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Abstract: Automated building detection has been an active topic in photogrammetry and computer vision. 
One of the challenges is to effectively separate buildings from trees using aerial imagery and Lidar data. In 
cases where an adopted building detection technique cannot distinguish between these two classes of 
objects, the presence of trees in the scene can increase the rates of both false positives and false negatives in 
the building detection process. This paper presents an automatic building detection technique which exhibits 
improved separation of buildings from trees. In addition to using traditional features such as height, width 
and colour, the improved detector uses texture and edge orientation information from both Lidar and 
orthoimagery. Therefore, image entropy and colour information are jointly applied to remove easily 
distinguishable trees. Afterwards, a rule-based procedure using the edge orientation histogram from the 
imagery is followed to eliminate false positive candidates. The improved detector has been tested on a 
number of scenes from three different test areas. It is demonstrated that the algorithm performs well even in 
complex scenes and a 10% increase both in completeness and correctness has been achieved. 
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Introduction 
 
Buildings are an indispensible component in a geospatial information system. Various applications require 
up-to-date, accurate and sufficiently attributed digital building data, including urban planning, emergency 
response, homeland security and disaster (flood or bushfire) management, tourism, internet-based map 
services, location-based services, dictating the importance and necessity of timely acquisition of building 
information over large areas. As remote sensing imagery is the main source for spatial information 
generation, automated analysis of satellite and aerial images for building detection has been investigated in 
photogrammetry and computer vision (Mayer, 1999). Buildings were detected based on the optical 
reflectance of roof materials and/or with the knowledge of building shape information. The single image 
analysis techniques neglect the inherent 3D information. Therefore, multiple images were introduced with 
3D information generated using photogrammetry techniques and later with Lidar data. The introduction of 
Lidar data has offered an attractive option for improving the level of automation in building detection 
process. Lidar technology provides dense accurate georeferenced 3D point clouds over reflected objects. A 
Recent trend in building detection is to integrate Lidar data with imagery to benefit from the accurate 3D 
Lidar information and extensive 2D information such as high-resolution texture and color information in 
images for enhanced performance (Sohn and Dowman, 2007; Vu et al., 2009; Awrangjeb et al., 2010). 
 
Despite significant efforts in research, fully automated building detection still remains a challenge in 
photogrammetry and computer vision. The success is largely impeded by scene complexity, incomplete cue 



 
 

 
 

extraction and sensor dependency of data (Sohn and Dowman, 2007). One of the challenges is the efficient 
differentiation of trees and buildings. Like buildings, trees are above ground objects in 3D data. Shadows 
and occlusions by tall trees nearby buildings cause inhomogeneous appearance of roof in remote sensing 
imagery. Tall trees also prevent Lidar strikes on roofs, resulting in incomplete 3D information of building 
roof. The situation becomes even more complex in hilly and densely vegetated areas.  
 
Existing building detection algorithms make use of different cues to separate buildings from trees. While 
cues related to colour are only available with multispectral images, cues related to width, height and area can 
be derived from Lidar or images. A height threshold (2.5m above ground level) is often used to remove low 
vegetation and other objects of limited height, such as cars and street furniture (Rottensteiner et al., 2007; 
Awrangjeb et al., 2010). Trees taller than the building roof cannot be removed via this height threshold. 
Dash et al. (2004) used the height variation along the periphery of objects present in the data to distinguish 
trees from buildings. Rottensteiner et al. (2007) and Khoshelham et al. (2008) used height difference values 
between first and last pulse Lidar data for the same purpose, since it can be anticipated that the differences 
will be large for trees but negligible for buildings. However, a first pulse is not always reflected from the 
upper branches of a tree and a last pulse may sometimes be a reflection from a tree trunk or branches (Maas, 
2001). 
 
Approaches based on segment classification of Lidar point clouds have been developed and segment 
attributes were exploited for differentiation of buildings and trees. Segments can be generated by plane-
fitting techniques on the non-ground Lidar points (Zhang et al., 2006; He et al., 2012), or region growing 
methods based on seed points detected with 3D Hough transformation (Vosselman et al., 2004). Sampath 
and Shan (2010) reported a segmentation approach employed Eigen analysis to yield surface normal and 
separate planar and non-planar points which are further processed to generate segments via clustering. 
Buildings and trees were then separated by segment attributes. For instance, segments with a small size 
(Vosselman et al., 2004), or segments with widths shorter than 3 metres (Awrangjeb et al., 2010) were 
treated as trees. Segment-wise classification proved to be more reliable then point-wise methods. However, 
this technique usually requires high density of Lidar data which are not always available due to the high 
cost. 
 
