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Abstract. Hardcore lemmas are results in complexity theory which
state that average-case hardness must have a very hard “kernel”, that is
a subset of instances where the problem is extremely hard. Such results
find important applications in hardness amplification. In this paper we
revisit two classical results:

(a) The hardcore lemma for unpredictability, proved first by Impagli-
azzo. It states that if a boolean function f is “moderately” hard to
predict on average, then there must be a set of noticeable size on
which f is “extremely” hard to predict.

(b) The hardcore lemma for indistnguishability, proved by Maurer and
Tesaro, states that for two random variables X and Y which are
ε-computationally close, there exist events A and B of probability
1− ε such that the distributions of X|A and Y |B are “almost” iden-
tical.

We provide alternative proofs and some generalizations of these result in
the nonuniform setting. As an interesting application, we show
a strengthening of the transformation between two most popular pseu-
doentropy variants: HILL and Metric Entropy, and apply it to show how
to extract pseudorandomness from a sequence of metric-entropy sources
of poor quality. Comparing to the best known techniques we significantly
improve security parameters.

1 Introduction

1.1 Hardcore Lemmas and Their Applications

Unpredictability Hardcore Lemma. Suppose that we have a predicate
f that is mildly hard to predict by a class of circuits; for every circuit D from
this class, D(x) and f(x) agree on at most, lets say, a 0.99 fraction of inputs x.
One of the reasons for that, which could intuitively explain this behavior, is the
existence of a “kernel” for this hardness- a set of noticeable size on which f is
extremely hard to predict. Quite surprisingly, this intuitive characterization is
true. The first such result was proved by Impagliazzo [8]. Below we present the
tight improvement due to Holenstein.
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Theorem 1 (Unpredictability Hardcore Lemma [7]). Let f : {0, 1}n be
a predicate such that f is ε-unpredictable by circuits of size s, that is

Pr
x←{0,1}n

[D(x) = f(x)] 6 1− ε

2

holds for all D of size at most s. Then for any δ ∈ (0, 1) there exists a “hardcore”
set S of size ε2n such that f on S is 1 − δ unpredictable by circuits of size
s′ = O

(
sδ2/n

)
, that is

Pr
x←S

[D(x) = f(x)] 6
1 + δ

2
, for all D of size at most sδ2/32n.

Remark 1. Some authors use different conventions for ε-unpredictability. We fol-
low the approach of [7]. The definition above is intuitive since 1-unpredictability
would means that f is totally unpredictable.

Note that the size of the hardcore set, guaranteed to be at least 2nε, is tight.
Indeed, if the second part of the theorem is satisfied, i.e. f is almost unpredictable
on a set of size ε, it implies that f , on average over the whole domain, cannot
be predicted better than 1 − ε+δ

2 ≈ 1 − ε
2 . An uniform version, with the tight

hardcore density, is given also in [7]. Constructive versions of the hardcore lemma
can be obtained by actually an arbitrary boosting algorithm [1,9], however such
results are typically not tight, without additional optimization.

Indistinguishability Hardcore Lemma. It is know that if two distributions
X1, X2 have the statistical distance at most ε, then there exists events A1, A2

of probability at least 1 − ε such that the distributions X1|A1 and X2|A2 are
identical. Based on the reduction to the unpredictability hardcore lemma, Maurer
and Tessaro proved the following computational generalization of this fact

Theorem 2 (Indistinguishability Hardcore Lemma [11]). Let X1 and X2

be distributions on {0, 1}n, with the computational distance ε against circuits of
size s, that is

|ED(X1)−ED(X2)| < ε for all D of size s.

Then there exist events A1 and A2 of probability 1− ε such that A1 and A2 are
computationally indistinguishable, that is

|ED(X1|A1)−ED(X2|A2)| 6 δ for all D of size s = sδ2/128n.

which states that if two distributions are (computationally) not too far away
from each other then after conditioning on an event of noticeable probability
they are almost indistinguishable. Since the lower bound 1− ε on the probabili-
ties of hardcore events is tight1, this theorem can be viewed as a characterization
of computational indistinguishability.

