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Forests provide many benefits to individuals, societies as well as the biosphere in general. Forest loss can lead to increased 
greenhouse gases, an increase in salinity, decreased biodiversity and the extinction of species. As part of the sustainable 
management of Victoria’s forests the Department of Sustainability and the Environment (DSE) has created the 2008 land cover 
baseline via the aerial photographic interpretation (API) of 790 2x2 km digital high resolution colour aerial photographs, so that 
information regarding the state, extent and condition of Victoria’s public land forests can be monitored. This study conducted an 
accuracy assessment of the resultant API maps, with respect to their ability to classify forested/ non-forested land cover, forest 
height, and forest vegetation type. This assessment was made by comparing the API derived maps to 125 field plots. An aspect of 
the spatial distribution of API errors was investigated by stratifying the data set into three Victorian ecoregions. Results indicate 
that the API accurately classified forest/ non-forest land cover and vegetation type. The classification of height was less precise, 
with the Mediterranean forest, woodland and scrub ecoregion obtaining more successful results. Despite these errors, the API was 
successful at identifying forest areas and is a valuable tool in the monitoring and reporting of forests across Victoria. 
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1    Introduction 
Throughout history, humans have dramatically altered and transformed the landscape (Lillesand et al. 2004, Steffen et al. 2004). 
Changing land cover can impact the environment by altering the structure and function of ecosystem properties such as water 
chemistry, the carbon cycle, the water and energy exchange balance, and atmospheric composition and chemistry (Steffen et al. 
2004). Land cover change is considered at least as significant as climate change (Foody 2002) and is predicted to be the most 
important factor affecting biodiversity for at least the next 100 years (Chapin et al. 2000). 

Forests provide a host of benefits and the loss of forests can result in increased greenhouse gases, increased erosion, changed 
salinity, decreased biodiversity, and cause the extinction of species (Lucas et al. 2006, Steffen et al. 2004). In order to protect and 
manage the temperate and boreal forests of the world in a sustainable way, 12 countries, including Australia, formed a working 
group titled the Montréal Process in 1994. Using the guidelines produced by the 1992 United Nations Conference on Environment 
and Development (UNCED) the Montréal Process developed criteria and indicators which provide advice on how to assess, 
describe, and evaluate progress related to the sustainable management of forests (DSE 2007, Siry et al. 2005).  

To guide the management of forests in Victoria, the state government adopted seven key criteria proposed by the UNCED and the 
Montréal Process (see Table 1) and used these as a base to create 45 indicators of their own. This formed a platform for the 
measurement and reporting of the sustainable management of Victoria’s forests administered through the Department of 
Sustainability and Environment or DSE (DSE 2007). Through the reporting process, DSE produces a five-yearly State of the 
Forests Report which provides information on the environmental, economic and social values of the forests. The State of the 
Forests Report facilitates the continual improvement of forest management by enabling the evaluation of the management 
performance, and this evaluation in turn can guide the enhancement of forest policy (DSE 2009).  

Table 1: The seven criteria adopted by the Victorian Government (DSE 2009). 
 
 

 

 

 
 

 

 

The Victorian Forest Monitoring Program (VFMP) established by DSE has three main components: state-wide mapping using 
moderate-resolution remote sensing imagery, high resolution mapping via aerial photographic interpretation (API), and a 
systematic ground based assessment using a stratified grid of forest monitoring plots. The second high spatial resolution mapping 
component (the validation of which is the focus of this paper) involved the creation of a 2008 land cover baseline (2008 LCB) 
using API of non-stereo, digital aerial photographs. The 2008 LCB data will provide forest classification and land cover area 
estimates for the VFMP. It will also contribute to the monitoring and reporting of the state, extent and condition of Victoria’s 
public land forests. The 2008 LCB was required to map broad forest types and structural components (based on the National 
Vegetation Information System or NVIS), as well as non-forest land cover types (based on the UN FAO Land Cover 
Classification System or LCCS). During this process, the following attributes were delineated and classified: dominant forest or 
land cover class, canopy height and canopy cover. 

The use of remote sensing to monitor forests is not unique to Victoria as remote sensing techniques offer an ability to map forests 
synoptically across large areas as well to characterise forests attributes (e.g., biophysical, structural, biochemical, disturbance) 
over a range of scales and time intervals at a relatively low cost (Linke et al. 2006). Additionally, benefits of using aerial 
photography include the following: it can be gathered at any time or place; is often of high spatial resolution; involves less 
atmospheric interference; and can provide long time series from as far back as the 1930’s (Morgan, Gergel & Coops 2010). As 
such, remote sensing (aerial photography in particular) is invaluable for monitoring forests and detecting land cover change and 
can ultimately assist the sustainable management of forests. 

