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ABSTRACT
Several areas, such as science, economics, finance, busi-
ness intelligence, health, and others are exploring big data
as a way to produce new information, make better decisions,
and move forward their related technologies and systems.
Specifically in health, big data represents a challenging pro-
blem due to the poor quality of data in some circumstances
and the need to retrieve, aggregate, and process a huge amount
of data from disparate databases. In this work, we focused
on Brazilian Public Health System and on large databases
from Ministry of Health and Ministry of Social Development
and Hunger Alleviation. We present our Spark-based ap-
proach to data processing and probabilistic record linkage of
such databases in order to produce very accurate data marts.
These data marts are used by statisticians and epidemiolo-
gists to assess the effectiveness of conditional cash transfer
programs to poor families in respect with the occurrence of
some diseases (tuberculosis, leprosy, and AIDS). The case
study we made as a proof-of-concept presents a good per-
formance with accurate results. For comparison, we also
discuss an OpenMP-based implementation.

Categories and Subject Descriptors
J.1 [Administrative data processing]: Government;
D.1.3 [Concurrent Programming]: Distributed pro-
gramming.
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1. INTRODUCTION
The term big data [18] was coined to represent the

large volume of data produced daily by thousands of de-
vices, users, and computer systems. These data should
be stored in secure, scalable infrastructures in order
to be processed using knowledge discovery and analy-
tics tools. Today, there is a significant number of big
data applications covering several areas, such as finance,
entertainment, e-government, science, health etc. All
these applications require performance, reliability, and
accurate results from their underlying execution envi-
ronments, as well as specific requisites depending on
each context.

Healthcare data come from different information sys-
tems, disparate databases, and potential applications
that need to be combined for diverse purposes, inclu-
ding the aggregation of medical and hospital services,
analysis of patients’ profile and diseases, assessment of
public health policies, monitoring of drug interventions,
and so on.

Our work focuses on the Brazilian Public Health Sys-
tem [23], specifically on supporting the assessment of
data quality, pre-processing, and linkage of databases
provided by the Ministry of Health and the Ministry of
Social Development and Hunger Alleviation. The data
marts produced by the linkage are used by statisticians
and epidemiologists in order to assess the effectiveness
of conditional cash transfer programs for poor families
in relation to some diseases, such as leprosy, tuberculo-
sis, and AIDS.

We present a four-stage workflow designed to pro-
vide the functionalities mentioned above. The second
(pre-processing) and third (linkage) stages of our work-
flow are very data-intensive and time-consuming tasks,
so we based our implementation in the Spark scalable
execution engine [41] in order to produce very accu-
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rate results in a short period of time. The first stage
(assessment of data quality) is made through SPSS [17].
The last stage is dedicated to the evaluation of the data
marts produced by our pre-processing and linkage algo-
rithms and is realized by statisticians and epidemiolo-
gists. Once approved, they load these data marts into
SPSS and Stata [6] in order to perform some specific
case studies.

We evaluate our workflow by linking three databases:
CadÚnico (social and economic data of poor families
— approximately 76 million records), PBF (payments
from “Bolsa Famı́lia” program), and SIH (hospitaliza-
tion data from the Brazilian Public Health System —
56,059 records). We discuss the results obtained with
our Spark-based implementation and also a comparison
with an OpenMP-based implementation.

This paper is structured as follows: Section 2 presents
the Brazilian Healthcare System to contextualize our
work. In Section 3 we discuss some related works spe-
cially focusing on record linkage. Our proposed work-
flow is detailed in Section 4 and its Spark-based im-
plementation is discussed in Section 5. We present re-
sults obtained from our case study, both in Spark and
OpenMP, in Section 6. Some concluding remarks are
presented in Section 7.

2. BRAZILIAN HEALTHCARE SYSTEM
As a strategy to combat poverty, the Brazilian go-

vernment implemented cash transfer policies for poor
families, in order to facilitate their access to educa-
tion and healthcare, as well as to offer them allowances
for consuming goods and services. In particular, the
“Bolsa Famı́lia” Program [25] was created under the
management of the Ministry of Social Development and
Hunger Alleviation to support poor families and pro-
mote their social inclusion through income transfers.

