
Cuneiform

A Functional Language for Large Scale Scientific Data Analysis

Jörgen Brandt Marc Bux Ulf Leser

Humboldt-Universität zu Berlin
Unter den Linden 6, D-10099 Berlin, Germany
{brandjoe, bux, leser}@informatik.hu-berlin.de

ABSTRACT
The need to analyze massive scientific data sets on the one
hand and the availability of distributed compute resources
with an increasing number of CPU cores on the other hand
have promoted the development of a variety of languages
and systems for parallel, distributed data analysis. Among
them are data-parallel query languages such as Pig Latin or
Spark as well as scientific workflow languages such as Swift
or Pegasus DAX. While data-parallel query languages focus
on the exploitation of data parallelism, scientific workflow
languages focus on the integration of external tools and li-
braries. However, a language that combines easy integration
of arbitrary tools, treated as black boxes, with the ability to
fully exploit data parallelism does not exist yet. Here, we
present Cuneiform, a novel language for large-scale scien-
tific data analysis. We highlight its functionality with re-
spect to a set of desirable features for such languages, in-
troduce its syntax and semantics by example, and show its
flexibility and conciseness with use cases, including a com-
plex real-life workflow from the area of genome research.
Cuneiform scripts are executed dynamically on the work-
flow execution platform Hi-WAY which is based on Hadoop
YARN. The language Cuneiform, including tool support for
programming, workflow visualization, debugging, logging,
and provenance-tracing, and the parallel execution engine
Hi-WAY are fully implemented.

1. INTRODUCTION
Over the recent years, data sets in typical scientific (and
commercial) areas have grown tremendeously. Also, the
complexity of analysis procedures has increased at es-
sentially the same pace. For instance, in the field of
bioinformatics the cost and speed at which data can
be produced is improving steadily [3, 18, 35]. This
makes possible entirely novel forms of scientific discov-
eries which require ever more complex analysis pipelines

c©2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org <http://ceur-ws.org/> (ISSN 1613-0073).
Distribution of this paper is permitted under the terms of the Creative Com-
mons license CC-by-nc-nd 4.0

(e.g., personalized medicine, meta-genomics, genetics at
population scale) developed by tens of thousands of sci-
entists around the world. Analysis infrastructures have
to keep up with this development. In particular, they
must be able to scale to very large data sets, and they
must be extremely flexible in terms of integrating and
combining existing tools. Scientific workflow manage-
ment systems have been proposed to deal with the lat-
ter problem [12]. Scientific workflows are descriptions
of data processing steps and the flow of information
between them [10]. Most scientific workflow langua-
ges like Galaxy [17] or Taverna [21] allow the user to
create light-weight wrappers around existing tools and
libraries. In doing so, they avoid the necessity of reim-
plementing these tools to conform with the API of the
execution environment. However, many scientific work-
flow systems do not take advantage of splitting input
data into partitions to exploit data parallelism which
limits their scalability. In contrast, partitioning input
data to achieve data parallelism is a main advantage
of the execution environments underlying data-parallel
query languages like Pig Latin [16, 33] or Spark [45],
thus, addressing the former issue. However, these are
not designed to make native integration of external tools
easy. Instead, they require developers to create heavy
wrappers around existing tools as well as to perform
costly conversion of data from their native formats to
the system-specific data model, or they expect develop-
ers to reimplement all algorithms in their specific data-
parallel languages. While creating wrappers is labori-
ous, error-prone, and incurs runtime penalties, reim-
plementation is infeasible in areas like genomics where
new algorithms, new data types, and new applications
emerge essentially every day.

To the best of our knowledge, a language for large-
scale scientific computing that offers both light-weight
wrapping of foreign tools and high-level data-parallel
structures currently does not exist. Here, we present
Cuneiform, a language that aims at filling this gap. Cu-
neiform is a universal functional workflow language of-
fering all important features currently required in scien-

mailto:brandjoe@informatik.hu-berlin.de
mailto:bux@informatik.hu-berlin.de
mailto:leser@informatik.hu-berlin.de

tific analysis like abstractions and a dynamic execution
model in a language with implicit state. Its main focus,
however, is (i) the ease with which external tools writ-
ten in any language can be integrated, and (ii) the sup-
port for a rich set of algorithmic skeletons (or second-
order functions) enabling automatic parallelization of
execution. Cuneiform is fully implemented and comes
with decent tool support, including executable prove-
nance traces, visualization of conceptual and physical
workflow plans, and debugging facilities. Cuneiform
workflows can be executed on the workflow execution
engine Hi-WAY which builds on Hadoop YARN. To-
gether, Cuneiform and Hi-WAY form a fully functional,
scalable, and easily extensible scientific workflow sys-
tem.

The remaining parts of this paper are structured in
the following way: Section 2 introduces characteristics
of workflow languages important for scientific analysis
that drove the design of Cuneiform. We introduce Cu-
neiform by example in Section 3. In Section 4 we explain
the implementation of two exemplary workflows in Cu-
neiform to highlight its versatility and expressive power.
Hi-WAY is briefly introduced in Section 5.1 Related
work is presented in Section 6, and Section 7 concludes
the paper.

2. LANGUAGE CHARACTERIZATION
In this section we outline the language properties that
we consider important for parallel scientific analysis and
that drove the design of Cuneiform. We categorize dif-
ferent types of languages and discuss important lan-
guage features.