A number of research employed image information for separation of buildings and trees after initial 
segmentation using the Lidar data. The most frequently used information is NDVI (normalized difference 
vegetation index) estimated from multispectral images which are available in most of modern satellite and 
airborne sensors. A high NDVI value for a pixel indicates vegetation, whereas a low NDVI value generally 
indicates a non-vegetation pixel. While effective in most cases, the selection of an appropriate threshold in 
NDVI is a challenge, particularly when non-vegetation pixels shared similar spectral attributes with 
vegetation. For instance, in the case when roofs have a similar color as trees, or trees have colors other than 
green (Awrangjeb et al., 2010). A small NDVI threshold may remove some buildings while a large NDVI 
threshold may detect some trees as buildings. More complex methods exploited image textures. Image 
classification approaches using grey level co-occurrence matrix and self-organizing map classification have 
been investigated (Chen et al., 2006). These methods require large amount training samples, and are 
computationally expensive. 
 
Existing approaches show varying degrees of success. Height data is effective in detection of low height 
vegetation. Segmentation-based approaches with high density height data provide promising results, while 
low density point clouds are insufficient to reliably separate buildings and trees. Current image analysis 
methods mainly rely on pixel intensity, resulting omission and commission errors.  
 
In this paper, we proposed a new image analysis approach based on texture and edge orientation derived 
from high resolution aerial imagery for enhanced classification of buildings and trees. The reported work is 



 
 

 
 

built upon previous research, particularly the recent efforts described in Awrangjeb et al. (2010). In addition 
to high NDVI values, trees exhibit richer texture than building roofs. While building roofs may be painted in 
different colors, they are usually regular in shape. The sides of the roofs are parallel to or perpendicular to 
each other. These texture and geometric properties of buildings will be exploited to differentiate buildings 
and trees. The approach is detailed in the next section. Tests were conducted using aerial imagery and Lidar 
data over various terrains and land covers. The results are presented together with evaluation using manually 
plotted reference data.  
 
Approach to separation of buildings and trees 
 
The proposed approach, which is an improved version of that described in Awrangjeb et al. (2010), employs 
a combination of height, width, color and texture information for more comprehensive separation of 
buildings from trees (Fig.1).  
 

 
 

Fig. 1. Flowchart of the improved building detection technique. 
 
A height threshold Th=Hg+2.5, where Hg represents the ground height (DEM value), was applied to the raw 
Lidar data. This threshold removed objects of low height (shrubbery, road furniture, cars, etc.) and preserved 
trees and buildings. The outlines of the remaining objects were extracted and the rectangle shapes were 
generated surrounding these objects using the techniques in Awrangjeb et al. (2010).  NDVI was computed 
using multispectral imagery. Tree candidates were selected if their NDVI values were above the mean value 
of the NDVI. The rest objects were treated as building candidates. However, the use of such threshold in 
NDVI may misclassify some buildings as trees. In addition, some types of trees demonstrated low NDVI 
values. In autumn or winter, many trees may become leafless, or the color of leaves change. These trees 
cannot be detected using NDVI, and will be misclassified as buildings. These two types of errors will be 
avoided using image texture information and edge orientation information (highlighted in the red rectangles 
in Fig. 1) respectively, and will be detailed in the following.  
 
Image Entropy Analysis 
Image entropy are employed to identify green buildings from trees. Entropy is a statistical measure of 
randomness that can be used to characterize the texture of images (Gonzalez et al., 2003). Its adoption is 
based on the assumption that trees are rich in texture as compared to the roofs of buildings. A large entropy 
value indicates a texture (tree) pixel.  
 



 
 

 
 

Entropy was calculated within a 9 by 9 window around a pixel. A normalized histogram H for the image 
window, involving 256 bins and values in the range of 0 to 1, was formed and entropy was calculated using 
non-zero frequencies as 
 

e = -∑Hilog2(Hi), where 1 ≤ i ≤ 256 and 0 ≤ Hi ≤ 1. 
 

With the detected trees using NDVI, a further test is performed to check whether the average entropy is less 
than a predefined threshold. As the entropy values are generally low in buildings, green roofs which show 
similar colors as trees can be effectively identified.  
 
Edge Orientation Analysis 
As stated in the previous section, some trees demonstrated low NDVI values, and are misclassified as 
buildings using NDVI. An example is given in Fig. 2. Consequently, the method in Awrangjeb et al. (2010) 
produced a large number of false detection in the building candidates as shown in Fig. 2(a). 
 

           
(a)                                     (b) 

Fig. 2 A complex scene with dense trees in hilly terrain. (a) Detected building candidates using NDVI with a 
large number of false detections. (b) Detected buildings after removing false positives using edge orientation 
information. 
 
Such errors can be avoided by exploiting object geometric properties. Tree canopies do not pose regular 
geometry as buildings. For instance, buildings usually have long and straight edges that are parallel to or 
perpendicular to each other. On the other hand, tree edges are short, and their orientations are not arranged, 
demonstrating random distribution. We explored the edge orientation information to identify the trees which 
are misclassified as buildings using NDVI. This method was also used to confirm and validate the detected 
buildings.  
 