1 By the similar reasoning as in the unpredictability case.
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Applications of hardcore lemmas. Hardcore lemmas are fundamental re-
sult in complexity theory and find applications in cryptography and learning
theory. They are particularly important in the context of hardness amplification,
i.e. transforming somewhat hard problems into hard problems. See for instance
[5,7,8,10,11].

1.2 Our Results

An unpredictability hardcore lemma under arbitrary distributions.
We prove a nonuniform version of a hardcore lemma that is true when inputs for
functions are sampled from arbitrary distribution, not necessarily uniform. Due
to connections of machine learning theory and hardcore lemma, well explained
in [9], it is clear that there is nothing special in the uniform distribution and
qualitatively similar statements indeed could be derived for any distribution.
However, our approach has the following advantages:

(a) The proof strategy is very simple and natural: we observe that it is straight-
forward to construct a hardcore for any fixed distinguisher and then we
use the min-max theorem to “reverse” the quantifiers. We believe that the
proof of this form can be useful to derive some complexity lower bounds for
hardcore lemma, which is (besides boosting proofs) an open problem.

(b) Our hardcore lemma is quantitatively tight, that is the weight of the hard-
core event for ε-unpredictability is guaranteed to be ε and the loss in the
complexity is O

(
δ2/n

)
for δ-closeness, which matches the best known result

for the case of the uniform distribution. Actually we slightly improve secu-
rity bounds with better explicit constants and replacing the dimension n by
a smaller factor.

(c) The only technical difficulty in the proof, the proof that if a hardcore can
be constructed for any fixed boolean circuit then the same is true for real
valued circuits, is overcome by the technique of explicitly characterizing
the “worst case” measures. This technique, which might be of independent
interest, allows us to give a relatively short and direct (without reducing
to the unpredictability version) proof of the indistinguishability hardcore
lemma and, more interestingly, a variant of the indistinguishability hardcore
lemma dedicated for computational entropy.

A simplified reduction from indistinguishability hardcores to un-
predictability hardcores. Basing on our generalized unpredictability hard-
core lemma we show an alternative proof for the indistinguishability hardcore
lemma of Maurer and Tessaro. In [11] the reduction goes from the indistinuish-
ablity hardcore lemma to the “standard” unpredictability hardcore lemma, that
is where inputs are sampled from the uniform distribution. In contrary, we find it
much easier and natural to reduce it to unpredictability of some predicate which
explicitly depends on the distributions X1, X2- is simply equal to the sign of the
difference between probability mass functions. In our reduction, besides better
constants and decreasing the factor depending on the dimension, we also gain
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an additional factor in security if the statistical distance of X1 and X2 is small.
This slightly improves the security bounds, however this improvement seems to
be of limited applicability for cryptographic applications.

A direct proof of the Indistinguishability Hardcore Lemma. By adapt-
ing the proof given for the unpredictability case, we can derive the (nonuniform)
Indistinguishability Hardcore Lemma of Maurer and Tessaro directly, that is
without reducing it to unpredictability hardcore lemmas. This can be interest-
ing in the context of lower bounds. Indeed, no lower bounds on unpredictability
hardcore lemmas, if they were discovered, would imply lower bounds for the in-
distinguishability version based on this reduction.

An Indistinguishability Hardcore Lemma for Pseudoentropy. In some
situations, for instance in extracting entropy, we do not really need our distri-
bution X to be indistinugishable from a particular Y but rather from a class of
distributions Y (which is a weaker requirement). To illustrate this, consider the
following alternatives to formalize the statement “X almost has property P”.

