
GECO: Generator-Composition for
Aspect-oriented DSLs

Reiner Jung

Kiel University
reiner.jung@email.uni-kiel.de

Abstract. Increasing size and complexity of software projects have trig-
gered the use of domain-specific languages (DSL). Multiple DSLs, some
with cross-cutting concerns, are used to describe software systems. In
context of long-living software systems, requirements change over time
causing an evolution of domains and subsequently the corresponding
DSLs. Transformations are used to generate models and code from these
DSLs combining information from different cross-cutting concerns. Due
to the changes, the development and evolution of these generators be-
come cumbersome and error-prone. The proposed GECO approach ad-
dresses this issue by introducing guidelines and tooling to ease generator
composition and evolution. Furthermore, it allows parts of code gener-
ators to be developed and evolved separately reducing the overall com-
plexity of code generation. In addition GECO fosters the reuse of DSLs
and their generators in different projects.

1 Introduction

Model-driven engineering (MDE) addresses the complexity of software systems
with a higher level of abstraction realized through models [1]. To compose mod-
els, domain specific languages (DSL) can be used, providing a concrete notation
to abstract meta-models. Software systems comprise multiple concerns and views
which are addressed by multi-view-modeling approaches [2] and aspect-oriented
modeling (AOM) [3] with separate aspect and base models. Aspect and base
models use the same meta-model (cf. [3]) or separate aspect and base meta-
models with specific abstract syntaxes and semantics [4,5].

These source models of a software system are then transformed into tar-
get models or program code and supportive artifacts [6] by generators. There-
fore, generators play a central role in MDE [7]. In an AOM context, generators
may process multiple source models, representing different aspects, and inte-
grate their information into target models (cf. [8,9]), making generators consider-
ably complex artifacts, particularly because a generator may depend on multiple
meta-models. Furthermore, depending on multiple meta-models, a transforma-
tion must be modified every time one of the meta-models is modified. Long-living
software systems face changes due to alteration of requirements, technology and
environment during their lifetime. Requirement changes may cause alterations in
the domain of a specific DSL and require alterations to its syntax and semantic,



subsequently causing changes to the transformation. Technology and environ-
ment changes, induced by, e.g., service-oriented and cloud technologies [10], can
affect how the semantic of the DSL is realized with the underlying technologies.

Frequent changes to complex transformations are cumbersome and can cause
code and architecture degradation. Furthermore, DSLs can be altered quickly
in comparison with transformations, and be reused in other software projects.
However, such transformation, dependent on multiple source meta-models are
harder to modify and reuse, as they process model elements from different meta-
models in the same rule or operation. Therefore, separating transformation code
for one specific meta-model and DSL is at least complicated or even unfeasible.
This hinders software evolution and the reuse of tooling.

The goal of this research project is to provide an technology independent
approach which supports the construction, evolution and reuse of complex gen-
erators, by dividing them into smaller and simpler fragments, targeting only one
aspect or concern, and subsequently compose complete generators out of these
fragments. Hence, the approach is named GECO for generator composition.

The remaining paper follows the proposed structure. Section 2 discusses the
related work. Section 3 introduces the approach, and Section 4 the preliminary
work to motivate, realize and evaluate the approach. The expected contributions
are described in Section 5 and the evaluation in Section 6. The current status is
summarized in Section 7 along with the timeline for the project.

2 Related Work

Only a few code generation approaches covering AOM have been published [7].
Most prominent are an FDAF [11] based approach [4], Theme/UML [12] based
generator [13], and reusable aspect models (RAM) [14] which utilizes the generic
composition with Kermeta weaver [15] for model weaving.

These approaches focus on UML and the generation of Java and AspectJ.
They promise reusability of aspect models and code generators in different
projects. While some approaches utilize stereotypes or profiles to describe as-
pects, they neither support UML profiles for their base and aspect models, nor
do they address domain-specific languages. In these approaches, aspects are mod-
eled with UML subsets. The weaving of aspects is controlled by direct references
or model-subgraphs formulating pointcuts. However, these approaches do not
address the construction of generators, as they see them as stable elements.

