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Abstract 
 

Native vegetation is vulnerable to fragmentation and loss of condition due to various environmental and 
anthropogenic drivers. Regrowth can vary depending upon species composition within that vegetation 
community. As well as maintaining biodiversity native vegetation provides a range of ecosystem services. 
Up-to date and reliable information on the distribution of native vegetation is essential to support decisions 
that minimise loss of biodiversity and maximise functionality of ecosystems. Remotely sensed data is an 
ideal tool for this purpose. As such, this study aims to assess the accuracy of Maximum Likelihood 
Classification (MLC) and Spectral Angle Mapper (SAM) algorithms to distinguished woody vegetation 
from non-woody vegetation in Creswick, Victoria, Australia. The use of RapidEye imagery, image fusion 
(spectral information combined with textual information (ALOS-PALSAR)), and the use of a filter (majority 
filter) was also evaluated. The classification accuracy of MLC and SAM was used as the determining factor 
for identifying a suitable mapping method to distinguish woody native vegetation from non-native woody 
vegetation (particularly, Pinus  spp., Pine and Eucalyptus spp., Blue Gum) in the forest. 

 
The results demonstrated that the use of MLC on RapidEye imagery enabled the Native, Pine and Blue Gum 
to be accurately mapped with an overall accuracy of 88%. Kappa statistics show that there was a significant 
difference between MLC and SAM algorithms independent of the image type input. However, when the 
same algorithm was applied on each image type, no significant difference was found. The use of fused 
images as well as a filter, did not improve the accuracy of the classification. Considering cost and time in 
registering and processing the images as well as the computational time of images filtering, the use of these 
methods does not provide benefit in this case study. 
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Introduction 
 
Native vegetation is part of a dynamic system that must regenerate and mature in order to support 
biodiversity. Over many thousands of years indigenous flora and fauna have developed and adapted together 
and are reliant on each other for pollination and habitat. As well as maintaining biodiversity native 
vegetation cleans the air, filters water, stabilises the soil, and provides a range of ecosystem services. Since 
settlement, approximately half of Victoria’s native vegetation has been cleared for agricultural and urban 
development, including 80% of the original cover on private land (DSE 2008). The native vegetation that 
remains in Victoria is critical for maintaining catchment and landscape health, and protecting the habitats of 
threatened flora and fauna. 
 
In 2008 the Australian states and territories governments reviewed the National Framework for the 
Management and Monitoring of Australia’s Native Vegetation (published in 1999; ANZECC 1999) which 



 
 

 
 

outlines a coordinated national approach to native vegetation management (DNRE 2002). The Framework 
addresses native vegetation management from a whole of catchment perspective but necessarily focuses on 
private land where the critical issues of past clearing and fragmentation exist. The framework identifies that 
retention and management of remanent native vegetation is the primary way to conserve the natural 
biodiversity across the landscape (DNRE 2002). 
 
Current and accurate information on the distribution of native vegetation is essential to ensure the 
conservation of biodiversity as well as for preparation and management bushfire hazard. Detailed mapping 
of native vegetation of Victoria is available in the form of Ecological Vegetation Class (EVC) mapping. 
EVC represents the highest level in the hierarchical vegetation typology used across Victoria (DSE 2008). 
EVCs consist of one or more floristic communities that exist under a common regime of ecological 
processes within a particular environment at a regional, state or continental scale (Woodgate et al 1994). 
Floristic community differences within EVCs are often geographically or geologically driven. The EVC 
maps are based on data collected in 2005. Changes in vegetation distributions may be rapid; therefore, we 
need to be able to report the dynamic nature of the extent and type of woody vegetation. Remotely sensed 
data is ideal for this purpose. 
 
The present study aims: (i) to assess the accuracy of two algorithms,  Maximum Likelihood Classification 
(MLC) and Spectral Angle Mapper (SAM) to distinguished native woody vegetation from non-native 
vegetation (Pinus (Pine) and Eucalyptus (Blue Gum)), (ii) to reliably distinguish Pine plantations from Blue 
Gum plantations (iii) to assess the value of using a classification filtering and, (iv) to assess the value of 
using as an input image spectral information (RapidEye image) and a fusion of image (spectral information 
combined with backscater information (PALSAR-ALOS)). 
 