 

1.1     Accuracy Assessment  
Accurate maps of land cover and its elements are required to assist in the sustainable management of forests.  Given all maps 
contain a level of generalization of the real world and thus a loss of information, they inherently contain a certain degree of error. 
It is therefore necessary to provide an assessment of the accuracy with which land cover and its elements are mapped so that not 
only the quality and appropriateness of the map is understood, but also any error and the potential consequences of this error 
(Foody 2002).  

Criteria 1: Conservation of biological diversity 
Criteria 2: Maintenance of productive capacity of forest ecosystems 
Criteria 3: Maintenance of ecosystem health and vitality 
Criteria 4: Conservation and maintenance of soil and water resources 
Criteria 5: Maintenance of forest contribution to global carbon cycles 
Criteria 6: Maintenance and enhancement of long term multiple socio-economic benefits to meet the needs of societies 
Criteria 7: Legal, institutional and economic framework for forest conservation and sustainable management 



 
 

 
 

Accuracy assessment is considered a fundamental part of land cover mapping. However, there is no standard method for the 
reporting of accuracy. This is partly due to the varied nature of land cover maps, as well as the variety of problems associated with 
reporting accuracy assessments, such as what is the necessary information and how to convey it (Congalton & Green 2009, Foody 
2002). Foody (2002) provides a detailed summary of the problems associated with the accuracy assessment of land cover 
classifications. The author concludes that a sound approach to the reporting of classification accuracy should include a confusion 
matrix and at least two quantitative measurements such as overall accuracy and the kappa statistic, along with confidence levels 
(Foody 2002). The recommendations of Foody (2002) are followed in this report. 

Whilst it is important to report thematic accuracy (or the ability of a map to classify different categories), this fails to take into 
account variation in the spatial distribution of error which often occurs (Foody 2005, McGwire & Fisher 2001).  For instance, a 
study by Foody (2005) reported an overall accuracy of 84%, even though local accuracy ranged from 53 to 100%. Spatial 
variation in misclassifications have been known to be produced by sensor properties (Foody 1988), and they also frequently occur 
at class boundaries due to the presence of mixels (a pixel containing more than one class of object) and misregistration 
(Congalton 1988, Steele et al. 1998, Vieira & Mather 2000). As a consequence of these studies, it can be concluded that raw 
confusion matrices fail to represent the spatial variability of classification error. To address this, different approaches have been 
developed.  The majority of these focus on mapping a measure of the uncertainty involved in labelling a class on a per pixel basis. 
Such approaches allow the operator to pinpoint where on a map there are high levels of uncertainty and guide investigations into 
why this spatial variability in uncertainty may occur (Stehman & Foody 2009).  

Another more general approach which has been undertaken involves dividing the map into subregions and performing individual 
accuracy assessments on each of these subregions via standard confusion matrices and estimates of overall accuracy (e.g. Foody 
2005). By investigating and reporting on the variability of errors between spatial distributed sub-regions, researches are able to 
locate problematic areas and thus refine the classification methods to increase their accuracy (Foody 2002). Another benefit of this 
approach is that it can usually be undertaken using the data which has already been collected, thus eliminating the need to acquire 
more data which is typically costly (Foody 2005). 

 
Figure 1. Location of API tiles across Victoria as well as those used in this study for validating the API using the LTP survey data. All large tree 
plots also contain an API photoplot and are plots used in this study. 
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2    Methods  
The aim of this study is to validate the API used to create the 2008 LCB, with the goal of using this knowledge to improve the 
mapping process in the future, if needed. It addressed the API’s ability to classify forest versus non-forest land cover, vegetation 
type, and height. It also investigated an aspect of the spatial distribution of errors according to ecoregions, and examined potential 
sources for these.  