To the best of our knowledge, literature indicates that construction, evolution
and reuse of generators have not had much attention in the modeling community
[7]. While this is different in the compiler community, they do not address the
specific nature of evolution and reuse, as the evolution steps of programming lan-
guages and their compilers happen in years not weeks. However, two modeling
approaches address the construction and reuse of generators. The first approach
focuses on product lines, where highly adaptable generators are required to sup-
port, e.g., different functionalities of the target domain [16]. It utilizes higher
order transformations [17] to combine domain-specific transformation templates



for specific products. The second approach, Genesys [18], focuses on correctness
of code generators which is ensured by composing generators from correct frag-
ments, providing features, like loops or allocation. Both approaches allow the
construction of single generators out of smaller fragments and can be used to
construct fragments for GECO. However, they do not support AOM and are not
prepared to support model traceability, which is necessary to resolve join points.

3 The GECO Approach

The general aim of GECO is to provide an approach and methods to construct
code generators and support their evolution and reuse. The key challenges for
this research project are the notation of pointcuts in DSLs, their resolvement
to target model join points, and the decomposition of generators along concerns
reflected in meta-models and facets of meta-models, like typing and expressions.

3.1 Basic Generator Scenarios

Code generation for software systems utilizing AOM involves different base and
aspect models which are transformed into target models. In projects with mul-
tiple DSLs, like MENGES [8], the generation involves multiple generators pro-
cessing and combining information from different models. However, based on the
AOM paradigm, models play the role of an aspect or base model resulting in
aspect to base model relationships [5].

SBM

TBM

S1 SBM
SAM
TBM
TAM
TM

Source Base Meta-Model
Source Aspect Meta-Model
Target Base Meta-Model
Target Aspect Meta-Model
Target Meta-Model

SBM SAM

TBM TAM

TBM TAM

SBM SAM

TBM TAM

TBM TAM

SBM SAM

TM

TMerge

S2 S3 S4

Source

Target
Transformation
References

T

TBM

Fig. 1. Four different mega-model pattern for base and aspect meta-model with their
respective transformations and target meta-models.

On that basis, the complex relationship graph of meta-models and generators
can be split into four different mega-model [19] pattern (see Fig. 1). S1 is a
simple transformation with one source and one target model. S2 describes that
source model references are mapped to target model references, resembling the
aforementioned Java/AspectJ generator approaches in Section 2. S3 reflects the
situation, where the direction of the references is inverted from source to target
models. This may happen to express function calls to an aspect model. Finally, S4
represents model or code weaving where a compatible aspect model is integrated
into the base model. GECO utilizes different weavers, like GeKo [15] for models
and AspectJ1 for Java code.

1 https://www.eclipse.org/aspectj/

https://www.eclipse.org/aspectj/


3.2 Generator Composition

Depending on the described generator mega-model pattern, different information
must be exchanged between generator fragments. In Fig. 2, the combination
of fragments is illustrated along the two central pattern. In S2, the generator
fragment TFBM produces as main output a model conforming to TBM. Similarly,
TFAM produces an output conforming to TAM. To do so, TFAM must resolve the
reference destinations in TBM based on the references expressed in SAM. This
task requires trace information for the generated model nodes which are stored
in a trace model conforming to a TRM. A trace model can be generated by
TFBM or can be computed by a separate transformation TRBM. Depending on
the transformation language, the generation of the trace model must be explicitly
specified or automatically added to a generator (see [20]).

SAM TAM
GAM

SBM TBM
GBM

TRM
TRBM

SAM TAM
GAM

SBM TBM
GBM

TRM, JPM
TRAM

S2 S3

Source Base Meta-Model
Source Aspect Meta-Model
Target Base
Target Aspect Meta-Model
Trace Meta-Model
Join Point Meta-Model

SBM
SAM
TBM
TAM
TRM
JPM

G
TR

Generator
Trace Reconstruction Generator

Fig. 2. Illustration of generator fragment compositions

S3 requires a different approach to fulfill its two tasks. First, it has to invert
the direction of the references. And second, the references must be mapped from
source to target level. Therefore, TFAM or a supplement TRAM produces a trace
model for the aspect, and additionally relationships for source model join points
stored in a join point model. The latter is required to infer the inverse references,
to be placed in the target base model. And the trace model is used to determine
target aspect model nodes corresponding to their source aspect model nodes.