First, we can distinguish languages with implicit state
and explicit state [36]. Implicit state languages do not
have mutable memory. Purely functional languages like
Haskell or Miranda have implicit state. In these lan-
guages variables are only place-holders for immutable
expressions. In contrast, imperative languages like C or
Java and multi-paradigm languages like Scala or Lisp
have explicit state. In these languages variables can
change their values throughout the execution of a pro-
gram.

Scientific workflow languages are typically implicit
state languages while Spark [44, 45], FlumeJava [7], or
DryadLINQ [14, 43] inherit explicit state from their re-
spective host languages. There are arguments promot-
ing either of both approaches: Implicit state languages
profit from their ability to fully exploit task parallelism
because the order of tasks is constrained only by data
dependencies [6].2 Explicit state is preferable if func-
1Note that the focus of this paper is on Cuneiform, while a
complete description of Hi-WAY will be published elsewhere.
2Taverna is an exception as it introduces control links to
explicitly constrain the task execution order in addition to
data dependencies.

tions need to learn from the past and change their be-
havior [36]. However, the introduction of explicit state
incurs additional constraints on the task execution or-
der, thereby, limiting the ability to automatically infer
parallelism.

In the following we outline the requirements towards
a scalable workflow specification language. By focusing
on this specific set of requirements, we define the scope
for the discussion of Cuneiform and for the compari-
son of different languages. This list of requirements is,
however, not comprehensive.

Abstractions In the Functional Programming (FP)
paradigm the term abstraction refers to an expres-
sion that binds one (or more) free variables in its
body. When a value is applied to the expression,
the first bound variable is replaced with the ap-
plied value. In scientific workflows, abstractions
are referred to as subworkflows where the subwork-
flow’s input ports represent the bound variables.
While abstractions are common in functional lan-
guages for distributed computation (like Eden [5,
26]) or distributed multi-paradigm languages (like
Spark), some scientific workflow languages do not
allow for the definition of abstractions in the form
of subworkflows, e.g., Galaxy [17]. Other scientific
workflow languages like Pegasus DAX [13], KN-
IME [4], Swift, or Taverna do provide subwork-
flows. Pig Latin [16, 33] introduces abstractions
through its macro definition feature. Since ab-
stractions facilitate the reuse of reoccurring pat-
terns, they are an important feature of any high-
level programming model.

Conditionals A conditional is a control structure that
evaluates to its then-branch only if a condition
is true and otherwise evaluates to its else-branch.
Like abstractions, conditionals are common in func-
tional and multi-paradigm languages. Many sci-
entific workflow languages provide conditionals as
top-level language elements [2], e.g., KNIME, Tav-
erna, or Swift. However, in some other scientific
workflow languages they are omitted, e.g., Galaxy
or Pegasus DAX. Also, Pig Latin comes without
conditionals that would allow for alternate exe-
cution plans depending on a boolean condition.
Spark, on the other hand, inherits its conditionals
from Scala. Conditionals are important when a
workflow has to follow a different execution path
depending on a computational result that cannot
be anticipated a priori. For instance, consider a
scenario where two algorithms can be employed to
solve a problem. One algorithm performs compa-
rably better on noisy input data, while the other
performs better on clean data. If assessing the
quality of the data is part of the workflow then

the decision what algorithm to use has to be made
at execution time. Another example is the appli-
cation of an iterative learning algorithm. If the
exit condition of the algorithm is determined by
some convergence criterion, the number of itera-
tions cannot be anticipated a priori. This way,
conditionals introduce uncertainty in the concrete
workflow structure making it impossible to infer
a workflow’s invocation graph prior to execution.
Nevertheless, conditionals are an important lan-
guage feature.

Composite data types Composite data types are da-
ta structures composed of atomic data items. Lists,
sets, or bags are composite data types. In many
cases, languages with support for composite data
types also provide algorithmic skeletons (see be-
low) to process them, e.g., map, reduce, or cross
product. Swift, KNIME, and Taverna are scien-
tific workflow languages with support for compos-
ite data types. Other scientific workflow langua-
ges, like Galaxy or Pegasus DAX, support only
atomic data types. Data-parallel query languages,
like Spark or Pig Latin, however, provide exten-
sive support for composite data types. Note that
composite data types, like conditionals, introduce
uncertainty in the concrete workflow structure be-
fore its actual execution. For instance, if a task
outputs a list with an unknown size and each list
item is consumed by a proper subsequent task, the
number of such tasks is unknown prior to execu-
tion. This calls for a dynamic, adaptive approach
to task scheduling. Using composite data types is
a powerful and elegant way to specify data-parallel
programs.