Ecoregions are a “relatively large unit of land or water containing a characteristic set of natural communities that share a large 
majority of their species, dynamics, and environmental conditions” (Olson & Dinerstein 1998). The ecoregion approach in 
grouping environments is used by the World Wildlife Fund (WWF) to improve conservation by ensuring that all ecosystem and 
habitat types are described in their Global 200 and thus represented by conservation strategies throughout the world (Olson & 
Dinerstein 1998). These ecoregions are also important in Australian conservation as they are the foundation of the 89 
geographically distinct bioregions identified in the Interim Biogeographic Realisation for Australia or IBRA, and these bioregions 
are a key tool in the identification of land for conservation in Australia’s Strategy for the National Reserves System 2009- 2030. 
Whilst it would have been preferable to use the IBRA bioregion subdivision in this study (as these were used to stratify the 
sampling grid for selecting photoplots), there was insufficient data points available for this approach. The current analysis aimed 
to determine whether the different ecoregions present in the study area had any influence on the accuracy of the API. This was 
achieved by dividing the study area into ecoregions and assessing these ecoregions individually.  

2.1    Creation of the API 
 

The API mapped state forests and parks across Victoria during 2008, an area encompassing approximately 7.8 million hectares of 
forest (DSE 2009). This involved the interpretation of 790 2x2km digital (georectified) high-resolution (≤ 50 cm) colour aerial 
photographs or photoplots, taken between 2006 and 2010, (see Figure 1). The photoplots were selected from a state-wide 
sampling grid which had been stratified according to IBRA bioregions, with an average of 72 photoplots in each bioregion. 
Classification of the photoplots involved two main stages; the delineation of landscape elements and their subsequent manual 
verification and classification, with a minimum mapping unit (MMU) of 0.5 ha.  

The delineation of landscape elements conducted during the first stage relied on an automated segmentation algorithm applied 
using Definiens eCognition (version 3). This algorithm employs a region-growing technique where pixels are amalgamated into 
larger objects, only stopping if the smallest growth exceeds the heterogeneity threshold. This threshold is defined by segmentation 
parameters which combine two criteria. The first relates to the homogeneity of the aerial photograph pixel values and the second 
to the shape (compactness and smoothness) of the resultant image object.  

 
Figure 2. An outline of the forested land cover classification used for the API (adapted from Farmer et al.2011). If at any stage the majority of 
the object could not be placed into a single category, it was split (so long as the MMU is greater than 0.5 ha). If an area had substantial fire 
damage it was classified as FPID (Fire Prevents Identification) and no further characterisation was untaken.  
 
 

 



 
 

 
 

The second stage, the manual verification and classification of the landscape elements, utilised tone, colour, shadow, size, shape, 
texture, and overall context of the photoplots.  Ancillary data including fire histories and modelled vegetation types were also used 
for reference. All interpreters were provided with a series of interpretation manuals, field visits, and expert consultants to assist 
them during the initial stages of the project. A hierarchical land cover classification approach was applied, with the top tier 
comprising of broad land cover types. For a landscape element to be classified as forest it was required to be larger than 0.5ha 
with a canopy height higher than 2m, and greater than 20% canopy cover. All land cover identified as forest was subsequently 
assigned vegetation type, height and canopy cover (see Figure 2 for an outline of the classification and the classes involved). 
Vegetation type was defined as the dominant top canopy species vegetation type (see Figure 2), and stands containing multiple, 
co-dominant broad species types were classified as non- Eucalypt or mixed. 

2.2     Reference data used to assess the accuracy of the API  
The accuracy assessment of the API conducted in this study relied on the third tier of data used in the VFMP: the systematic 
ground based assessment which represents the highest level of detail. The third-tier of the FM & RIS contains approximately 142 
installed and measured large tree plots or LTP. These plots were measured using standard operating procedure 13 (DSE 2011). 
The LTP are located at the centroid of the 2x2km photoplots, and comprise a circular plot of 0.04 ha. For each LTP, a range of 
metadata was recorded including individual tree attributes such as tree species, diameter at breast height (DBH) for all trees larger 
than 10cm, heights across a range of DBHs, and crown class. Forest stand attributes such as canopy cover and administrative 
essentials such as the person(s) involved and the date, were also recorded. The dominant top canopy was used when assigning 
vegetation type. 

In the current study, the LTP data was used to assess the classification of the API. Specifically, the forest/non-forest land cover, 
vegetation type (main vegetation type mapped), and height class results obtained from the API were compared against the LTP to 
determine the API’s accuracy. The different classes of non-forest land cover were not investigated as the API has primarily been 
produced to record forest cover as opposed to land cover in general, and the low number of non-forest plots made any analysis of 
the classification of non-forest land cover difficult.  