(i) X is (s, δ)-close to having property P , if there exists a distribution Y with
property P such that for every circuit D of size s, we have ∆D(X;Y ) 6 δ

(ii) X is (s, δ)-close to having property P , if for every D of size s there exists
a distribution Y with property P such that we have ∆D(X;Y ) 6 δ.

where ∆D(X;Y ) = ED(X) − ED(Y ) is the advantage of the attacker D. In
condition (i) we have the standard computational indistinugishability of X and
Y . In turn, the second condition can be thought of as indistinguishability be-
tween X and the set of all distributions Y having property P , since it means
that there is no D that separates X and all Y . Clearly condition (ii) is strictly
weaker, thought it is easy to see that for convex properties P (i.e. closed under
taking a convex combinations) both are equivalent up to the loss of a factor
O
(
δ2
)

in circuit size [2]. Surprisingly it turns out that for many applications
the weaker definition is good enough. If, for instance, P means “distribution has
min-entropy at least k”, then condition (ii), provided that it holds for probabilis-
tic distinugishers, is strong enough to ensure that any (k, ε)-extractor applied
to X yields an ε-pseudorandom distribution. The concept of “weak” indistin-
guishability, i.e. indistinugishability in the sense of (ii), is very useful in studying
computational generalizations of entropy.

Set the property P to be “having min-entropy at least k”. For case (i),
we obtain the notion of the HILL entropy [6]: X has k bits of pseudoentropy,
with quality (s, ε), if there is a distribution Y with k-bits of min-entropy such
that no circuit of size s can distinguish X and Y with the advantage better
than ε. In case (ii) we obtain a relaxed notion called Metric Pseudoentropy [2]:
no adversary of size s can distinguish between X and all distributions of min-
entropy at least k. As mentioned, metric pseudoentropy is very useful and widely
used as a convenient substitute of HILL and find many application in studying
pseudorandomness [2-4,13]. It is known [2] that metric entropy with parameters
(s, ε) can be converted into HILL entropy with no loss in the amount and the
parameters (s′, ε′) = (O

(
s · δ2/n

)
, ε+ δ) for any δ. Applying our techniques we



82 M. Skorski

obtain a nice and much stronger version of this transformation: if X has metric
entropy of quality (s, ε) (even against weakest deterministic circuits) then after
conditioning on an event of probability 1−ε, it the same amount of HILL entropy
of quality (δ,O

(
s · δ2/n

)
).

Application: extracting pseudorandomness from pseudoentropy of
poor quality. Using our generalized indistinguishability hardcore lemma, we
prove that for a sequence of independent distributions X1, . . . , X`, each having
metric-entropy k with parameters (s, ε) for some large ε and against deterministic
circuits of size s, the concatenated string X = X1, X2, . . . , X` has HILL entropy
roughly (1− ε)`k with parameters (s′, δ′) = (δ, sδ2`−2/n). In other words, for a
metric pseudoentropy source of quality (s, ε) we achieve, sampling many times,
the entropy extraction rate α = 1−ε with good security. Comparing to the state
of art we save a quite large factor δ2 in security2.

1.3 Outline of the Paper

Section 2 provides necessary definitions for hardness of unpredictability, compu-
tational indistinguishabilty and computational entropy. In Section 3 we present
a generalization of the unpredictability hardcore lemma and a slightly simplified
proof of the indistinguishability hardcore lemma. A hardcore lemma dedicated
for pseudoentropy is given in Section 4. An application to the problem of extract-
ing from a pseudoentropy source of very bad quality is discussed in Section 5.

2 Preliminaries

Computational and Statistical Indistinguishability. Let X and Y be
two random variables taking values in the same space. The advantage of D in
distinguishing between X and Y is defined to be ∆D(X;Y ) = ED(X)−ED(Y ).
The statistical distance between two random variables X and Y , is defined as
∆(X;Y ) = 1

2

∑
x |Pr[X = x] − Pr[Y = x]| and is equal to the maximum of

∆D(X;Y ) over all [0, 1]-valued functions D. The computational distance between
X and Y is defined as maxD∈D∆

D(X;Y ) where D is a fixed class of boolean
functions. We say that X and Y are (s, ε)-close or (s, ε)-indistinguishable if
∆D(X;Y ) 6 ε for all D of size at most s.