Algorithmic skeletons Algorithmic skeletons are sec-
ond order functions that represent common pro-
gramming patterns. From the perspective of im-
perative languages, they can be seen as templates
that outline the coarse structure of a computa-
tion [8]. To exploit the capabilities of parallel, dis-
tributed execution environments, a language can
emphasize parallelizable algorithmic skeletons and
de-emphasize structures that could impose unnec-
essary constraints on the task execution order. For
instance, expressing the application of a function
to each element of a list as a for-loop with an exit
condition dismisses the parallel character of the
operation. Expressing the exact same operation
as a map, on the other hand, retains the paral-
lelism of the operation in its language represen-
tation. Some scientific workflow languages, like
Pegasus DAX or Galaxy, do not provide any algo-
rithmic skeletons. In contrast, Taverna, Swift, or
KNIME provide algorithmic skeletons in various

forms. For instance, Taverna implicitly iterates
lists if an unary task is applied to a list. Moreover,
Taverna provides cross- and dot product skeletons.
Swift provides the foreach and iterate-until skele-
tons. Algorithmic skeletons are particularly im-
portant in Scala. Thus, Spark exposes a number of
algorithmic skeletons to control distributed com-
putation [44]. Pig Latin uses algorithmic skele-
tons based on the SQL model of execution. Like
general abstractions, algorithmic skeletons facili-
tate the reuse of reoccurring algorithmic patterns.
Such patterns commonly appear in scientific data
analysis applications.

Foreign Function Interface (FFI) An FFI allows a
program to call routines written in a language other
than the host language. Many programming lan-
guages provide an FFI with the goal of accelerating
common subroutines by interfacing with machine-
oriented languages like C. Scientific workflow lan-
guages provide FFIs in the form of simple wrap-
pers for external tools. For instance, Swift and
Pegasus DAX allow language users to integrate
Bash scripts. Taverna provides Beanshell and R
services, and KNIME provides snippet-nodes for
Java, R, Perl, Python, Groovy, and Matlab. These
FFIs do not have the purpose to accelerate rou-
tines but to integrate existing tools and libraries
with minimum effort. In Pig Latin or Meteor [19],
User Defined Functions (UDFs) are provided in the
form of Java libraries which need to be wrapped
by an extra layer of code providing particular data
transformations from the tools native file formats
to the system’s data model and back. Similar
wrappers have to be implemented to use foreign
tools in Spark. The FFI is the language feature
that makes integration of external tools and li-
braries easy. It is the entry point for any piece
of software that has not been written in the host
language itself. A general and light-weight FFI
enables researchers to reuse their tools in a data-
parallel fashion without further adaptation or the
additional layer of complexity of a custom wrap-
per.

Universality Universal languages can express any com-
putable function. Most general purpose program-
ming languages are universal. Scientific workflow
languages including Swift, Galaxy, Taverna, and
Pegasus DAX are not universal. Additionally, some
data-parallel query languages like Pig Latin are
not universal. In contrast, Skywriting is an exam-
ple for a universal language for distributed compu-
tation [28]. Spark inherits the universality prop-
erty from Scala. Similarly, FlumeJava and Dryad-
LINQ inherit the universality property from their

respective host languages Java and C#. We do not
consider universality a requirement for a workflow
specification language. Nonetheless, it is a lan-
guage property worth investigating.

3. CUNEIFORM
In this section we present Cuneiform. We show that
it is simple to express data-parallel structures and to
integrate external tools in Cuneiform. Furthermore, we
demonstrate fundamental language features by example
and discuss how Cuneiform workflows are evaluated and
mapped to distributed compute resources for scheduling
and execution.

Cuneiform is a Functional Programming (FP) lan-
guage with implicit state. Cuneiform has in common
with scientific workflow languages its light-weight, ver-
satile FFI allowing users to directly use external tools or
libraries from scripting languages including Lisp, Mat-
lab, Octave, Perl, Python, and R. In principle, Cunei-
form can interface with any programming language that
has support a string and list data type. Cuneiform has
in common with data-parallel query languages that it
provides facilities to exploit data parallelism in the form
of composite data types and algorithmic skeletons to
process them. Cuneiform comes in the form of a uni-
versal FP language providing abstractions and condi-
tionals.

In the following, we introduce important concepts of
Cuneiform by example. We highlight the interplay of
Cuneiform’s features using more complex workflows in
Section 4, while Section 5 briefly sketches the Hi-WAY
execution environment.

3.1 Task definition and Foreign Function In-
terface

The deftask statement lets users define Cuneiform tasks,
which are the same as functions in FP languages. It
expects a task name and a prototype declaring the in-
put/output variables a task invocation consumes/pro-
duces. A task definition can be either in Cuneiform or
in any of the supported foreign scripting languages. In
the following example we define a task greet in Bash
which consumes an input variable person and produces
an output variable out.

deftask greet(out : person)in bash *{
 out="Hello $person"
}*

The task defined in this listing can be applied by bind-
ing the parameter person to a value. In this example
we bind it to the string “Peter”.

greet(person: 'Peter');

The value of this expression is the string “Hello Peter”.
Cuneiform assumes foreign tasks to be side effect-free.

I.e., the result of a task should be deterministic and
depend only on the value of its arguments. However
Cuneiform has no way of enforcing this behavior.

3.2 Lists
Cuneiform has one built-in composite data type: the
list. There is no atomic data type. In the following
example, we define a variable friends to be a list of two
strings being “Jutta” and “Peter”.

friends = 'Jutta' 'Peter';
greet(person: friends);

Applying the function greet to this list, evaluates to a
list with two string elements: “Hello Jutta” and “Hello
Peter”. Thus, the standard way of applying a task to a
single parameter, is to map this task to all elements in
the list.

To consume a list as a whole, we have to aggregate
the list. We can mark a parameter as aggregate by sur-
rounding it with angle brackets. The following listing
defines the task cat that takes a list of files and con-
catenates them.

deftask cat
 (out(File) : <inp(File)>)in bash *{
 cat ${inp[@]} > $out
}*

When a list is aggregated in a foreign task call, Cu-
neiform has to hand over this list as a whole. Thus,
Cuneiform loses control over the way data parallelism
is exploited in processing this list. Furthermore, the in-
terpreter has to defer the aggregating task unless the
whole list has been computed.