3.3 Computing Target Model Join Points

In aspect-oriented DSLs and their meta-models, join points can be expressed as
direct references pointing from an aspect model node to a base model node [5] or
they can be determined with pointcuts specified as subgraph patterns [15] and
model queries [21]. These join points refer to source base model nodes. However,
to retain the join points on the target model level, they must be translated ac-
cordingly. Based on the trace model, all source model nodes in the join point
collection are replaced by their respective target model nodes. As a generator
might create multiple target model nodes for one source model node, the result-
ing target join point model might be significantly larger than the source join
point model. For example, a source model node describing a filter is represented
on the target model level by multiple public operations.

Based on current approaches to determine and represent traces [22,23], trace
models also contain traces to nodes which are semantically not suited for weaving



behavior or structure. This is especially true when trace construction is automat-
ically introduced to transformations [20]. For example, a join point representing
an injection of a monitoring probe should reference an operation and not the
parameter or return type of the operation. Therefore, only suitable nodes in the
target model must be selected. In GECO this is realized by a subgraph pattern
match. Based on this selection a set of remaining join points can be determined.

3.4 Obtaining Model Traces

In current research, different methods and approaches have been described to
obtain and store model traces [24]. They can be categorized as constructive and
recovery approaches. The latter use either deterministic algorithms or heuristics
[25] to find matches. Heuristic approaches produce non-predictable results which
is not sufficient for generators. Deterministic based recovery strategies require
attributes which are considered identical in source and target models. However,
this assumption cannot be guaranteed for all transformations, resulting in incom-
plete join point models. Therefore, only constructive approaches can determine
suitable trace models, where either traces are generated by the fragment itself
or by a supplement trace model generator. The first approach leads to more
complex generators from a developer’s perspective if the code must be added by
hand. However, for some transformation languages, this feature can be added
automatically [20]. The second approach circumvents this complexity issue by
defining a separate generator, which also allows to integrate legacy generators
were code alterations are not possible.

4 Preliminary Work

MENGES [8] aimed to develop a DSL for railway control centers, which resulted
in eight different DSLs describing communication, logic, deployment, configu-
ration and monitoring. The DSLs were developed in an agile setting where all
features and changes have been recorded and documented. Thus, it is a good
basis for a comparative evaluation for generator construction and evolution.

Based on experience in application monitoring, we developed an instrumen-
tation aspect language [21] with a query based pointcut model capable of being
used with any EMF meta-model. The tooling provides already a generator for
AspectJ configuration files and partial code generation for instrumentation code.

A key problem of meta-models is the understanding of the syntactical and
semantical aspects of their different features which must be established prior
to writing code generators. We first addressed structural properties of DSLs in
form of type-systems and instances of types [26]. Particularly important is the
mapping of the source to the target type-system, which may involve special run-
time code to support source level type concepts on the target level. Further, we
explored the semantic properties of meta-models and typical features of specific
meta-models types [5] induced by their AOM role and application context, like
meta-model pattern for pointcuts, typing, expressions, data, state, and traces.



5 Expected Contributions

The main goal of GECO is to provide both: a method and a process to guide
DSL and generator development, based on the above described approach. This
includes meta-model patterns induced by the domain the meta-model is used for,
application context, and role in AOM, as well as, the partitioning of generators
along these patterns [5]. The EMF based tooling will support the composition of
generators accompanied by a framework for DSL development supporting type-
system integration. Furthermore, a reusable aspect DSLs for monitoring and
application measuring will be created in cooperation with the Kieker project2.

6 Evaluation Scenarios

The evaluation is built on two generator construction scenarios based on the
Common Component Modeling Example (CoCoME) [27] and the aforementioned
DSLs for railway control centers (RCC). The CoCoME scenario resembles a Java-
based enterprise software system, while RCC project targets embedded systems.
In both scenarios, DSL users will be involved to steer DSL feature changes by
contributing feature requests.

The evaluation process is divided into three phases, where each one has its
specific objectives. Phase one: Two existing code generators for the application
(partial CoCoME) and a monitoring aspect [21] are integrated to evaluate the
feasibility of all techniques, notations, and methods. The resulting generator and
pointcut notations are thought to be used by other researchers of the priority
program3 in their case studies. The success of the first phase will be determined
by its ability to deliver a working generator and the user feedback, based on
interviews, regarding practicability of the different pointcut notations.