Hardness of Unpredictability. A boolean funciton f : {0, 1}n → {0, 1} is
said to be (s, δ)-unpredictable if Prx←[D(x) = f(x)] 6 1 − δ/2 for all D of size
at most s. We also say that f is δ-hard against circuits of size s. We say that
f is (s, δ)-unpredictable under the distribution V if Prx←V [D(x) = f(x)] 6
1− δ/2 for all D of size at most s.

2 We note that the following issues makes this problem challenging: (a) since ε is
large, no hybrid technique can be applied and (b) pseudoentropy is only against
deterministic adversaries so no extractor can be directly applied.
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Computational Entropy. There are many ways to define computational ana-
logues of entropy. We follow the most popular approach, which is based on the
concept of computational indistinguishability.

Definition 1 (HILL Pseudoentropy [6]). Let X be a distribution with the
following property: there exists Y of min-entropy at least k such that for all
circuits D of size at most s we have |∆D(X;Y )| 6 ε. Then we say that X has
k bits of HILL entropy of quality (s, ε) and denote by HHILL(X)s,ε > k.

It is known that for HILL Entropy all kind of circuits: deterministic boolean,
deterministic real valued and randomized boolean, are equivalent (with the same
size s). The following definition differs in the order of quantifiers

Definition 2 (Metric Pseudoentropy [2]). Let X be a distribution with
the following property: for every deterministic boolean (respectively: determinis-
tic real valued or boolean randomized) circuit D of size at most s there exists
Y of min-entropy at least k such that |∆D(X;Y )| 6 ε. Then we say that X has
k bits of deterministic (respectively: deterministic real valued or boolean random-
ized) metric entropy of quality (s, ε) and denote by HMetric,det{0,1}(X)s,ε > k
(respectively: HMetric,det[0,1](X) and HMetric,rand(X)).

3 Hardcore Lemmas

3.1 Approximating Convex Hulls

The following standard facts, derived by the Hoeffding-Chernoff Inequality, are
useful when we want to approximate possibly long convex combinations of func-
tions by a combination of few functions; for instance, when we use the min-max
theorem and need to approximate any mixed strategy by an efficient strategy.

Lemma 1 ([12], Lemma 2.1). Let X be a finite domain, G be any set of
functions g : X → [−1, 1] and let g be a convex combinations of functions from
G. Then for any ε ∈ (0, 1) and for some k 6 4

ε2 log
(
2
ε

)
, there exist functions

g1, . . . , gk such that

Ex←ν

∣∣∣∣∣g(x)−

(
1

k

k∑
i=1

gi(x)

)∣∣∣∣∣ 6 ε

Lemma 2 ([2]). Let X be a finite domain, ν be a distribution on X and let G
be any set of functions g : X → [−1, 1] and let g be a convex combinations of

functions from G. Then for any ε ∈ (0, 1) and for some k 6 log |X |
2ε2 , there exist

functions g1, . . . , gk such that

max
x∈X

∣∣∣∣∣g(x)−

(
1

k

k∑
i=1

gi(x)

)∣∣∣∣∣ 6 ε
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3.2 Hardcore Lemma for Unpredictability under Arbitrary
Distributions

Below we prove a hardcore lemma, with the optimal weight of the hardcore, valid
for an arbitrary distribution. We also obtain better constants than in Theorem 1
and an improvement for the case when ε is bounded away from 0: we replace
then the dimension n by log(1/δ) which is typically much smaller.

Theorem 3 (Unpredictability Hardcore Lemma for arbitrary distribu-
tions). Let V be an arbitrary distribution on {0, 1}n and suppose that an n-bit
boolean function f is (s, ε)-unpredictable under sampling from a distribution V .
Then for any δ there exists an event A of probability at least 2ε such that f is
(s′, 1−δ)-unpredictable under V |A, where s′ = max

(
s · 2δ2/n, s · 4ε2δ2/log(4/εδ)

)
.

Note that f is essentially almost unbiased under V |A: by applying trivial dis-
tinuguishers D ≡ 1 and D ≡ 0 we get 1

2 − δ 6 Pr[f(V |A) = 1] 6 1
2 + δ. For

some technical reasons we need the following observation, which states that the
hardcore event “preserves” unbiased predicates.