Nine of the 142 LTPs were not utilized. Circumstances which hindered the potential to compare these nine LTPs against their 
associated API classification include: a disturbance event such as logging had recently occurred; the photoplot was classified 
during the API as fire prevents identification or FPID (8 tiles), a term used to identify areas where fire had prevented the confident 
attribution of species and/or height and/or canopy cover in the original identification; and missing or incomplete data in the LTP 
(2 tiles). Consequently 125 LTPs were available for comparison against the API for the forest/non-forest land cover analysis and 
the vegetation type analysis. This was reduced to 123 plots in the height analysis. 

2.3      Analysis of the API versus reference data 
This study assessed the accuracy of the API in classifying forest/ non-forest land cover, vegetation type, and height class by 
comparing the classifications of the API for each landscape element with the findings of the corresponding LTP which was 
located at the centroid of the landscape element. This was conducted for 125 photoplots. This report was created to be presented at 
the GSR 2 conference (Dec 10-12, 2012), as such the length and scope was limited which resulted in canopy cover not being 
analysed. As there are known issues in classifying canopy cover, via API (Farmer et al. 2012), it is assumed this class may have 
obtained similar results to those of the interpretation of forest stand height (see subsequent height class analysis). 

2.4      Accuracy assessment 
Confusion matrices were produced for forest/ non-forest land cover, vegetation type, and height class along with total accuracy, 
total accuracy using the true marginal proportions to correct for bias (along with confidence intervals), the kappa statistic, 
producer and user accuracy. Unfortunately, low frequencies of samples in certain categories meant this was not always possible. 
The matrices were not normalized as this can significantly bias the accuracy assessment (Stehman 2004). The benefit of the total 
accuracy measure which utilises the true marginal proportions, that is, the proportion of the map which falls into each category, is 
that it corrects for bias when calculating total accuracy statistics. Consequently, the size of the polygons (in this case the landscape 
elements) and thus bias caused by irregular sized polygons is removed. Total accuracy, as opposed to the total accuracy using true 
marginal proportions, has been compared in the discussion since out of the two statistics, it is more common and readily 
understood. 

2.5      Assessment of an aspect of the spatial distribution of error 
This study has investigated one aspect of the spatial distribution of error, namely the variability in errors between ecoregions. This 
is in no way a comprehensive assessment of the spatial distribution of errors, however it is the belief of the authors that it may aid 
in locating problematic areas and thus help refine the classification methods. There are four WWF global ecoregions, across the 
state of Victoria. Three of these were used in this study to investigate if accuracy was equally distributed throughout the study 
area. The three ecoregions used are: Ecoregion 1, Mediterranean forest, woodland and scrub; Ecoregion 2, Montane grassland and 
shrubland; and Ecoregion 3, Temperate broadleaf and mixed forest,(see Table 2 for a description of these ecoregions and Figure 
1). The fourth ecoregion in the study area, the temperate grasslands, savannas, and shrublands, was not used because  



 
 

 
 

unfortunately the LTP dataset did not contain observations in this ecoregion. In the analysis of the spatial distribution of error 
variation has been attributed to differences arising from qualities (such as vegetation characteristics) of the ecoregions whilst it 
should be noted that elements (such as image quality) could also be responsible. 
 
Table 2. Descriptions of the three WWF global ecoregions involved in this study. 
(www.environment.gov.au/parks/nrs/science/bioregion-framework/terrestrial-habitats.html) 

 

2.6      Fuzzy accuracy assessment of the height class 
Unlike vegetation type and forest/non-forest, the height class is not a nominal category and is instead a continuum. This ambiguity 
can result in error being perceived in the analysis due the assigning of divisions, when in fact the misclassified plots lie close to 
the boundaries and could be assigned to either class. For instance, if a tree which was measured in the LTP as being 30m high was 
placed in the high height category it would be perceived as being wrongly assigned when in reality it lies so close to the boundary 
of the categories that it could be considered to fall within the medium or high classes. Fuzzy analysis techniques try to mitigate 
this by allowing objects and pixels to belong to more than one class (Lillesands et al. 2004, Lunetta & Lyon 2009). Because of 
this, fuzzy logic was introduced and two additional classes were added to the analysis (low-medium and medium-high), creating 
transition zones where a point was deemed to be accurately classified if it fell within the LTP class or the class adjacent to this 
category. For instance, if the reference data plot was in the medium class then it could fall into the medium, low-medium, or 
medium high class. On the other hand, a low reference plot could be assigned to the low or low-medium class and be deemed 
accurate (see Table 3 for the ranges used in the two fuzzy height analyses). Continuing with the previous example, a 30m tall tree 
would now belong in the med-high class and would be considered to have been accurately classified if it was assigned to either the 
medium or the high class in the API. 
 