Phase two: Existing and newly constructed DSLs supplement the initial Co-
CoME models in order to specify all aspects of the CoCoME application. For
these DSLs, generator fragments are developed by me and other researchers who
utilize CoCoME in their software evolution scenarios. Based on the researchers
scenarios, modifications to the DSLs and generators are performed simulating
evolution. GECO will successfully complete this phase if it is able to provide sta-
ble generators, and the development time does not increase with every change.
Furthermore, user feedback will determine the applicability of GECO.

The final phase will utilize the RCC DSLs in a setting performed together
with an industry partner. Success will be determined similarly to phase two.
However, in this scenario results from a previous generator development project
for the same DSL will be used to evaluate an eventual cost benefit of GECO.
Furthermore, the results and the approach will be reviewed by means of ex-
pert interviews of industry partners to evaluate its applicability in their specific
domains and software development processes.

2 http://www.kieker-monitoring.net
3 http://www.dfg-spp1593.de

http://www.kieker-monitoring.net
http://www.dfg-spp1593.de


7 Current Status

Currently, the evaluation scenarios and partners have been selected. Still, de-
tails have to be discussed with industry partners. The monitoring DSLs [21] are
implemented including the tooling. However, the generators for the instrumen-
tation probes are only partial realized. Further, different weavers are currently
investigated and the first evaluation phase setup is being prepared.

The final milestone for my doctorate is mid 2015. The next step is to final
the setup for the first evaluation scenario which requires all technical parts of the
approach in a working order. This includes the necessary generator fragments
for the instrumentation probes. The weaving will be realized with AspectJ. The
results for this first phase should be available in September 2014. Subsequently,
the additional DSLs for the CoCoME scenario will be finalized and the generator
fragments shall be available in December, providing the basis for the second
phase of the evaluation. From January to April 2015, the third phase based on
the RCC scenario will be conducted. The remaining time is reserved to finalize
the thesis, tooling and documentation.

References

1. Stahl, T., Völter, M.: Model-Driven Software Development – Technology, Engi-
neering, Management. Wiley & Sons (2006)

2. Kienzle, J., Abed, W.A., Klein, J.: Aspect-oriented multi-view modeling. In Sul-
livan, K.J., Moreira, A., Schwanninger, C., Gray, J., eds.: AOSD, ACM (2009)
87–98

3. Kramer, M.E., Kienzle, J.: Mapping aspect-oriented models to aspect-oriented
code. In: Proceedings of the 2010 international conference on Models in software
engineering. MODELS’10, Berlin, Heidelberg, Springer-Verlag (2011) 125–139

4. Bennett, J., Cooper, K., Dai, L.: Aspect-oriented model-driven skeleton code gener-
ation: A graph-based transformation approach. Science of Computer Programming
75(8) (2010) 689 – 725 Designing high quality system/software architectures.

5. Jung, R., Heinrich, R., Schmieders, E., Strittmatter, M., Hasselbring, W.: A
method for aspect-oriented meta-model evolution. In: Proceedings of the 2Nd
Workshop on View-Based, Aspect-Oriented and Orthographic Software Modelling.
VAO ’14, New York, NY, USA, ACM (2014) 19:19–19:22

6. Biehl, M.: Literature Study on Model Transformations. Technical Report
ISRN/KTH/MMK/R-10/07-SE, Royal Institute of Technology (July 2010)

7. Mehmood, A., Jawawi, D.N.: Aspect-oriented model-driven code generation: A
systematic mapping study. Information and Software Technology 55(2) (2013)
395 – 411 Special Section: Component-Based Software Engineering (CBSE), 2011.