Corollary 1 (Unpredictability Hardcore Lemma for unbiased predi-
cates). Suppose that Theorem 3 holds for f and V such that P (f(V ) = −1) =
1
2 = P (f(V ) = 1). Then the hardcore event A can be chosen in such a way that
P (f(V |A) = −1) = P (f(V |A) = 1) = 1

2 , with the additional loss of the factor
3 in circuit size.

The proof of Corollary 1 appears in the full version of the paper. It is relatively
simple and uses the idea of “mass-shifting”. The proof of Theorem 3 consists of
the three important steps: (a) the trivial observation that for any fixed boolean
function D of size s we can find a hardcore event, (b) the observation that we
can find a hardcore for any [0, 1]-valued function of approximately the same size
s and (c) using the min-max theorem and approximation lemmas to switch the
order of quantifiers to find a one hardcore event that works with all functions of
size s. Only step (b) is non-trivial and novel (and allows us to slightly improve
Hollentein’s bounds). We prove (b) by assuming that there exists a functionD for
which one cannot find a suitable hardcore measure. Then we argue that if this is
true, we cannot find a hardcore measure for some threshold transformation of D.
We characterize the measure which is “closest” to be a hardcore measure and use
it to show that the same measure is optimal for all threshold transformations
of D. By taking an appropriate threshold we conclude that we cannot find a
hardcore measure for some threshold versions of D, which is impossible since it
is now boolean and this contradicts the assumptions. The proof appears in the
full version of the paper.

3.3 Hardcore Lemma for Indistinguishability - Reduction to
Unpredictability Case

The following lemma shows that indistinguishability of two distributions is equiv-
alent to the hardness of predicting some boolean function, which explicitly de-
pends on these distributions. This function is quite natural: it equals the sign of
the difference between the probability mass functions.
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Lemma 3. Let D be a class of boolean functions, X,Y ∈ {0, 1}n be random
variables, and let ∆ = ∆(X,Y ) be different than 0. Then the following are
equivalent:

(a) X and Y are (D, ε)-indistinguishable

(b) f(x) is (D, 1− ε/∆)-unpredictable under V , where f(x) is the indicator of
the set {x : PX(x) > PY (x)} and the distribution of V is given by PV (x) =
|PX(x)−PY (x)| /2∆.

Proof. For any boolean D we obtain

ED(X)−ED(Y ) =
∑
x

(PX(x)−PY (x))D(x)

= 2∆ (Pr[f(V ) = 1] E[D(V )|f(V ) = 1]

−Pr[f(V ) = 0] E[D(V )|f(V ) = 0])

Observe that Pr[f(V ) = 1] = Pr[f(V ) = 0] = 1
2 . Therefore

ED(X)−ED(Y ) = 2∆

(
−1

2
+

1

2
E[D(V )|f(V ) = 1]

+
1

2
E[(1−D(V ))|f(V ) = 0]

)
.

Since D is boolean, the last equation is equivalent to

ED(X)−ED(Y ) = 2∆

(
Pr[D(V ) = f(V )]− 1

2

)
,

which finishes the proof. ut

Based on Lemma 3 we prove the following result

Theorem 4 (Indistinguishability Hardcore Lemma). Suppose that X and
Y are arbitrary (s, ε) indistinguishable by boolean circuits Then there exists an
events A(X), A(Y ) both of equal probability at least 1− ε such that X|A(X) and
Y |A(Y ) are (O

(
s · δ2/n

)
, ∆(X;Y ) · δ) indistinguishable.