3.3 Parallel algorithmic skeletons
Cuneiform provides three basic algorithmic skeletons:
aggregate, n-ary cross product, and n-ary dot product.
A map can be viewed as any unary product. These ba-
sic skeletons are the building blocks to form arbitrarily
complex skeletons. If a task has multiple parameters,
the standard behaviour is to apply the function to the
cross product of all parameters.

Suppose there is a command line tool sim that takes
a temperature in ◦C and a pH value, performs some
simulation, and outputs the result in the specified file.
We could wrap and call this tool in the following way:

deftask simulate
 (out(File) : temp ph)in bash *{
 sim -o $out -t $temp -p $ph
}*

temp = -5 0 5 10 15 20 25 30;
ph = 5 6 7 8 9;

simulate(temp: temp ph: ph);

This script performs a parameter sweep from −5 to
30◦C and from pH value 5 to 9. Herein, each of the
8 temperature values is paired with each of the 5 pH
values resulting in 40 invocations of the sim tool. How
multiple lists are combined is generally determined by
the prototype of a task. The cross product is the default
algorithmic skeleton to combine task parameters.

Lastly, suppose we are given two equally long lists of
strings. We want to concatenate each string from the
first list with each string from the second list separated
by a white space character. A dot product between two
or more parameters is denoted in the task prototype by
surrounding them with square brackets. We choose to
perform the string concatenation in Python.

deftask join(c : [a b])in python *{
c = a+' '+b
}*

In the following listing we define the variables a and b
to be a pair of two-element lists and call the previously
defined task join on them. The result of this operation
is a two-element list with the members "Hello world"
and "Goodnight moon".

a = 'Hello' 'Goodnight';
b = 'world' 'moon';

join(a: a b: b);

3.4 Execution semantics
Cuneiform workflow scripts are parsed and transformed
into a graph representation prior to interpretation. Vari-
ables are associated not with concrete values but with
uninterpreted expressions thereby constituting a call-
by-name evaluation strategy. Consequently, an expres-
sion is evaluated only if that expression is actually used
(lazy evaluation). This ensures, not only, that all com-
putation actually contributes to the result, but also,
since evaluation is deferred to the latest possible mo-
ment, that parallelization is performed on the level of
the whole workflow rather than the level of only subex-
pressions. Furthermore, instead of traversing the work-
flow graph during execution, Cuneiform performs work-
flow graph reduction. This means that subexpressions
in the workflow graph are continuously replaced with
what they evaluate until the result of the computation
remains. Accordingly, workflow execution is dynamic,
i.e., the order in which which tasks are evaluated is
determined only at runtime, a model which naturally
supports data dependent loops and conditions. This as-
pect discerns Cuneiform from many other systems that
require a fixed execution graph to be compiled from
the workflow specification. Herein, Cuneiform resem-
bles Functional Programming language interpretation.

When an expression involves external software, a ticket

groupby

wc

untar

'corpus.tar'
untar

groupby

wc

Figure 1: Static call graph (left) and invocation
graph (right) for canonical word count with a
corpus of 2 text files.

is created and passed to the execution environment. Ex-
pressions depending on that ticket are deferred while
other expressions continue to be evaluated. A ticket,
encapsulating a concrete task on a concrete input, thus,
is the basic computational unit in Cuneiform. For any
given point in time, the set of available tickets may be
evaluated in any order. This order has to be detem-
ined by the scheduler of the runtime environment, tak-
ing into account the currently available resources. Each
time the execution environment finishes evaluation of
a ticket, the result is reported back to the Cuneiform
interpreter which then continues reduction of the re-
spective expression. When there are no more tickets to
evaluate and the expression cannot be further reduced,
execution stops and the workflow result is returned.

4. WORKFLOW EXAMPLES
In this section we present two example workflows in Cu-
neiform. The first, a canonical word count example, is
chosen for its simplicity and comparability with other
programming models (e.g., MapReduce [11]). The sec-
ond workflow performs variant calling on Next-Genera-
tion Sequencing data [34].

4.1 Canonical word count
The canoncical word count workflow consumes a corpus
of text files and, for each file, counts the occurrences of
words. It outputs a table that sums up the occurrences
of words in all files. The workflow consists of two steps.
In the first step, words are counted individually in each
file. In a second step, the occurrence tables are ag-
gregated by summing up the corresponding occurrence
counts. Figure 1 displays (a) the static call graph auto-
matically derived from the workflow script and (b) the
invocation graph that unfolds during workflow execu-

tion. Herein, the static call graph is a visualization
that takes into account only the unevaluated workflow
script. In contrast, the invocation graph is derived from
the workflow execution trace. Each yellow line in the
invocation graph stands for a single data item. Each
blue line stands for a task invocation. A task invoca-
tion depends only on its predecessors connected to it
via directed edges.