Materials and Methods 
Study area 
 
The study was conducted in the Creswick area in west-central highlands of Victoria, Australia. The study 
area lies between 37o 37’ 25.184’S/143o 34’ 10.988’’E and 37o 37’ 50.759’’S/144o 12’ 36.076’’E. It covers 
224,000 hectares (approximately 0.9% of Victoria) comprising both native and non-native vegetation 
(Figure 1).  

 
 

Figure 1. Study area (Creswick area) and position of the ground truth points. 



 
 

 
 

Source of data 
 
Ground truth data on the Creswick area was collect on the 23rd of August 2011. A handheld Global 
Positioning System (GPS) (mode Garmin GPS 72) was used to collect coordinates of individual Native, 
Blue Gum and Pine trees. A total of 40 samples were collected for each tree. The GPS data collected was 
divided into two groups. The first group was used as training data for classification of images and the 
second group (approximately 20 samples for each tree) was later used for validation of the data through 
accuracy assessment.  
 
Two types of images were used in this study: RapidEye (a mosaic of two images; 5 m spatial resolution) and 
Advanced Land Observing Satellite-Phased Array type L-band Synthetic Aperture Radar (ALOS-PALSAR; 
HH, HV and HH/HV images; 25 m spatial resolution). The RapidEye images were acquired on the 28th of 
October 2010 and 13th of March 2010. The ALOS-PALSAR images were acquired between June and 
September 2009. 
 
Analysis of the data 
 
Two vegetations indices were calculated in the RapidEye image: Normalised Difference Vegetation Index 
(NDVI) (Jensen 1986) and a Modified Red Edge Index (REI) (ratio along the red edge (750 and 705 nm) 
and a correction for scattering light using the blue wavelengths (Tucker 1979). 
 
Each ALOS-PULSAR image was re-sampling from 25 m pixel size to 5 m pixel size. In order to maximise 
the information content of the classifications, the RapidEye (1-5 bands), NDVI and REI (spectral 
information), ALOS-PULSAR (HH, HV, HH/HV) images were fused together into a single image. The 
resulting image was then use in the classification. 
 
The RapidEye image and the fused images were classified using two supervised classifiers Maximum 
Likelihood Classification (MLC) (Shafri et al 2007) and Spectral Angle Mapper (SAM) (De Carvalho & 
Meneses 2000). 
 
The MLC classifier assumes that the statistics for each class in each band are normally distributed and 
calculates the probability that a given pixel belongs to a specific class. Unless a probability threshold is 
selected, all pixels are classified (in this study no threshold was selected). Each pixel is assigned to the class 
that has the highest probability. If the highest probability is smaller than a threshold, the pixel remains 
unclassified. The MLC was calculated based on the formula described on Shafri et al (2007).  Whereas 
SAM, is a physically based spectral classification that uses and n-dimensional angle to match pixels to 
reference spectral. The algorithm determines the spectral similarity between two spectral by calculating the 
angle between the spectral and treating them as vectors in a space with dimensionality equal to the number 
of bands (Kruse et al. 1993). SAM was calculated based on the formula described by De Carvalho & 
Meneses (2000). 
 
The training data was used to develop spectral signatures or Regions of Interest (ROI). The ROIs were then 
used to train the computer to recognize the different trees on the RapidEye. The spectral separability of the 
ROIs was calculated using the average of the Transformed Divergence and Jeffries-Matusita separability 
measures (DIP 2012). 
 
 
 
 
 



 
 

 
 

Post-classification 
 
The salt and pepper noise of the classified images was removed using a 3x3 kernel size filter. This resulted 
in an affective Minimum Mapping Unit of 225 m2. 
 
Accuracy assessment was assessed using two methods: Confusion Matrix and Kappa Coefficient (± 
confidence interval) (Senseman et al 1995). Kappa interpretation strength of agreement between two data 
sets was based on Landis and Koch (1977) guides (values ≤ 0.2 implies poor agreement and values ≥ 0.80 
implies very good agreement).  
 
Genderen and Lock (1977) states that a minimum sample size of 20 per class is required for a 85% 
classification accuracy hence, this was set as the minimum acceptable overall accuracy. 
 

