsd:string .

Previous/next page resources are added to container responses automatically,

following the REST principles:

<container?limit=20&offset=120&orderBy=title>

1.3 Representations

Representations should be available in all RDF serializations supported by the

underlying I/O framework via content negotiation. The processor must select best-

matching media type based on the Accept header of the request.

The application can produce non-RDF representations, including binary. (X)HTML

output is achieved via XSLT transformation of RDF/XML, server- and client-side.

Layout modes can be configured per resource template.

Caching can also be configured per resource template:

<#CachedDocument> a owl:Class, gp:Template ;

 gp:cacheControl "public, max-age=86400" .

1.4 Data input

POST HTTP request to a container is used to create a new child resource, while

PUT is used to replace existing representation. The update is done using SPARQL

Update template attached to resource template using spin:update property.

However, Graph Store Protocol [7] is often more convenient .

Blank nodes in the request RDF payload are skolemized. For example, building

URI for node with dct:identifier value 42 and URI template

/books/{identifier} yields /books/42. Unmatched bnodes are left

untouched.

Quality of the incoming data is controlled using SPIN constraints [8]. If the data is

invalid, an error response is returned to the client and no further processing is done.

A common, but still problematic use case in read-write Linked Data applications is

retrieving user input natively as RDF. Luckily, that is covered by RDF/POST [9].

1.5 Access control

Access control can be implemented using the W3C ACL ontology [10]. Graphity

provides a transparent filter that authorizes each request using an ASK SPARQL query

for public or authenticated agent access.

User accounts and authorizations are stored in a RDF repository separately from

the domain data, prohibiting the end-users from modifying them. The filter has access

to both of them by means of federation (the SERVICE SPARQL keyword).

4. Conclusions

The architecture of a generic processor interpreting declarative application-specific

sitemaps enables a new way to reuse application components without writing new

software. It is also very scalable, as the system is stateless and functional.

Core Web application functionality such as URI routing, data representation and

input, and access control can be implemented using standard RDF/OWL constructs

only. Such apps can run on different processors and platforms, can be imported,

merged, forked, managed collaboratively, transformed, queried etc.

The Graphity processor is open-source and works with any SPARQL 1.1

triplestore. The commercial platform layer provides multi-tenant functionality and has

been successfully used to build rich Linked Data applications for product information

management [11] and library data [12].

Our goal is to formalize this approach as a W3C submission. We invite you to join

the discussion at the W3C Declarative Linked Data Apps Community Group [13].

References

1. S. Jupp et al. The EBI RDF Platform: Linked Open Data for the Life Sciences.

2. Graphity. http://graphityhq.com

3. Declarative Web Applications Current Status, http://www.w3.org/standards/techs/dwa

4. Linked Data Platform 1.0. http://www.w3.org/TR/ldp/

5. The @Path Annotation and URI Path Templates. http://docs.oracle.com/cd/E19798-

01/821-1841/6nmq2cp26/index.html

6. SPIN - Modeling Vocabulary. http://spinrdf.org/spin.html

7. SPARQL 1.1 Graph Store HTTP Protocol. http://www.w3.org/TR/sparql11-http-rdf-

update/

8. The Data Quality Constraints Library Language Reference.

http://semwebquality.org/ontologies/dq-constraints

9. RDF/POST Encoding for RDF. http://www.lsrn.org/semweb/rdfpost.html

10. WebAccessControl. http://www.w3.org/wiki/WebAccessControl

11. NXP Data, http://data.nxp.com

12. De Danske Aviser. http://dedanskeaviser.dk

13. Declarative Linked Data Apps CG, http://www.w3.org/community/declarative-apps/

https://twitter.com/hconstandt/status/532121863296909312
http://graphityhq.com/
http://www.w3.org/standards/techs/dwa
http://www.w3.org/TR/ldp/
http://docs.oracle.com/cd/E19798-01/821-1841/6nmq2cp26/index.html
http://docs.oracle.com/cd/E19798-01/821-1841/6nmq2cp26/index.html
http://spinrdf.org/spin.html
http://www.w3.org/TR/sparql11-http-rdf-update/
http://www.w3.org/TR/sparql11-http-rdf-update/
http://semwebquality.org/ontologies/dq-constraints
http://www.lsrn.org/semweb/rdfpost.html
http://www.w3.org/wiki/WebAccessControl
http://data.nxp.com/
http://dedanskeaviser.dk/
http://www.w3.org/community/declarative-apps/