To specify the word count workflow we express both
tasks separately as R scripts. First, we use R’s table
function to extract word counts from a string:

deftask wc(csv(File) : txt(File))in r *{
 dtm <- table(scan(txt, what='character'))
 df <- as.data.frame(dtm)
 write.table(df, csv, col.names=FALSE,
 row.names=FALSE)
}*

Next, we use the function rbind to concatenate the list
of tables, generated in the previous step and aggregate
the resulting table using ddply which is part of the R
library plyer.

deftask groupby
 (result(File) : <csv(File)>)in r *{

 library(plyr)
 all <- NULL
 for(i in csv)
 all <- rbind(all,
 read.table(i, header=FALSE))
 x <- ddply(all, .(V1), summarize,
 count=sum(V2))
 write.table(x, result, col.names=FALSE,
 row.names=FALSE)
}*

To extract all files in an archive holding the text corpus
to be analyzed we use the following task definition:

deftask untar
 (<list(File)> : tar(File))in bash *{
 tar xf $tar
 list=`tar tf $tar`
}*

The workflow definition calls the tasks untar, wc, and
groupby in order. Finally, we query the workflow result:

txt = untar(tar: 'corpus.tar');
csv = wc(txt: txt);
result = groupby(csv: csv);
result;

Called this way, wc is invoked once for each file. Each
invocation is processed in parallel by Hi-WAY. In con-
trast, the tasks groupby and untar each have a single
invocation.

Note that the two tasks, wc and groupby, implement a
complete word count, including file I/O, parsing, dictio-

annovar

varscan

samtools-mpileup

samtools-sort

samtools-view

bowtie2-align

gunzip

'..' '..'

gunzip

'..' '..'

bowtie2-build

untar

samtools-faidx

'hg38/hg38.tar'

'annodb/hg38db.tar' 'hg38'

Figure 2: Static call graph for variant calling
workflow

nary management, and two-phase counting. No other
tools are needed. Furthermore, we are free to choose
the programming language. For instance, in a differ-
ent implementation we might use Perl libraries or the
command line tool awk.

4.2 NGS variant calling
The second workflow demonstrates how variant calling
in the application domain of Next-Generation Sequenc-
ing (NGS) can be performed in Cuneiform. In this
workflow, a set of DNA sequence read files in FastQ
format is mapped against a reference genome. Subse-
quently, the alignments are sorted, a multiple pileup
is performed, and variants are called and annotated.
As typical for scientific analysis pipelines, all steps are
performed by external command line tools [34]. Fig-
ure 2 shows the static call graph and Figure 3 shows
the invocation graph for this workflow. In the following
discussion we omit all foreign task definitions.3

The input to the workflow is a reference genome, a
set of sample files, as well as an annotation database.
The workflow calls two nested subworkflows per-sample
and per-chromosome which reflect the data paralleliza-
tion scheme. Up to this point, we defined only variable
assignments which would not trigger any computation.
Thus, we need to query the variables fun and exonicfun
to define the workflow output.

3The full workflow can be downloaded from https://
github.com/joergen7/cuneiform/blob/master/cuneiform-
dist/src/main/cuneiform/variant-call11.cf

https://github.com/joergen7/cuneiform/blob/master/cuneiform-dist/src/main/cuneiform/variant-call11.cf
https://github.com/joergen7/cuneiform/blob/master/cuneiform-dist/src/main/cuneiform/variant-call11.cf
https://github.com/joergen7/cuneiform/blob/master/cuneiform-dist/src/main/cuneiform/variant-call11.cf

hg38-tar = 'hg38/hg38.tar';

fastq1-gz =
 '1000genomes/SRR062634_1.filt.fastq.gz'
 '1000genomes/SRR062635_1.filt.fastq.gz';
fastq2-gz =
 '1000genomes/SRR062634_2.filt.fastq.gz'
 '1000genomes/SRR062635_2.filt.fastq.gz';

db = 'annodb/hg38db.tar';

deftask per-chromosome(
 vcf(File)
 : fa(File)
 [fastq1(File) fastq2(File)]) {

 bt2idx = bowtie2-build(fa: fa);
 fai = samtools-faidx(fa: fa);

 sam = bowtie2-align(
 idx: bt2idx
 fastq1: fastq1
 fastq2: fastq2);

 bam = samtools-view(sam: sam);

 sortedbam = samtools-sort(bam: bam);

 mpileup = samtools-mpileup(
 sortedbam: sortedbam
 fa: fa
 fai: fai);

 vcf = varscan(mpileup: mpileup);
}

deftask per-sample(
 fun exonicfun
 : <fa(File)> db(File)
 [fastq1(File) fastq2(File)]) {

 vcf = per-chromosome(
 fa: fa
 fastq1: fastq1
 fastq2: fastq2);

 fun exonicfun = annovar(
 vcf: vcf
 db: db
 buildver: 'hg38');
}

In this workflow parallelism is exploited along two di-
mensions: (i) Each self-contained region in the refer-
ence genome can be processed individually and (ii) each
sample can be processed individually. Consequently,
the workflow interpreter performs a cross-product of ref-
erence regions and samples. This leads to a high degree
of parallelism not only for read alignment, which is the
computationally most expensive task, but also for all
subsequent tasks. The cross product behavior needs no

fa = untar(tar: hg38-tar);
fastq1 = gunzip(gz: fastq1-gz);
fastq2 = gunzip(gz: fastq2-gz);

fun exonicfun = per-sample(
 fa: fa
 fastq1: fastq1
 fastq2: fastq2
 db: db);
fun exonicfun;

Figure 3: Invocation graph for variant calling
workflow

extra denotation in the task prototypes since it is the
default behavior. Thus, we can exploit data parallelism
in variant calling to execute the workflow in a parallel,
distributed compute environment while reusing estab-
lished tools.