The difference in accuracy levels for MLC and SAM on the RapidEye and fused images was computed to 
test the null hypothesis that there were no significant differences between Kappa 1 and Kappa 2. 

 
Results 

 
Classification 
 
ROIs used for classification were ≥ 1.8 and this was considered adequate separability to be discriminate by 
classification. 
 
MLC (prior and post-classification filtering) identified Blue Gum to cover the largest area in the RapidEye 
image contrary; on the fused images Pine was found to cover the largest area (Figures 2 and 3a,b). In the 
RapidEye image, Blue Gum covers an area of 18,322 ha, Pine covers an area of 14,760 ha and Native covers 
an area of 2,677 ha (Figures 2 and 3a). After the filter, Blue Gum and Pine cover a slightly larger area 
whereas Native covers a slightly smaller area (Figure 2). In the fused images, Pine covers an area of 26,236 
ha, Native covers an area of 13,319 ha and Blue Gum covers an area of 4,218 ha (Figures 2 and Figure 3b). 
After the filter, Pine covers a slightly larger area whereas Native and Blue Gum cover a slightly smaller area 
(Figures 2). 
 

 
Figure 2. Area (in hectares) cover by Blue Gum, Native and Pine classes. Shaded areas represented 
the areas after applying a kernel size of 3x3 filter (majority analysis). 
 
Unlike MLC, SAM (prior and post classification filtering) identified Native to cover the largest area and 
Pine to cover the least (Figure 2 and 3c,d). In the RapidEye image, Native cover an area of 32,029 ha, Blue 
Gum cover an area of 22,192 ha and Pine an area of 4,700 ha (Figures 2 and 3c).  After the filter, both 
Native and Blue Gum covers slightly larger areas whereas Pine covers a slightly smaller area (Figure 2). In 

0

5000

10000

15000

20000

25000

30000

35000

. .

0

5000

10000

15000

20000

25000

30000

35000

RapidEye
Classif

RapidEye
Filter

Fused
Classif

Fused
Filter

RapidEye
Classif

RapidEye
Filter

Fused
Classif

Fused
Filter

Ar
ea

 (h
ec

ta
re

s)

Blue Gum Native Pine

MLC SAM

0

5000

10000

15000

20000

25000

30000

35000

. .

0

5000

10000

15000

20000

25000

30000

35000

RapidEye
Classif

RapidEye
Filter

Fused
Classif

Fused
Filter

RapidEye
Classif

RapidEye
Filter

Fused
Classif

Fused
Filter

Ar
ea

 (h
ec

ta
re

s)

Blue Gum Native Pine

MLC SAM



 
 

 
 

the fused images, Native covers an area of 23,572 ha, Blue Gum an area of 13,052 and Pine an area of 1,947 
(Figures 2 and 3d). After the filter, the three classes cover a slightly larger area (Figures 2). 

 

 
Figure 3. Output of Maximum Likelihood Classification (MLC) and Spectral Angle Mapper (SAM). 

 
Accuracy assessment 
 
Of 47,659 pixels classified using MLC, 88% and 85% pixels were correctly classified on the RapidEye and 
the fused images respectively. The filter did not improve the overall accuracy.  For both the RapidEye and 
the fused images, kappa showed a complete agreement between the classified and the reference data (Table 
1). 
 

Table 1. Overall accuracy and Kappa coefficient results. 
          Lower limit Observed           Upper limit 

Image Classifier % Overall 
accuracy 

.95 Confidence 
interval 

Kappa  .95 Confidence 
interval 

RapidEye MLC 88 0.841 0.845 0.848 
Fused MLC 85 0.815 0.821 0.825 
RapidEye SAM 53 0.528 0.533 0.538 
Fused SAM 79 0.748 0.752 0.757 

After filter 
RapidEye MLC 87 0.800 0.851 0.854 
Fused MLC 85 0.824 0.828 0.832 
RapidEye SAM 64 0.584 0.5895 0.594 
Fused SAM 78 0.742    0.752 0.756 

 



 
 

 
 