Proof. From the construction of V , we know that f is 1−ε/∆(X,Y )-unpredictable
under V . From Theorem 3 we obtain that there exists a hardcoreA with probabil-
ity at least 1−ε/∆(X,Y ) such that f is extremely unpredictable under V |A. This
hardcore event can be described as follows: there exists a measure M = MA that
satisfiesM(x) 6 PV (x) and P(A) = µ(M) > 1−ε/∆(X,Y ) and such that f(x) is
unpredictable for sampling according to M , i.e. Px←M (D(x) = f(x)) < 1/2+δ.
The distribution V |A is then defined by PV |A = PM . Consider the events
S− = {x : f(x) = 0} and S+ = {x : f(x) = 1}. From the definition of V and
f it follows that PV (S−) = PV (S+) = 1

2 . As shown in Corollary 1, the sets
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S+, S− can be assumed to be perfectly unbiased also under V |A. Define now two
measures M0 = MX and M1 = MY as follows:

M0(x) =

{
PX(x)− 2∆(X,Y ) (PV (x)−M ′(x)) if PX(x) > PY (x)
PX(x) otherwise

(1)

and similarly,

M1(x) =

{
PY (x)− 2∆(X,Y ) (PV (x)−M ′(x)) if PX(x) < PY (x)
PY (x) otherwise

(2)

Note that both measures are well defined since PV (x) = |PX(x)−PY (x)| /
2∆(X,Y ) and M ′(x) 6 PV (x). Then from the definition of (V,A) and the
definition of f it follows that

µ (M0) = 1− 2∆(X,Y )
∑

x: f(x)=1

PV (x) + 2∆(X,Y )
∑

x: f(x)=1

M ′(x)

= 1−∆(X,Y ) + 2∆(X,Y )P(A) ·PV |A
(
S+
)

= 1−∆(X,Y )P(Ac)

> 1− ε (3)

and similarly that the same estimate holds for µ (M1). Observe also that since S+

and S− are perfectly unbiased with respect to M ′, and since the same holds for
V , we have µ (M0) = µ (M1). These measures give rise to the joint distributions
X,A(X) and Y,A(Y ) for some events A(X), A(Y ) with probabilities at least
µ (M0) = µ (M1). It remains to calculate the advantage in distinguishing. Let V ′

and f ′ be a distrubtion and a predicate corresponding to X|A(X) and Y |A(Y )
according to the statement of Lemma 3. Observe that M0(x) > M1(x) if and only
if f(x) = 1, hence f ′(x) = f(x). Since |M0(x)−M1(x)| = 2∆(X,Y )M ′(x) for
every x, we get PV (x) = M ′(x)/µ(M ′) = PV |A(x) and ∆(X|A(X), Y |A(Y )) =
∆(X,Y ). Therefore

∆D(X|A(X), Y |A(Y )) = ∆(X,Y ) · (2Px←V ′ (D(x) = f ′(x))− 1)

= ∆(X,Y ) ·
(
2Px←V |A′ (D(x) = f(x))− 1

)
< ∆(X,Y ) · δ, (4)

and we have finished the proof. ut
Remark 2. We note that without Corollary 1 we would obtain a slightly weaker
version of the indistinguishability hardcore lemma where the probability of the
hardcore events is guaranteed to be at least 1− ε− δ, which is very close to the
optimal 1− ε and equally good in applications.

4 Indistinguishability Hardcore Lemma for
Pseudoentropy

In this section we prove the following theorem, discussed in the introduction,
which gives the existence of a “HILL-entropy-hardcore” for metric pseudoen-
tropy.
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Theorem 5 (Indistinguishability Hardcore Lemma for pseudoentropy).

Suppose that H
Metric,det{0,1}
s,ε (X) > k. Then for any δ and s′ = O

(
s · δ2/n

)
there

exists an event A of probability 1− ε such that HHILL
s′,δ (X|A) > k− log(1/(1− ε)).

This theorem shows that metric entropy not only can be converted to HILL
entropy with the loss of factor δ in advantage and δ2 in circuit size; It has
a hardcore of HILL entropy with the same quality parameters.

Remark 3. The constant hidden in the big “O” term is at most 2/3.