5. EXECUTION PLATFORM
In this section we describe Hi-WAY, an execution en-
vironment for Cuneiform workflows. Cuneiform, as a
workflow specification language, depends on an execu-
tion environment that executes tasks in parallel. To
this end, the Cuneiform interpreter can either execute a
script on a single, multi-threaded machine (using a sim-
ple built-in greedy task scheduler) or feed a distributed
workflow engine. Currently, it interfaces only with Hi-
WAY, a novel scientific workflow management system
running on top of Apache Hadoop. Hi-WAY offers fea-
tures like adaptive scheduling and, this way, embraces
the dynamic nature of Cuneiform workflows. By us-
ing Hi-WAY as its distributed execution environment,
Cuneiform takes advantage of the Hadoop ecosystem,
including the distributed file system HDFS, multi-user
resource management, job monitoring, and failure re-
covery. Details on Hi-WAY will be published in a sep-
arate publication.

As a proof-of-concept, the variant calling workflow
described in Section 4.2 has been executed using Cu-
neiform and Hi-WAY on a Hadoop YARN cluster com-
prising 24 Xeon E52620 2GHz nodes each representing
one Hadoop YARN container with 24GB main mem-
ory and 24 logical cores at its disposal (as well as 2
additional master nodes). 12 Samples from the 1000

Figure 4: Workflow runtime with increasing
number of containers

genomes project [38] amounting to 10GB of compressed
input data have been processed. Figure 4 shows the
runtime behaviour for the variant calling workflow for
different cluster sizes. Within the limits of this experi-
ment the workflow shows a linear scaling behaviour with
an increasing number of available containers.

6. RELATED WORK
A number of scientific workflow systems have emerged,
some with a particular focus on large scale data analy-
sis. The exponential growth of data sets in many scien-
tific areas, such as Next-Generation Sequencing (NGS),
promotes scientific workflow systems that run in par-
allel and distributed environments, like e-Science Cen-
tral [20], Pegasus [13], or Swift [42]. Some scientific
workflow systems have been extended to this end, e.g.,
Kepler [41] or Galaxy [17]. These systems, however,
either do not take full advantage of partitioning input
data to exploit data parallelism or their integration with
data-parallel compute platforms is only partial.

The advent of data-parallel query languages enabled
researchers to exploit parallel, distributed compute in-
frastructures to analyze large-scale data sets. A num-
ber of dataflow systems with their according query lan-
guages have been proposed, most notably Pig [16, 33],
FlumeJava [7], Flink [1], DryadLINQ [14, 43], and Spark
[44, 45]. Their aptitude for NGS problems has been as-
sessed [46] and they are the underlying execution envi-
ronments for a number of emerging workflow systems
like Nova [32] or Oozie [22]. However, the integration
of external tools in these systems can be achieved only
through wrapping or reimplementing the external tools.
The speed-up potential from data parallelism has been
exploited in many scientific application domains and
particularly in NGS: CloudBurst [37] is a read align-

ment implementation for Hadoop. Crossbow [25] wraps
the read aligner Bowtie [24] to run on Hadoop. Both
Adam [27], an alignment processor, and Avocado [30],
a variant caller, are algorithm reimplementations for
Spark. The BioPig [29] project extends Pig Latin by
providing User Defined Functions (UDFs) that wrap
tools commonly used in NGS data analysis. These ap-
proaches show that it is feasible to integrate diverse sci-
entific algorithms in data-parallel programming models
either through wrapping or reimplementing. However,
in use cases in which the cost for tool reimplementation
is prohibitive (and in which the scientific community is
very reluctant to accept algorithm reimplementations
from outside their domain), the optimal programming
model is one that minimizes the effort to create wrap-
pers for existing tools.

Scientific workflow systems and data-parallel query
languages are linked to Functional Programming (FP).
Pig Latin maps execution plans to MapReduce, a pro-
gramming model inspired by the algorithmic skeletons
map and reduce which originate from FP [11, 15]. Spark
extends Scala, a multi-paradigm language that com-
bines concepts from Object Orientation and FP [31].
Furthermore, Scala provides a large number of algorith-
mic skeletons, of which Spark uses a subset including
map, reduceByKey, and crossProduct to derive paral-
lelism and distribute computation [44]. The scientific
workflow language Taverna has its semantics defined in
functional terms [40] and Kelly et al. [23] showed that
scientific workflow languages can be considered a sub-
set of FP. A number of FP languages are designed for
parallel, distributed environments. For instance, Sky-
writing is a universal functional scripting language for
distributed computation [28]. GUM [39] is a parallel
implementation of Haskell and Eden [5, 26] extends
Haskell with parallel algorithmic skeletons. However,
in many parallel, distributed FP languages the user has
to take control over the way parallelism is exploited,
how processes are created, or how computation is dis-
tributed.