In the RapidEye image, 99% pixels were correctly classified as Blue Gum. Similarly, 97% pixels were 
correctly classified as Native and 98% pixels were correctly classified as Pine (producer’s accuracy). The 
reliability of a pixel labelled as Blue Gum on the classified image actually being Blue Gum in situ is 97%.  
Likewise, the reliability of the Native classification was 99% and that of the Pine was also 99%. The 
classification however excluded pixels from the categories in which they belong. For instance, 1.08% pixels 
were excluded from Blue Gum class, 2.79% pixels were excluded from Native class and 1.83% pixels were 
excluded from Pine class (errors of omission). Some pixels were ‘included’ in categories in which they do 
not belong. For instance, 3.04% pixels were included erroneously in the Blue Gum class, 0.73% pixels were 
included erroneously in the Native class and 0.98% pixels were included erroneously in the Pine class 
(errors of commission) (Table 2). 
 
In the fused image, 99% pixels were correctly classified as Blue Gum. Similarly, 94% pixels were correctly 
classified as Native and ~100% were correctly classified as Pine (producer’s accuracy). The reliability of a 
pixel labelled as Blue Gum on the classified image actually being Blue Gum in situ is ~100%. Likewise, the 
reliability of the Native classification was 99% and that for the Pine was also 99%. The classification 
however excluded pixels from the categories in which they belong. For instance, 1.08% pixels were 
excluded from Blue Gum class, 6.24% pixels were excluded from Native class and 0.09% pixels were 
excluded from Pine class (errors of omission). Some pixels were ‘included’ in the categories in which they 
do not belong. For instance, 0.14% pixels were included erroneously in the Blue Gum class, 0.60% pixels 
were included erroneously in the Native class and 0.55% pixels were included erroneously in the Pine class 
(errors of commission) (Table 2). 
 
Of 47,659 pixels classified using SAM, 53% and 78% were correctly classified in the Rapid Eye and the 
fused images respectively. The filter did not improve the overall accuracy on the fused image but did 
improve 11% on the RapidEye image. For the RapidEye image, kappa showed that there was a moderate 
agreement between the classified and the reference data. For fused image, Kappa showed good agreement 
between the two data sets (Table 1). 
 
In the RapidEye image, 96% pixels were correctly classified as Blue Gum. Similarly, 91% pixels were 
correctly classified as Native and 83% were classified as Pine (producer’s accuracy).The reliability of a 
pixel labelled as Blue Gum on the classified image actually being Blue Gum is situ is 77%.  Likewise, the 
reliability of the Native classification was 96% and that of the Pine was 97%. The classification however 
‘excluded’ pixels from the categories in which they belong. For instance, 4.33% pixels were excluded from 
Blue Gum class, 9.18% pixels were excluded from Native class and 16.15% pixels were excluded from Pine 
class (errors of omission). Some pixels were included in the categories in which they do not belong. For 
instance, 22.71% pixels were included erroneously in the Blue Gum class, 4.44% pixels were included 
erroneously in the Native class and 3.06% pixels were included erroneously in the Pine class (errors of 
commission) (Table 2). 
 
In the fused image, 84% pixels were classified as Blue Gum. Similarly, 71% pixels correctly classified as 
Native and 93% were correctly classified as Pine (producer’s accuracy). The reliability of a pixel labelled as 
Blue Gum on the classified image actually being Blue Gum in situ was 89%. Likewise, the reliability of the 
Native classification was 73% and that of the Pine was 100%. The classification however excluded pixels 
from the categories in which they belong. For instance, 15.97% pixels were excluded from Blue Gum class, 
0.28% pixels were excluded from Native class and 6.67% pixels were excluded from Pine class (errors of 
omission). Some pixels were ‘included’ in the categories in which they do not belong. For instance, 10.92% 
were included erroneously in the Blue Gum class, 27.28% were included erroneously in the Native class and 
0.1% were included erroneously in the Pine class (errors of commission) (Table 2). 
 

 



 
 

 
 

Table 2. Summary of the confusion matrix results (prior to filter). 
 