With the detected candidate buildings using NDVI and entropy, a gradient histogram was formed using the 
edge points within each candidate building rectangle. Edges were first extracted from the image using an 
edge detector. Each edge Г(t)=(x(t),y(t)) of length n, where t is an arbitrary parameter and 1 ≤ t ≤ n, was 
smoothed by a Gaussian function gσ with scale sigma σ: 
 
    xσ (t) = x(t)*gσ and yσ (t) = y(t)*gσ 
 
where * denotes convolution. Then, the first order derivatives x’σ (t) and y’σ (t) were calculated on the 
smoothed curve Г (t)=(xσ (t),yσ (t)), and the gradient orientation can be estimated as  
 
    Δ Г(t)= arctan(y’σ (t)/ x’σ (t)) 
 
Δ Г(t) at each point will lie within the range of [-90º, +90º]. A histogram with a successive bin distance of 5º 
was then formed using the gradient orientation values of all edge points lying inside the candidate rectangle. 



 
 

 
 

For buildings, one or more significant peaks should be observed in the gradient orientation histogram, since 
edges detected on building roofs were formed from straight line segments. All points on an apparent straight 
line segment will have a similar gradient orientation value and hence will be assigned to the same histogram 
bin, resulting in a significant peak. A significant peak means the corresponding bin height is well above the 
mean bin height of the histogram. Moreover, peaks separated by 90º correspond to perpendicular roof edges 
on buildings. 
 
Fig. 3 illustrates three gradient orientation histogram functions and mean bin heights for candidate buildings 
B1, B2 and B3 in Fig. 2(a). Fig. 3(a) shows that B1 has two significant peaks: 80 pixels at 0º and 117 (55+62) 
pixels at 90º, these being well above the mean height of 28.6 pixels. The two significant peaks separated by 
90º strongly suggest that this is a building. From Fig. 3(b) it can be seen that B2 has one significant peak at 
90º but a number of insignificant peaks. This points to B2 being partly building but mostly vegetation, which 
is also supported by the high mean height value. With the absence of any significant peak, but a number of 
insignificant peaks close to the mean height, Fig. 3(c) indicates that B3 is comprised of vegetation. Although 
there may be some significant peaks in heavily vegetated areas, a high average height of bins between two 
significant peaks can be expected. Note that the image resolution in this case was 10cm, so a bin height of 
80 pixels indicates a total length of 8m from the contributing edges. 
 

 
 

Fig. 3. Gradient orientation histogram functions and mean bin height for rectangles (a) B1, (b) B2 and (c) B3 
in Fig. 1 (a). The unit of horizontal axis is degree and the unit of vertical axis is pixel. 
 
The observations above support the theoretical inferences. In practice, however, detected vegetation clusters 
may show the edge characteristics of a building, and a small building occluded by trees may not have 
sufficient edges to show the required peak properties. To overcome these problems, a set of rules was 
applied. If a detected rectangle passes at least one of the following tests it is selected as a building, otherwise 
it is treated as a tree. 
 
Test 1: H has at least two peaks with heights of at least 3Lmin (Lmin is the minimum building length or width, 
set to 3m in our work) and the average height of bins between those peaks is less than Lmin. This test ensures 
the selection of a large building, where at least two of its long perpendicular sides are detected. It also 
removes vegetation where the average height of bins between peaks is high. 
 
Test 2: The highest bin in H is at least 3Lmin in height and the aggregated height of all bins in H is at most 
90m. This test ensures the selection of a large building where at least one of its long sides is detected. It also 
removes trees where the aggregated height of all bins is high. 
 
Test 3: H has at least two peaks with heights of at least 2Lmin, and the highest bin to mean height ratio is at 
least 3. This test ensures the selection of a medium size building, where at least two of its perpendicular 
sides are detected. It also removes vegetation where the highest bin to mean height ratio is low. 
 
Test 4: The highest bin in H has a height of at least Lmin and the highest bin to mean height ratio is at least 4. 
This test ensures the selection of a small or medium size building where at least one of its sides is at least 



 
 

 
 

partially detected. It also removes small to moderate sized vegetation areas where the highest bin to mean 
height ratio is low. 
 
The application of these tests on the complex scene in Fig. 2(a) produced the results in Fig. 2(b). Note that 
this rule-based procedure using edge orientation effectively removed the false candidates, and buildings 
were correctly detected. 
 