7. CONCLUSION
We presented Cuneiform4, a functional workflow lan-
guage for parallel and distributed execution that facili-
tates the reuse of existing tools and libraries. Cuneiform
can process large-scale data sets by providing data par-
allel algorithmic skeletons operating on lists. Further-
more, it can integrate foreign tools in a straightforward
way by providing a versatile Foreign Function Interface
and offers many of the high-level language features com-
monly encountered in Functional Programming langua-
ges. We have contrasted the advantages and disadvan-
tages of current scientific workflow languages and data-
parallel query languages and discussed their relation to
4https://github.com/joergen7/cuneiform

https://github.com/joergen7/cuneiform

Functional Programming. We demonstrated the ver-
satility and power of Cuneiform using two exemplary
workflows. In its current implementation Cuneiform
can be executed locally on a single machine or using
Hi-WAY5, a scientific workflow execution environment
running on Hadoop YARN. In future work, we intend
to integrate Cuneiform with scientific computing plat-
forms other than Hadoop like, e.g, HTCondor [9] which
enjoys wide adoption. Furthermore, we intend to create
compilers that consume Pegasus or Galaxy workflows
and generate Cuneiform scripts. This way, researchers
may run their existing Pegasus and Galaxy workflows
in any data-parallel execution environment supporting
Cuneiform without extra effort.

8. ACKNOWLEDGEMENTS
Jörgen Brandt and Marc Bux are funded by the Euro-
pean Commission’s 7th Framework Programme (FP7)
through the BiobankCloud project (project no. 317871).

9. REFERENCES
[1] http://flink.incubator.apache.org/.
[2] E. M. Bahsi, E. Ceyhan, and T. Kosar.

Conditional workflow management: A survey and
analysis. Scientific Programming, 15(4):283–297,
2007.

[3] M. Baker. Next-generation sequencing: adjusting
to data overload. Nature Methods, 7(7):495–499,
2010.

[4] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel,
T. Kötter, T. Meinl, P. Ohl, C. Sieb, K. Thiel, and
B. Wiswedel. Knime: The konstanz information
miner. In Studies in Classification, Data Analysis,
and Knowledge Organization, 2007.

[5] S. Breitinger, U. Klusik, and R. Loogen. From
(sequential) haskell to (parallel) eden: An
implementation point of view. In Principles of
Declarative Programming, pages 318–334.
Springer, 1998.

[6] M. Bux and U. Leser. Parallelization in scientific
workflow management systems. Computing
Research Repository (CoRR), 2013.

[7] C. Chambers, A. Raniwala, F. Perry, S. Adams,
R. R. Henry, R. Bradshaw, and N. Weizenbaum.
Flumejava: Easy, efficient data-parallel pipelines.
SIGPLAN Not., 45(6):363–375, 2010.

[8] M. I. Cole. Algorithmic skeletons: structured
management of parallel computation. Pitman
London, 1989.

[9] P. Couvares, T. Kosar, A. Roy, J. Weber, and
K. Wenger. Workflow management in condor,
2007.

5https://github.com/marcbux/Hi-WAY

[10] V. Curcin and M. Ghanem. Scientific workflow
systems-can one size fit all? In Cairo
International Biomedical Engineering Conference
(CIBEC), pages 1–9, 2008.

[11] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications
of the ACM, 51(1):107–113, 2008.

[12] E. Deelman, D. Gannon, M. Shields, and
I. Taylor. Workflows and e-science: An overview
of workflow system features and capabilities. In
Future Generation Computer Systems, 2008.

[13] E. Deelman, G. Singh, M.-H. Su, J. Blythe,
Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
G. Berriman, J. Good, A. Laity, J. Jacob, and
D. Katz. Pegasus: A framework for mapping
complex scientific workflows onto distributed
systems. Scientific Programming, 13:219–237,
2005.

[14] J. Ekanayake, T. Gunarathne, G. Fox, A. S.
Balkir, C. Poulain, N. Araujo, and R. Barga.
Dryadlinq for scientific analyses, 2009.

[15] J. Ekanayake, S. Pallickara, and G. Fox.
Mapreduce for data intensive scientific analyses.
In IEEE Fourth International Conference on
eScience, pages 277–284, 2008.

[16] A. F. Gates, O. Natkovich, S. Chopra,
P. Kamath, S. M. Narayanamurthy, C. Olston,
B. Reed, S. Srinivasan, and U. Srivastava.
Building a high-level dataflow system on top of
map-reduce: the pig experience. Proc. VLDB
Endow., 2(2):1414–1425, 2009.

[17] J. Goecks, A. Nekrutenko, J. Taylor, and T. G.
Team. Galaxy: a comprehensive approach for
supporting accessible, reproducible, and
transparent computational research in the life
sciences. Genome Biology, 11(8), 2010.

[18] R. R. Gullapalli, K. V. Desai, L. Santana-Santos,
J. A. Kant, and M. J. Becich. Next generation
sequencing in clinical medicine: Challenges and
lessons for pathology and biomedical informatics.
Journal of pathology informatics, 3, 2012.

[19] A. Heise, A. Rheinländer, M. Leich, U. Leser, and
F. Naumann. Meteor/sopremo: An extensible
query language and operator model. In
International Workshop on End-to-end
Management of Big Data, 2012.

[20] H. Hiden, P. Watson, S. Woodman, and D. Leahy.
e-Science Central: Cloud-based e-Science and its
application to chemical property modelling.
Newcastle University, Computing Science, 2010.

[21] D. Hull, K. Wolstencroft, R. Stevens, C. Goble,
M. Pocock, P. Li, and T. Oinn. Taverna: a tool
for building and running workflows of services.
Nucleic Acids Research, 34:729–732, 2006.