Table 3. Height classes used in the fuzzy height analyses. 

 
 

3    Results 
Due to the nature of the data not all categories contained sufficient samples for accurate analysis, and thus the producers and users 
accuracy has not been reported for a number of categories. This is particularly evident during the later analyses as the classes are 
further sub-divided producing lower sample populations. The kappa statistic has been reported in order to maintain transparency, 
even though a number of these are not appropriate representations of the accuracy. Kappa is a ratio (it is dependant on the 
numerator and denominator), and classes with an uneven distribution can be problematic during the calculation and interpretation 
of kappa (Pontius & Millones 2011). This study frequently involved asymmetrical classes, such as the occurrence of more forested 
areas than non-forest (as the mapping mostly involved state forests (Farmer et al. 2011)), and these have resulted in a number of 
kappa statistics which are indefinable or zero, when the classification was highly accurate, such as the analysis of the prediction of 
main land cover for ecoregions 2 and 3. 

 

 

 

 



 
 

 
 

3.1     Forest/ non-forest 
Results that report on the accuracy of the Forest/Non-Forest classification are shown in Tables 4 and 5 and Figure 3. The API was 
highly accurate in classifying woody areas with a total accuracy of 96.7%, and a producers and users accuracy of 99.1 and 97.3 
respectively for forest/ non-forest land cover. The accuracy obtained throughout the ecoregions varied. Ecoregion 1 showed 
slightly more error in the classification of forest/non-forest cover than the other ecoregions obtaining a total accuracy of 88%. 

 
Table 4. A confusion matrix for forest/ non-forest land cover 
comparing the classifications produced by the API (map data) and 
the LTP (reference data). 

 
Table 5. Quantitative measurements produced for the accuracy 
analysis of the forest/ non-forest land cover classification for the 
entire region and individual ecoregions (after stratifying the data). 

 

 
Figure 3. A histogram of the total accuracy of the forest/ non-forest land 
cover classification, for the overall region, and for the 3 ecoregions after 
stratifying the data set..  

 

3.2    Vegetation type  
The API was accurate in predicting vegetation type with a total overall accuracy of 88.8%, and a users and producers accuracy of 
94.4 and 93.5%, respectively for Eucalyptus species (Tables 6 and 7 and Figure 4). There was spatial variation in error with 
Ecoregion 1 being the least accurate, although still achieving a reasonable total accuracy of 80%. The total accuracy using true 
marginal proportions obtained lower result of only 55.3%. 

 

 

 
 

Table 6. A confusion matrix for the vegetation type class identified 
API (map data) and the LTP (reference data). 

 
Table 7.  Quantitative measurements produced for the accuracy 
analysis of the vegetation type classification for the entire region and 
individual ecoregions. 

 

 
Figure 4. A histogram of the total accuracy of the vegetation type  classification, for the 
overall region, and for the three ecoregions after stratifying the data set. 



 
 

 
 

3.3    Height  
The API was not as successful in predicting the height of trees as it was in predicting forest/ non-forest (Tables 8 and 9 and Figure 
5). The total overall accuracy obtained was 52%. Spatial variation in error was also observed. Ecoregion 1 obtained a total 
accuracy of 75%, whilst ecoregions 2 and 3 obtained 48.4% and 45.6%, respectively. The inclusion of transition zones in the 
fuzzy accuracy assessment increased the accuracy to 59% with inclusion of a 1m transition zone (fuzzy height 1), and 71% with 
inclusion of a 4m transition zone (fuzzy height 2). Both of these are still below the 85% total accuracy which is recommended in 
the literature (Thomlinson et al. 1999), although the total accuracy of fuzzy height 2 rose above the 70% minimum threshold 
identified by Thomlinson et al. (1999). 
 

Table 8. A confusion matrix of the height class comparing classification produced by the API (map data) with the LTP 
(reference data). 

 
Table 9. Quantitative measurements produced for the accuracy analysis of the height class classification for the entire 
region, the individual ecoregions, and for the two fuzzy classes. 

 

 
Figure 5: A histogram of the total accuracy of the height class  classification, for the overall region, for the three 
ecoregions after stratifying the data set, and for the two fuzzy height analyses. 