Image Classifier Class Percentage 
Omission 

Percentage 
Commission 

User's 
Accuracy (%) 

Producer's 
Accuracy (%) 

Rapid 
Eye MLC 

Blue Gum 0.64 3.04 97 99.00 
Native 2.79 0.73 99 97.00 
Pine 1.83 0.98 99 98.00 

Fused 
images MLC 

Blue Gum 1.08 0.14 100 99.00 

Native 6.24 0.60 99 94.00 
Pine 0.09 0.55 99 100.00 

Rapid 
Eye SAM 

Blue Gum 4.33 22.71 77 96.00 
Native 9.18 4.44 96 91.00 
Pine 16.15 3.06 97 84.00 

Fused 
images SAM 

Blue Gum 15.97 10.92 89 84.00 
Native 28.56 27.28 73 71.00 
Pine 6.67 0.00 100 93.00 

 
Statistical significance 
 
Cohen’s Kappa co-efficient was used to report agreement between the different classification approaches 
and the results are shown in Table 3.  
 
From Table 3 it can be seen that a significant difference was found between MLC and SAM, independent of 
the image type input. There was no significant difference between the RapideEye and the fused images 
when using MLC as classifier. However, the performance of the MLC was better for the RapidEye image. 
There were also no significant differences between the RapidEye and the fused images when using SAM as 
classifier. However, the performance of the SAM was better for the fused images. 
 

Table 3.  Comparison of classification accuracies (Kappa coefficient) (prior to filter). 
Ho: No differences between K1 and K2 

Pairs  Results 

Image Classifier 

Vs 

Image Classifier p-value At .95% confidence level 

RapidEye MLC RapidEye SAM 0.00 Significant difference 

RapidEye MLC Fused MLC 0.84 No significant difference 

RapidEye MLC Fused SAM 0.00 Significant difference 

RapidEye SAM Fused MLC 0.00 Significant difference 

RapidEye SAM Fused SAM 0.59 No significant difference 

Fused MLC Fused SAM 0.00 Significant difference 

 
Discussion 

 
Accuracy assessment 
 
The accuracy assessment of a remote sensing output is one of the most important steps in any classification.  
Accuracy is considered to be the degree of closeness of results to the values accepted as true (Verbyla & 
Hammond 1995). Without an accuracy assessment the output or results is of little value. However, cost-



 
 

 
 

effectiveness and technical simplicity are also key factors determining the usability and applicability of the 
method (Franklin 2001). Methods that are less expensive and technically simple will always be adopted if 
the classification accuracies are not significantly different (Congalton & Green 1999). All these factors 
however will depend on the purpose and financial value of the resources (Hussin & Atmopawiro 2004). 
 
Overall accuracy measures the probability of a reference pixel being correctly classified and takes no 
account for sources of error (errors of omission or commission) (Colgaton & Green, 1991). In the present 
study, the minimum acceptable overall accuracy was set at 85% across all classes following Anderson et al 
(1976) and Van Genderen and Lock (1977) recommendation. With reference to this overall accuracy, only 
the MLC has met this standard while SAM had overall accuracies lower than the standard value set for this 
study (regardless of the image dataset used). This means that MLC is a better method for distinguishing 
Native, Pines and Blue Gum forest in the study area than SAM.  
 
Is 85% accuracy acceptable?  It is impossible to perfectly assess the true class of every pixel. There are a 
number of issues that may generate errors in a classification (Oslon 2008). For example, one common error 
is that it is assumed that our ground truth data are perfect (Verbyla & Hammond 1995). If there are any 
errors in our reference data (such as incorrect class assignment, change in cover type between the time of 
imaging and the time of field verification), then some of our correctly classified pixels may be incorrectly 
assessed as being misclassified (Verbyla & Hammond 1995).  Olson (2008) state that 85% figure has been 
replaced by 80% since consumers are willing to accept and pay for this level of accuracy. Campbell (2002) 
agreed with Olson (2008) but the former suggested that an overall accuracy of 85% is considered standard 
for land cover mapping. For the purpose of this study, the minimum overall accuracy was set at 85%. 
 