Before we give the proof, let us observe that this result implies the transformation
between metric and HILL entropy (up to the lose of at most one bit)

Corollary 2 (Metric entropy - HILL entropy transformation [2]). Sup-

pose that H
Metric,det{0,1}
s,ε (X) > k. Then HHILL

s′,ε′ (X) > k where s′ = O
(
s · δ2/n

)
and ε′ = ε+ δ.

Proof (Proof of Corollarz 2). We apply Theorem 5 obtaining a distribution Y |A
which is (s′, δ)-indistinguishable from X|A, and then we define Pr[Y ′ = x] =
Pr[A] ·Pr[Y = x|A]+2−n Pr[Ac]. Note that H∞(Y ′) > k−1 and Y ′ is (s′, ε+δ)-
indistinguishable from X. We remark that one can actually show without the
loss of 1 bit, because Theorem 5 actually is slightly stronger that stated, namely
HHILL
s′,δ (X|A) > k− log(1/(1−ε)) can be replaced by the following: X|A is (s′, δ)-

indistinguishable from Y |A where Y has k bits of min-entropy. ut

The proof strategy for Theorem 5 is exactly the same as in the case of The-
orem 3; the proof appears in the full version of this paper. Note that the result
in Theorem 5 with much worse parameters follows by converting metric-entropy
into HILL entropy using Corollary 2 and then applying Theorem 2. This way we
lose δ4 in circuit size.

Corollary 3 (Direct proof of the Indistinguishability Hardcore Lemma).
The proof of Theorem 5 can be easily adapted to give a direct proof of Theorem 4
without reducing it to Theorem 3. Namely, in the proof we replace the condition
M2 6 2−k by M2 6 PY .

5 Applications: Extracting from Metric Pseudoentropy
of Poor Quality

Suppose that we have a source of metric pseudoentropy that produces samples
secure against deterministic adversaries of high complexity but only with a very
big advantage ε (for instance, ε = 0.25). Since the metric entropy is only against
deterministic adversaries, for which it is not known if we can extract pseudoran-
domness directly3, one needs to convert in into the HILL entropy. However, it

3 The problem of randomized vs deterministic adversaries is the matter of metric
entropy only; as already mentioned, for the HILL entropy all kind of circuits are
equivalent.
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still does not solve the problem of large ε. In the next step one can use Theo-
rem 2 to prove that a concatenated sequence of many samples has large HILL
entropy4, with the rate of roughly 1− ε. This approach loses O

(
δ4
)

in security.
Below we show that these two steps can be done at the same time which allows
us to save a factor of O

(
δ2
)

in security.

Theorem 6. Suppose that Xi, for i = 1, . . . , `, are independent n-bit random

variables such that H
Metric,det{0,1}
s,ε (X) > k. Then for any γ > 0 we have

HHILL
s′,δ′ (X) > (1− ε− γ)` (k − log(1/(1− ε))) ,

where s′ = O
(
s · δ2/n`2

)
and δ′ = δ + 2 exp(−2`γ2)

Proof. Fix δ and let s′ = O
(
s · δ2/n

)
. We apply Theorem 5 to Xi, for i =

1, , . . . , `, obtaining hardcore events Ai of probability at least 1 − ε such that
HHILL
s′,δ (Xi|Ai) > k − log(1/(1 − ε)). By the Chernoff Bound we know that the

probability that m = `(1 − ε − γ) of them happen simultaneously, is at least
1− 2 exp(−2`γ2). The result follows now by the observation that concatenating
` random variables Y1, . . . , Y` of HILL entropy k1, . . . , k` with parameters (s′, δ)
yields a distribution of HILL entropy k1 + k2 + . . .+ k` with parameters (s′, `δ)
(the proof if by standard hybrid technique). ut

6 Conclusion

An interesting open problem is to check if the indistinguishability hardcore
lemma can be derived from the unpredictability hardcore lemma, that is show
the reduction in other direction than in [11] and this paper. Another problem
worth of mentioning is the question about the lower bounds on the necessary
loss in security for hardcore lemmas. To the best of our knowledge, nothing is
known about negative results so far, except the lower bounds for proofs based
on boosting, which follow from general machine learning theory [9].
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