8. Goerigk, W., Hasselbring, W., Hennings, G., Jung, R., Schneider, C., Schultz,
E., Stahl, T., von Hanxleden, R., Weik, S., Zeug, S.: Entwurf einer
domänenspezifischen sprache für elektronische stellwerke. In Jähnichen, S.,
Küpper, A., Albayrak, S., eds.: Software Engineering. Volume 198 of LNI., GI
(2012) 119–130

9. Giacinto, D., Lehrig, S.: Towards integrating java ee into protocom. In: KPDAYS.
(2013) 69–78



10. Hasselbring, W., Heinrich, R., Jung, R., Metzger, A., Pohl, K., Reussner, R.,
Schmieders, E.: iobserve: Integrated observation and modeling techniques to sup-
port adaptation and evolution of software systems. Research report, Kiel Univer-
sity, Kiel, Germany (October 2013)

11. Dai, L.: Formal Design Analysis Framework: An Aspect-oriented Architectural
Framework. PhD thesis, The University of Texas at Dallas (2005)

12. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design. Addison-Wesley
Professional (2005)

13. Hecht, M.V., Piveta, E.K., Pimenta, M.S., Price, R.T.: Aspect-oriented code gen-
eration. In: Simpsio Brasileiro de Engenharia de Software. (2005)

14. Klein, J., Kienzle, J.: Reusable aspect models. In: 11th Workshop on Aspect-
Oriented Modeling, AOM at Models’07,. (2007)

15. Morin, B., Klein, J., Barais, O., Jézéquel, J.M.: A generic weaver for support-
ing product lines. In: Proceedings of the 13th International Workshop on Early
Aspects. EA ’08, New York, NY, USA, ACM (2008) 11–18

16. Kapova, L., Goldschmidt, T., Happe, J., Reussner, R.H.: Domain-specific tem-
plates for refinement transformations. In: MDI ’10: First International Workshop
on Model-Drive Interoperability, New York, NY, USA, ACM (2010) 69–78

17. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bzivin, J.: On the use of higher-
order model transformations. In Paige, R., Hartman, A., Rensink, A., eds.: Model
Driven Architecture - Foundations and Applications. Volume 5562 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2009) 18–33

18. Jörges, S.: Construction and Evolution of Code Generators - A Model-Driven and
Service-Oriented Approach. Volume 7747 of LNCS. Springer (2013)

19. Favre, J.M.: Foundations of model (driven) (reverse) engineering – episode i: Story
of the fidus papyrus and the solarus. In: Post-Proceedings of Dagstuhl seminar on
model driven reverse engineering. (2004)

20. Jouault, F.: Loosely coupled traceability for atl. In: In Proceedings of the European
Conference on Model Driven Architecture workshop on traceability. (2005) 29–37

21. Jung, R., Heinrich, R., Schmieders, E.: Model-driven instrumentation with kieker
and palladio to forecast dynamic applications. In Becker, S., Hasselbring, W.,
van Hoorn, A., Reussner, R., eds.: KPDAYS. Volume 1083 of CEUR Workshop
Proceedings., CEUR-WS.org (2013) 99–108

22. Galvao, I., Goknil, A.: Survey of traceability approaches in model-driven engineer-
ing. In: Enterprise Distributed Object Computing Conference, 2007. EDOC 2007.
11th IEEE International. (2007) 313–313

23. Grammel, B., Kastenholz, S.: A generic traceability framework for facet-based
traceability data extraction in model-driven software development. In: Proceedings
of the 6th ECMFA Traceability Workshop, New York, NY, USA, ACM (2010) 7–14

24. Vanhooff, B., Van Baelen, S., Joosen, W., Berbers, Y.: Traceability as input for
model transformations. In Oldevik, J., Olsen, G.K., Neple, T., eds.: Third ECMDA
Traceability Workshop 2007 Proceedings,, SINTEF (June 2007) 37–46

25. Saada, H., Huchard, M., Nebut, C., Sahraoui, H.: Recovering model transformation
traces using multi-objective optimization. In: Automated Software Engineering
(ASE), 2013 IEEE/ACM 28th International Conference on. (Nov 2013) 688–693

26. Jung, R., Schneider, C., Hasselbring, W.: Type systems for domain-specific lan-
guages. In Wagner, S., Lichter, H., eds.: Software Engineering (Workshops). Vol-
ume 215 of LNI., GI (2013) 139–154

27. Rausch, A., Reussner, R., Mirandola, R., Plasil, F., eds.: The Common Compo-
nent Modelling Example (CoCoME). Volume 5153 of Lecture Notes in Computer
Science. Springer Verlag Berlin Heidelberg (2011)


	GECO: Generator-Composition for Aspect-oriented DSLs