Classification accuracy can be expressed in terms of producer’s accuracy and user’s accuracy. Producer's 
accuracy represents the percentage of a given class that is correctly identified on the map (errors of 
omission) whilst user's accuracy (or reliability) represents the probability that a given pixel will appear on 
the ground as it is classed (error of commission) (Colgaton 1999; Senseman et al 1995). The fact  that the 
overall accuracy of the MLC on the RapidEye image and the fused images (88% and 85% respectively) 
were good, does not mean that each category was successfully classified at that rate (or vice-versa). For 
instance, the MLC when applied to RapidEye, the highest user accuracy was for Native class while the 
highest producer’s accuracy was for Blue Gum. In contrast, SAM applied on RapidEye showed an overall 
accuracy (53%) below the acceptable level set but the algorithm performed well for Blue Gum. Even though 
the overall accuracy was way below the minimum acceptable of 85%, as a producer of this map, I can claim 
that 96% of the time a Blue Gum area was identified as such, a user of this map will find that 96% will 
actually be Blue Gum. 
 
Comparison of the performance of the classifiers and the image input (prior to filter) shows a significant 
difference between MLC and SAM independent of the image type input. However, when the same 
classification algorithm was applied on each image type, no significant difference was found. The significant 
differences between the algorithms used (hence classification accuracies) might have been due to the method 
of training the classifier. This is because MLC and SAM have different approaches in selecting the training 
samples for the classification and this may have an influence on the classification accuracies.  For instance, 
MLC quantitatively evaluates both the variance and covariance of the category spectral response patterns 
when classifying an unknown pixel. It is assumed that the distribution of the cloud of points forming the 
category training data is normally distributed (Gaussian distribution) (Richards 1999); which was the case 
for Native, Pine (all 5 bands) and Blue Gum (band 4 (NIR)). 
 

Contrary to MLC, SAM uses the angular information to identify pixel spectra. SAM is based on the idea that 
an observed reflectance spectrum can be considered as a vector in a multidimensional space, where the 



 
 

 
 

number of dimensions equals the number of spectral bands. If the overall illumination increases or decreases 
(due to the presence of a mix of sunlight and shadows), the length of this vector will increase or decrease, 
but its angular orientation will remain constant. If the pixel spectra from the different classes are well 
distributed in feature space there is a high likelihood that angular information alone will provide good 
separation (Richard 1999). 
 

From the results it is clear that the data derived from the RapidEye classification has a sufficiently Gaussian 
distribution to be able to separate Blue Gum from Pine, Blue Gum from Native and Pine from Native, in 
other words, the data input fulfil the requirement needed for MLC. Conversely, SAM in order to perform 
optimally may need more information than the direction of a vector to separate the classes under study, 
which are spectrally difficult to separate. 
 
Further, a detailed examination of the spectral signatures (using ROIs separability) shows a good 
separability between the three classes (pair separation >1.8) which may explain the good performance of 
MLC. 
 

Image fusion 

 
The information provided by each individual sensor may be incomplete, inconsistent and imprecise for a 
given application. Image fusion is a process, which creates a new image representing combined information 
composed from two or more source images. Generally, one aims to preserve as much source information as 
possible in the fused image with the expectation that performance with the fused image will be better than, 
or at least as good as, performance with the source images (Leviner & Maltz 2009). However, in the present 
study, the algorithm used was more important than the image used.  Combining different sources of 
information into a single final result can be expensive and time-consuming. Based on the results, there use 
of RapidEye image was sufficient to accurately classified Native, Blue Gum and Pines. 
 
Classification filtering 
 
Classified data often manifest a salt-and-pepper appearance due to the inherent spectral variability 
encountered by a classification when applied on a pixel-by pixel basis (Congalton 1991).  Classification 
filtering (or smoothing) is an operation to remove speckle noise or isolated pixels in a classified image. 
These isolated pixels are caused by improper training sample definition or spectral noise in the input image 
(Nguyen 1997). One means of classification smoothing involves the application of a majority filter 
(Congalton 1991). In such operations a moving windows is pass through the classified pixel in the window 
is not the majority class, its identity is changed to the majority class. If there is no majority class in the 
window, the identity of the centre pixel is not changed. As the windows progresses through the data set, the 
original class code are continually used, not the labels as modified from the previous window position 
(Eastman 2006). 
 