 
 
 
 
 
 



 
 

 
 

4 DISCUSSION  

4.1     Limitations 
A limitation of this study is the use of a single point of reference data (the LTP) as a representation of an entire polygon which can 
potentially cover a very large area. If this point is not representative, for instance if it contained a stand of low trees in a polygon 
which was dominated by medium trees, this would invalidate any results utilising this point. This has been reduced by selecting 
the LTP from the middle of the objects instead of the boundaries where there is likely to be a combination of classes. 

4.2      Forest/ non-forest classification 
 

The API was highly accurate in classifying forested areas as demonstrated by the accuracy assessment conducted in this study. It 
is important to note that the goal of this classification was to describe state forests and parks across Victoria therefore there is an 
inevitable bias, in the LTPs and API photo-plots, towards forested areas (generally speaking, few landscape elements were located 
in non-forested areas as all LTPs fell inside of state parks and forests). Nevertheless, the API was successful at classifying forested 
areas. Such high accuracy is favourable given further classifications such as vegetation type and height depend on the correct 
classification of forest/non-forest areas.  

A possible explanation for the misclassified landscape elements (four in total) is a lack of visual clues. As previously discussed, 
visual clues, such as tone, colour, shadow, size, shape and texture, were used when manually interpreting the aerial photography 
and a lack of these would have hindered the accurate classification. In particular low trees which lacked shadows, and trees with 
smaller crowns may have hindered forest identification and classification. All the misclassified landscape elements which were 
misclassified were either within the low height class and misclassified as non-forest (3 of the 4 misclassifications) or (2) 
misclassified non-forest as forest. Furthermore, in one of these instances, the LTP indicated the presence of dead crowns which 
may have caused some difficulty when interpreting the aerial photography. These errors may have been avoided had there been 
more visual clues, higher resolution or supplementary images, or supplementary LiDAR data which provides canopy height 
information.  

The accuracy obtained throughout the ecoregions varied. Ecoregion 1 showed slightly more error in the classification of 
forest/non-forest cover than the other ecoregions. The average tree height in Ecoregion 1 was 6.1m, whilst the average height in 
ecoregions 2 and 3 were 20.6m and 14.7m, respectively. The lower accuracy obtained in areas where trees have low heights 
suggests that the height of forest stands may impact the classification of forest/non-forest areas, with areas of low tree heights 
being harder to classify. The use of additional ancillary data and/or supplementary imagery may lessen this issue. 

In summary, the API was found to be successful at classifying forest/ non-forest land cover. A spatial variation in error was 
detected with ecoregion 1 obtaining the lowest accuracy of 88%, although still within reasonable limits (Thomlinson et al. 1999). 

4.3      Vegetation type classification 

The API was accurate in classifying vegetation type with a total overall accuracy of 88.8%, and a users and producers accuracy of 
94.4 and 93.5%, respectively for Eucalyptus species. Unfortunately, other vegetation categories were not represented in a 
statistically significant way within the LTPs. Consequently this study was unable to assess the accuracy achieved when classifying 
other vegetation categories, for example Acacia sp., Banksia sp., Casuarina sp., Melaleuca sp. via API. The high accuracy 
achieved with the Eucalyptus sp. category was expected as Eucalyptus accounts for 93% of all trees throughout the Victorian state 
forests (DSE 2009). Of the classes considered in the API, the second most common is the Mallee Eucalyptus species which makes 
up 19% of the Victoria’s state forests. The third most common vegetation type found in Victorian state forests is the Casuarina 
species at 2%. Given the high rate of Eucalyptus, it is unlikely the additional 358 LTP’s that are yet to be processed will contain 
sufficient non-Eucalypt sp. points to test the API’s ability to classify vegetation type beyond Mallee sp. and Eucalyptus sp.  

Authors argue that not all errors are equal as some may be more important or damaging. Equally, it is also common to make 
mistakes when classifying similar classes (Foody 2002). In this study, the majority of errors (8 out of 11) which occurred when 
classifying vegetation type involved incorrectly assigning the vegetation type as Eucalyptus sp. when it was a mixed stand of 
Eucalypt and other species, or vice versa. In one instance, a plot misclassified as Eucalyptus sp. should have been assigned to the 
category Mallee Eucalyptus sp., which is still a geographical sub-division of the Eucalypt species. The misclassification of stands 
of Eucalyptus, Mallee Eucalyptus, and mixed stands (that is, stands containing Eucalyptus and at least one other species) is not as 
detrimental as other types of misclassifications, since they are mapping types of forest which may provide similar ecosystem 
services such as the level of carbon storage. It is not surprising that such misclassifications are the most common errors due to the 
similarity of these vegetation types.  