[22] M. Islam, A. K. Huang, M. Battisha, M. Chiang,

http://flink.incubator.apache.org/
https://github.com/marcbux/Hi-WAY

S. Srinivasan, C. Peters, A. Neumann, and
A. Abdelnur. Oozie: towards a scalable workflow
management system for hadoop. In Proceedings of
the 1st ACM SIGMOD Workshop on Scalable
Workflow Execution Engines and Technologies,
2012.

[23] P. M. Kelly, P. D. Coddington, and A. L.
Wendelborn. Lambda calculus as a workflow
model. Concurrency and Computation: Practice
and Experience, 21(16):1999–2017, 2009.

[24] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and
S. L. Salzberg. Searching for snps with cloud
computing. Genome Biology, 10(11), 2009.

[25] B. Langmead, C. Trapnell, M. Pop, S. L.
Salzberg, et al. Ultrafast and memory-efficient
alignment of short dna sequences to the human
genome. Genome Biology, 10(3), 2009.

[26] R. Loogen, Y. Ortega-Mallén, and R. Peña-Marí.
Parallel functional programming in eden. Journal
of Functional Programming, 15(03):431–475, 2005.

[27] M. Massie, F. Nothaft, C. Hartl, C. Kozanitis,
A. Schumacher, A. D. Joseph, and D. A.
Patterson. Adam: Genomics formats and
processing patterns for cloud scale computing.
Technical report, EECS Department, University
of California, Berkeley, 2013.

[28] D. G. Murray and S. Hand. Scripting the cloud
with skywriting. Proceedings of HotCloud, (3),
2010.

[29] H. Nordberg, K. Bhatia, K. Wang, and Z. Wang.
Biopig a hadoop-based analytic toolkit for large
scale sequence data. Bioinformatics,
29(23):3014–3019, 2014.

[30] F. A. Nothaft, P. Jin, and B. Brown. avocado: A
variant caller, distributed. Technical report,
Department of Electrical Engineering and
Computer Science, University of California,
Berkeley, 2013.

[31] M. Odersky, P. Altherr, V. Cremet, B. Emir,
S. Maneth, S. Micheloud, N. Mihaylov, M. Schinz,
E. Stenman, and M. Zenger. An overview of the
scala programming language. Technical report,
École Polytechnique Fédérale de Lausanne, 2004.

[32] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han,
M. Larsson, A. Neumann, V. B. N. Rao, S. Seth,
C. Tian, T. Zicornell, and X. Wang. Nova:
Continuous pig/hadoop workflows. In SIGMOD,
2011.

[33] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language
for data processing. In SIGMOD, pages
1099–1110, 2008.

[34] S. Pabinger, A. Dander, M. Fischer, R. Snajder,
M. Sperk, M. Efremova, B. Krabichler, M. R.
Speicher, J. Zschocke, and Z. Trajanoski. A

survey of tools for variant analysis of
next-generation genome sequencing data.
Briefings in bioinformatics, 15(2):256–278, 2014.

[35] E. Pennisi. Will computers crash genomics?
Science, 331(6018):666–668, 2011.

[36] P. V. Roy and S. Haridi. Concepts, Techniques,
and Models of Computer Programming. MIT
Press, 2004.

[37] M. C. Schatz. Cloudburst: highly sensitive read
mapping with mapreduce. Bioinformatics,
25(11):1363–1369, 2009.

[38] N. Siva. 1000 genomes project. Nature
biotechnology, 26(3):256–256, 2008.

[39] P. W. Trinder, K. Hammond, J. S. Mattson Jr,
A. S. Partridge, and S. Peyton Jones. Gum: a
portable parallel implementation of haskell. In
ACM SIGPLAN Notices, volume 31, pages 79–88,
1996.

[40] D. Turi, P. Missier, C. Goble, D. De Roure, and
T. Oinn. Taverna workflows: Syntax and
semantics. In IEEE International Conference on
e-Science and Grid Computing, pages 441–448,
2007.

[41] J. Wang, D. Crawl, and I. Altintas. Kepler +
hadoop: A general architecture facilitating
data-intensive applications in scientific workflow
systems. In Proceedings of the 4th Workshop on
Workflows in Support of Large-Scale Science,
2009.

[42] M. Wilde, M. Hategan, J. M. Wozniak,
B. Clifford, D. S. Katz, and I. Foster. Swift: A
language for distributed parallel scripting.
Parallel Computing, 37(9):633–652, 2011.

[43] Y. Yu, M. Isard, D. Fetterly, M. Budiu,
Ú. Erlingsson, P. K. Gunda, and J. Currey.
Dryadlinq: A system for general-purpose
distributed data-parallel computing using a
high-level language. In OSDI, pages 1–14, 2008.

[44] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and
Implementation, 2012.

[45] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster
computing with working sets. HotCloud, 2010.

[46] Q. Zou, X.-B. Li, W.-R. Jiang, Z.-Y. Lin, G.-L.
Li, and K. Chen. Survey of mapreduce frame
operation in bioinformatics. Briefings in
bioinformatics, 2013.

	Introduction
	Language characterization
	Cuneiform
	Task definition and Foreign Function Interface
	Lists
	Parallel algorithmic skeletons
	Execution semantics

	Workflow examples
	Canonical word count
	NGS variant calling

	Execution Platform
	Related Work
	Conclusion
	Acknowledgements
	References