In the present study, a majority filter was conducted on the classified images and subsequently evaluated 
using confusion matrix. Comparison of the mapping accuracies between the two classifiers indicated again 
that MLC has highest classification accuracy than SAM (regardless of the image input). In fact the overall 
accuracy was 1% lower. SAM applied on RapidEye did improved the overall accuracy (from 53% to 64%); 
still was way under the minimum level set for this study. Quantitatively, there were no differences in land 
cover for each class. Filter analysis can be time-consuming (in terms of computational efficiency). It is 
worthy? It was clear from the results that for the study area, apart from “cosmetic correction” the actual 
accuracy of the image did not improved. 



 
 

 
 

 
Conclusions 

 
The classification accuracy of MLC and SAM was used as the determining factor for identifying a suitable 
mapping method to classified woody native vegetation and non-native vegetation (Pine and Blue Gum) in 
the Creswick area. Based on the results, it may be concluded that MLC on RapidEye can mapped Native, 
Pine and Blue Gum with an overall accuracy of 88%, which is above the minimum acceptable overall 
accuracy of 85%+ set for this study. The use of a combination of data (spectral and textural information) as 
well as the use of a filter (majority filter), did not improve the accuracy of the classification when using the 
MLC as a classifier however, the use of fused imagery as well as running a filter over the RapidEye imagery 
improved SAM performance. Considering cost and time in registering and processing the images as well as 
the computational time of images filtering, the use of these methods does not provide benefit in this case 
study when using MLC. 
 

Reference 
 

Anderson, JR Hardy, EE Roach, JT & Witmer, RE 1976, A land use and land cover classification system for 
use with remote sensor data. Geological Survey Professional Paper 964, USGS, Reston, VA. 

ANZCC, 1999, Australia and New Zealand Conservation Council. National Framework for the 
Management and Monitoring of Australia’s Native Vegetation. Commonwealth of Australia. 

Campbell, J 2002, Introduction to Remote Sensing, Guilford Publications Inc., New York, N.Y., pp, 294-
333. 

Congalton, RG & Green, K 1999, A practical look at the sources of confusion in error matrix generation. 
Photogrammetric Engineering and Remote Sensing, 59:641-644.  

Congalton, RG 1991, A review of assessing the accuracy of classifications of remotely sensed data. Remote 
Sensing of Environment, 37:35-46. 

De Carvalho, OA & Meneses, PR 2000, Spectral Correlation Mapper (SCM): An Improvement on the 
Spectral Angle Mapper (SAM). Summaries of the 9th Airborne Earth Science Workshop, Publication 
00-18, 9 p. 

DIP, 2012, Digital Image Processing: A remote Sensing Perspective: Evaluation of training sets (Training 
Signatures). Viewed August 2012, 
http://forest.mtu.edu/classes/fw5560/lectures/lecture15%28signatures%29.pdf.  

DNRE, 2002, Victoria’s Native Vegetation Management - A Framework for Action. Department of Natural 
Resources and Environment. 59p. Viewed 16 August 2012, 
http://www.dse.vic.gov.au/__data/assets/pdf_file/0016/102319/Native_Vegetation_Management_-
_A_Framework_for_Action.pdf 

DSE, 2008, Native vegetation net gain accounting first approximation report. State of Victoria, Department 
of Sustainability and Environment, East Melbourne. 26p. 

Eastman, JR 2006, IDRISI Andes Tutorial. Clark Labs, Clark University, Viewed 12 June 
2012.http://www.geog.ubc.ca/courses/geob373/labs/Andes_Tutorial.pdf  

Franklin, SE 2001, Remote Sensing for Sustainable Forest Management. CRC Print  ISBN: 978-1-56670-
394-9 eBook ISBN: 978-1-4200-3285-7, Viewed 11 August 2012. 

Hussin, A & Atmopawiro, VP 2004, Sub-pixel and maximum likelihood classification of Landsat ETM+ 
images for detecting illegal logging and mapping tropical rain forest cover types in Berau, East 
Kalimantan, Indonesia. The International Institute for Geoinformation Science and Earth Observation, 
Enschede, Netherlands. 