 

 

 



 
 

 
 

Spatial variation in the classification of vegetation type was evident with Ecoregion 1 being the least accurate, although still 
achieving a reasonable total accuracy of 80%. In Ecoregion 1, two out of fourteen points (14%) correctly identified as forested 
vegetation were misclassified. Furthermore, these two points represented the only observations in the analysis where a vegetation 
type other than Eucalyptus was, or should have, been classified. Whilst the miss-classification of non-Eucalypt species is likely to 
also occur in other ecoregions, and some may argue that a better solution for improving non-eucalypt classification would be to 
focus on technique which improve this classification of non-Eucalypt species, investigations into why this region achieved the 
lowest accuracy (although still reasonable at 80%), and contained the most significant errors where non-eucalypt vegetation types 
were misclassified, may be beneficial. The total accuracy using true marginal proportions was significantly lower than the total 
accuracy in Ecoregion one suggesting the plots which have been misclassified are quite large and require a review. These plots 
may also benefit from LTPs to determine if the LTPs were representative of the forest. 

In summary, the API was very accurate at classifying vegetation type within forests with the least successful ecoregion still 
obtaining 80% total accuracy. The classification of the Eucalyptus vegetation type was very successful obtaining a users and 
producers accuracy of 94.4 and 93.5% respectively. However, due to a lack of observations that are non-Eucalypt, this study was 
unable to test the API’s ability to classify non-Eucalyptus species. Nevertheless, the majority of errors were not of a high 
magnitude since they involved very similar vegetation types, that is, within the Eucalyptus species classes (Eucalyptus sp. Mallee 
Eucalyptus sp., and mixed stands). Confusion of the Eucalypt and non-Eucalypt vegetation type was evident. Therefore, 
investigations that look into improving the API’s ability to classify vegetation type would benefit by focusing on means to 
improve the identification of non-Eucalypt species via API or assessing why there were differences detected with regard to 
accuracy obtained across the different ecoregions. 

4.4     Height classification 
The API was not as successful in classifying the height of trees as it was in classifying forest/ non-forest and vegetation type. Two 
aspects potentially explain this and could help guide improvement in this area. Aspects which had the potential to inhibit the 
API’s ability to classify height are: (a) the ambiguous nature of height classification when using aerial photography, (b) the use of 
non-stereo, on-screen photogrammetry to classify height. 

The fuzzy analysis, which was run in order to take into account the ambiguous nature of height classification, found that a 1m 
transition zone did not significantly increase the classification accuracy (see Table 9). Furthermore, a four meter transition zone 
was required for the total accuracy to reach 75%, which is above the minimum threshold suggested by Thomlinson et al. (1999) 
but still below the target of 85% total accuracy. Such results suggest that the API errors observed are not just due to ambiguous 
plots which lie on the boundary between classes.  

Non-stereo Photogrammetry 

The general short coming of the API’s ability to classify height is not unexpected as the use of non-stereo photogrammetric 
methods for predicting height, such as those used by the API, are known to be error prone even when classifying forests into very 
broad height categories such as the three used in the API (Wulder et al. 2010). The use of photointerpretation which relies on 2D/ 
non-stereo images is error prone as these images provide little information regarding the 3D morphology of objects in the images 
and as such aspects of tree geometry, such as height, cannot be accurately identified (Gong, Sheng & Biging 2002). Instead, 2D 
images are typically used to provide information on attributes (such as species) which are not reliant on tree geometry, since in 
many instances they are the only source of data available. The photo interpretation of height can be made accurate by utilising 
stereo pairs of images, although this technique relies on being able to measure from the base of the tree and so can only be used in 
open forest or on very flat ground (Véga & St-Onge 2008). Consequently, new techniques are being applied such as the use of 
accurate LiDAR (light detection and ranging) based approaches. 

LiDAR 

LiDAR uses the time elapsed between emission and detection of a laser pulse to measure the distance between a sensor and target 
(Baltsavias 1999). Given its ability to directly measure the structure of the vegetation as well as the underlying terrain,  LiDAR is 
a valuable and precise tool for measuring vegetation height (with typical errors ranging from 0.5- 1.0m) in forests (Wulder et al. 
2012, Véga & St-Onge 2008). Whilst these benefits have been demonstrated by numerous studies, to date very few large scale 
forest inventories have used this technology due to its high cost and lack of coverage (Tsui et al. 2012, Wulder et al. 2010). These 
limitations are likely to become less significant as new satellite missions become available, driven for example by the need to 
predict carbon stock in forests (e.g., LiDAR instrument on DESDynI, Goetz et al. 2009). Once LIDAR becomes more 
commonplace and economically feasible, it could be used to improve the accurate classification of forest height within API 
approaches. Furthermore, as a number of LiDAR based data sets already exist for parts of Victoria, these could be used to test the 
ability of LiDAR to improve the classification of forest height by the API.  