Experiments 
 
The developed approaches have been tested with different datasets over varying terrain types. The test sites 
include three suburban areas in Australia, Fairfield in New South Wales, Moonee Ponds and Knox in 
Victoria. There are 370 buildings, 250 buildings, and 130 buildings in Fairfield, Moonee Ponds and Knox 
datasets, respectively. Fairfield contains many large industrial buildings and in Moonee Ponds the roofs of 
some buildings appear green in the images. Knox can be characterized as an outer suburban with lower 
housing density and extensive tree coverage that partially occluded buildings. In terms of topography, 
Fairfield and Moonee Ponds are relatively flat while Knox is quite hilly. Lidar coverage comprised of last-
pulse returns with a point spacing of 0.5m for Fairfield, and first-pulse returns with a point spacing of 1m for 
Moonee Ponds and Knox. For Fairfield and Knox, RGB color orthoimagery was available, with resolutions 
of 0.15m and 0.1m, respectively. Moonee Ponds image data comprised RGBI color orthoimagery with a 
resolution of 0.1m. Bare-earth DEMs of 1m horizontal resolution covered all three areas, and were used to 
generate orthoimagery. Therefore, the building roofs and the tree-tops were displaced with respect to the 
Lidar data, and thus, data alignment was not perfect. 
 
The results were evaluated using manually collected reference data which were created by monoscopic 
image measurements. All rectangular structures, recognizable as buildings were digitized. The reference 
data included garden sheds, garages, etc. These were sometimes as small as 10m2 in the areas. For 
performance assessment, completeness and correctness measures (Awrangjeb et al., 2010) were employed. 
 
Table 1 shows performance evaluation of the results obtained for the three datasets with our approach. 
Visual illustrations of the detection results are shown in Fig 4. Compared with the results derived from the 
algorithms proposed in Awrangjeb et al. (2010), our approach produced a moderately better performance 
within both Fairfield and Moonee Ponds. The better performance was mainly due to proper detection of 
large industrial buildings in Fairfield, detection of some green buildings using image texture in Moonee 
Ponds, and elimination of trees with edge orientation in both Fairfield and Moonee Ponds. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
 

 
 

 

Table 1. Performance evaluation. 
 Fairfield Moonee Ponds Knox Average 
Completeness (%) 95.1 94.5 93.2 94.0 
Correctness (%) 95.4 95.3 87.2 91.3 

 

 

      
    (a)                                                  (b) 

    
                                   (c) 

Fig. 4. Separation of trees and buildings for building detection in (a) Fairfield, (b) Moonee Ponds and (c) 
Knox. In (c), the detected buildings by Awrangjeb et al. (2010) on two samples are shown on the left for 
comparison, while the detected buildings with the methods described here are presented on the right. 
 
In Knox, our approach also performed very well even if the scene is very complex with hilly terrain and 
dense tall trees which significantly occluded buildings. For comparison, the scene images were also 
processed with the methods described in Awrangjeb et al. (2010) with the results shown on the right of Fig. 
4(c). It can be observed that significant improvement has been achieved. Awrangjeb’s method generated a 
large number of false detections in Knox, and some buildings were not detected, as illustrated in the left of 



 
 

 
 

Fig. 4(c). Consequently, only 77% completeness and 67%correctness were observed. This is because the 
method is not very effective in differentiating buildings and trees, particularly when the imagery lacks near 
infrared information and a pseudo-NDVI (Rottensteiner et al., 2007) was used. In contrast, as shown for 
Knox on the right of Fig. 4(c), our approach picked up the buildings and removed a large number of false 
positives using its gradient orientation histogram, significantly improving the results. The completeness and 
correctness increased to over 93% and 87%, respectively. In general, our approach offered (on average, 
across the three datasets) a more than 10% increase in completeness and correctness.  
 
Conclusions 
 
This paper presented a new approach to efficiently separate buildings and trees for improved building 
detection. Lidar data were firstly employed to remove low vegetation and detect above trees and buildings. 
Trees and buildings were then initially differentiated with NDVI. New approaches were proposed to avoid 
omission and commission errors. Firstly, texture analysis with image entropy further identified buildings. 
Trees, which were misclassified as buildings, were detected with rule-based approach using edge orientation 
histogram information. These methods significantly improved the success rate of the building detection as 
demonstrated in the test data with varying terrains and land covers. Compared with other methods, the 
proposed approaches achieved more than 10% increase in completeness and correctness. In particular, our 
method proved to be very effective in densely vegetated areas which are a challenge in most building 
detection methods. 
 
It is acknowledged that there will be situations in which the developed algorithm may fail. For example, 
textured green roofs may not be distinguished from trees using the entropy information. In addition, trees 
with shadows and self-occlusions display very low entropy values, and thus may be misclassified as 
buildings using entropy information. While such error might be avoided with edge orientation histogram, the 
parameter must be carefully set in the rule-based procedure. Our current research focuses upon resolving 
these problems as well as upon the 3D reconstruction of complex building roofs. 
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