Kruse, F.A., Boardman, J.W., Lefkoff, A.B., et al. 1993. The Spectral Image Processing System (SIPS): 
Interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 
44: 145-163. 

http://www.geog.ubc.ca/courses/geob373/labs/Andes_Tutorial.pdf


 
 

 
 

Landis, JR & Koch, GG 1977, The measurement of observer agreement for categorical data. Biometrics, 
33(1): 159–174. 

Leviner, M & Maltz M 2009, A new multi-spectral feature level image fusion method for human 
interpretation. Infrared Physics and Technology, 52:79–88. 

Nguyen, DD 1997, Classification smoothing in land cover mapping using MODIS data. Land Degradation 
and Development, 16:139-149. 

Olson, CE 2008, Is 80% accuracy good enough? Pecora 17 – The Future of Land Imaging. Going 
Operational. November 18-20. Denver, Colorado. 

Richards, JA 1999, Remote Sensing Digital Image Analysis: An Introduction. Springer-Verlag, Berlin, 
Germany, pp. 229-244. 

Senseman, GM, Bagley, CF, & Tweddale, SA 1995, Accuracy Assessment of the Discrete Classification of 
Remotely Sensed Digital Data for Landcover Mapping, USACERL Technical Report EN-95/04, April. 

Shafri, HZM, Suhaili, A  & Mansor, S 2007, The Performance of Maximum Likelihood, Spectral Angle 
Mapper, Neural Network and Decision Tree Classifiers in Hyperspectral Image Analysis. Journal of 
Computer Science, 5(6): 419-423. 

Van Genderen, JL & Lock, BF 1977, Testing land use map accuracy, Photogramm Engineering and Remote 
Sensing, 43(9):1135-1137. 

Tucker, C.J., 1979. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. 
Remote Sensing of the Environment 8:127-150. 

Verbyla, DL & Hammond, TO 1995, Conservative bias in classification accuracy assessment due to pixel-
by-pixel comparison of classified images with reference grids. International Journal of Remote 
Sensing, 16:581-587. 

Woodgate, PW, Peel, W, Ritman, KT, Coram, JE, Brady, A, Rule, AJ, & Banks, JCG  1994,  A Study of the 
Old growth Forests of East Gippsland, Conservation and Natural Resources Department, Melbourne. 

 
Acknowledgements 

 
I would like to thank Graeme Newell, Matt White, Peter Griffioen, Bronwyn Price Adrian Kitchingam and 
Paul Moloney (Department of Sustainability and Environment, Arthur Rylah Institute) for their invaluable 
help and feedback and for provided me with the images needed to conduct this study and assistance on the 
collection of ground truth data. 
  



 
 

 
 

 
Figure 1.  

  



 
 

 
 

 
Figure 2 

  

 

0
5000

10000
15000
20000
25000
30000
35000

RapidEye_MLC_Classif .

RapidEye_MLC_Filer

Stacked_MLC_Classif .

Stacked_MLC_filter

RapidEye_SAM_Classif

RapidEye_SAM_fiter

Stacked_SAM

Stacked_SAM -

A
re

a 
(h

ec
ta

re
s)

Blue Gum Native Pine

Image

0

5000
10000

15000

20000

25000

30000
35000

RapidEye
Classif

RapidEye
Filer

Fused
Classif

Fused
Filter

RapidEye
Classif

RapidEye
Filter

Fused
Classif

Fused
Filter

Ar
ea

 (h
ec

ta
re

s)
Blue Gum Native Pine

MLC SAM

0
5000

10000
15000
20000
25000
30000
35000

RapidEye_MLC_Classif .

RapidEye_MLC_Filer

Stacked_MLC_Classif .

Stacked_MLC_filter

RapidEye_SAM_Classif

RapidEye_SAM_fiter

Stacked_SAM

Stacked_SAM -

A
re

a 
(h

ec
ta

re
s)

Blue Gum Native Pine

Image

0

5000
10000

15000

20000

25000

30000
35000

RapidEye
Classif

RapidEye
Filer

Fused
Classif

Fused
Filter

RapidEye
Classif

RapidEye
Filter

Fused
Classif

Fused
Filter

Ar
ea

 (h
ec

ta
re

s)
Blue Gum Native Pine

MLC SAM



 
 

 
 

 

 

Figure 3.  



 
 

 
 

 
Figure 4 
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