 
 

 



 
 

 
 

Ecoregions and the spatial variation in error 

Spatial variation in the accuracy with which forest canopy height was classified was also observed. Ecoregion 1 obtained a higher 
total accuracy than the other two ecoregions. The higher accuracy in Ecoregion 1 could be due to the small range of tree heights 
typically encountered in this ecoregion. Heights in this ecoregion are generally lower, and there are no plots which fall in the high 
height class. The occurrence of less height classes within this ecoregion may have made the classification easier and produced 
more accurate results. In particular no medium height plots would be misclassified into the high class, which was a relatively 
common error that occurred in 12 out of 25 medium plots in Ecoregion 2, and in 21 out of the 53 plots in Ecoregion 3. The 
reference data for Ecoregion 3, similarly to Ecoregion1, only contained plots in the low and medium height class. However, 
operators expected trees to potentially fall in the high class in this ecoregion. As a direct consequence, misclassification errors 
between the medium and high classes could still occur. The misclassification of landscape elements between the medium and high 
class could be responsible for the spatial variation in error we have observed between ecoregions, and investigation into ways to 
eliminate or reduce this error would improve the API. Nevertheless, the accuracy of the API in classifying the height class of 
Ecoregion 1 was not optimal, therefore there must be other explanations for the general short comings of the API in classifying 
height.  

The API was not as precise in classifying forest height as the two other variables previously analysed. It has been demonstrated 
that this error is significant and not just due to ambiguous plots which could belong to multiple classes. Equally, results indicate 
that the medium height class warrants investigation as the misclassification of these plots into the high height class could be 
responsible for the spatial variation observed between ecoregions. Finding ways to improve the classification of plots in the 
medium height class could, it is proposed, improve the API. Finally, as the use of non-stereo, on-screen photogrammetry to 
predict heights is known to be error prone the inclusion of supplementary data, such as the new highly accurate LiDAR based 
technology, could provide a way to improve the classification of the height class. 

5 Conclusion 
In summary, the API accurately classified forest/ non-forest land cover and vegetation type. This is excellent given the 
classification of forest/ non-forest land cover forms the foundation of all other classifications. The majority of errors in the 
classification of vegetation type occurred between mixed stands, that is stands comprised of Eucalypt sp. and one or more species, 
and pure Eucalypt sp. stands, both of which are similar vegetation classes. The classification of height was less precise, with the 
Mediterranean forest, woodland and scrub ecoregion obtaining more successful results. Height is known to be difficult to predict 
using non-stereo, on-screen photogrammetry alone and recent studies have shown the benefits of using LiDAR to not only record 
height accurately but estimate biomass which enables the prediction of carbon sequestration (Wulder et al. 2010). Given 
Victoria’s forests store an estimated 511 million tonnes of carbon (DSE 2009), the accurate monitoring of carbon sequestration is 
very important. LiDAR may also provide the interpreters with a more detailed description of the ground cover in areas with low or 
sparse forest cover aiding in the classification of forest/ non-forest land cover and thus increasing the accuracy of this 
classification which is a starting point for all other classifications.  

Future Directions 

Three possible directions for future accuracy assessments are summarised below. The first is to rerun this analysis with the 
additional field plots to see if the same results are obtained, particularly in classes that lacked a sufficient amount of data to report 
users and producers accuracy, such as with the non-eucalypt vegetation types. The second is to analyse the API’s accuracy in 
classifying canopy cover since this was not assessed in this study. And a third direction would be to investigate if the year of the 
image which was interpreted affects the accuracy of the results as the images were collected from 2006 to 2010.  

Whilst there are still aspects of the accuracy to analyse and the classification of height can be improved with the inclusion of 
LiDAR information, this study has found the API to be accurate in classifying forest/ non-forest land cover and vegetation type. 
As such the API will aid in the reporting of the state, extent and condition of Victoria’s public land forests by the DSE. This 
knowledge can in turn lead to informed management decisions, ultimately improving the sustainable management of these forests 
and ensuring that Victoria’s environment is protected for future generations. 
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