Socioeconomic information about poor families are
kept in a database called CadastroÚnico (CadÚnico) [24].
All families with a monthly income below half the mi-
nimum wage per person or a total monthly income of
less than three minimum wages can be enrolled in the
database. This registration must be renewed every two
years in order to keep updated data. All social pro-
grams from the federal government should select their
recipients based on data contained in CadÚnico.

In order to observe the influence of certain social in-
terventions and their positive (or negative) effects for
their beneficiaries, rigourous impact evaluations are re-
quired. Individual cohorts [19] have emerged as the
primary method for this purpose, supporting the pro-
cess of improving public policies and social programs
in order to qualify the transparency of public invest-
ments. It is expected that these transfer programs can
positively contribute to the health and the education of
beneficiary families, but studies capable to prove this

are highly desirable and necessary for the evaluation of
public policies.

From an epidemiological standpoint, tuberculosis and
leprosy are major public health problems in Brazil, with
poverty as one of their main drivers. In addition, there
is a broad consensus on the bidirectional relationship
between these infectious diseases and poverty: one can
lead to another. It is therefore clear that to reduce
morbidity and mortality from poverty-related diseases
is necessary to plan interventions that address their so-
cial determinants.

This work pertains to a project involving the longi-
tudinal study of CadÚnico, PBF (“Bolsa Famı́lia” pro-
gram), and three databases from the Brazilian Public
Health System (SUS): SIH (hospitalization), SINAN
(notifiable diseases), and SIM (mortality). Table 1 shows
these databases with their years of coverage to which we
have access. The main goal is to relate individuals in
the existing SUS databases with their counterparts in
the PBF and CadÚnico, through a process called lin-
kage (or pairing). After linkage, the resulting databases
(data marts) are used by statisticians and epidemiolo-
gists to analyze the incidence of some diseases in fami-
lies benefiting from “Bolsa Famı́lia” compared to non-
beneficiary families.

Databases Years

SIH (hospitalization) 1998 to 2011
SINAN (notifications) 2000 to 2010
SIM (mortality) 2000 to 2010

CadÚnico (socieconomic data) 2007 to 2013
PBF (payments) 2007 to 2013

Table 1: Brazilan governmental databases.

The major obstacle for linkage is the absence of com-
mon identifiers (key attributes) in all databases, which
requires the use of probabilistic linkage algorithms, re-
sulting in a significant number of comparisons and in a
large execution time. In addition, handling these data-
bases requires the use of secrecy and confidentiality poli-
cies for personal information, especially those related to
health data. Therefore, techniques for data transforma-
tion and anonymisation should be employed before the
linkage stage.

The longitudinal study requires the pairing of all avai-
lable versions for certain databases within the period
to be analyzed. In the scope of our project, we must
link versions of CadÚnico, PBF, and SIH between 2007
and 2011 to allow a retrospective analysis of the inci-
dence of diseases in poor families and, thereafter, draw
up prospects for the coming years. In this scenario, the
amount of data to be analyzed, processed, and anonymi-
sed tends to increase significantly.
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3. CHALLENGES AND RELATED WORK
Record linkage is not a new problem and its classic

method was first proposed by [13]. This approach is the
basis for most of the models developed later [5]. The
basic idea is to use a set of common attributes present in
records from different data sources in order to identify
true matches.

In [32], probabilistic and deterministic record linkage
methods were used to evaluate the impact of the ”Bolsa
Famı́lia” program in education, using some informa-
tion also contained in CadÚnico. They have proven
the importance of database relationships as a tool ca-
pable of allowing an integrated view of the information
available from various sources, ensuring efficient compa-
rative analysis and increasing the quality and quantity
of information required for a search. In public health,
many studies use matching records to evaluate impacts
or to find patterns [27].

In [11], the authors used probabilistic methods to
match records from two SUS databases — SIH (hos-
pitalization) and SIM (mortality) — to identify deaths
from ill-defined causes. They developed routines for
standardizing variables, blocking based on identification
keys, comparison algorithms, and calculation of simila-
rity scores, They also used RecLink [4] to check du-
bious records for reclassification (as true pairs or not)
purposes.

A crucial point is that as the size of databases in-
creases, and therefore the number of comparisons re-
quired for record matching, traditional tools for data
processing and analysis may not be able to run such
applications in a timely manner. In the midst of se-
veral studies on software for record linkage, there are
few that discuss issues related to the parallelization of
processes and data distribution. In [33], some ways to
parallelize matching algorithms are discussed, showing
good scalability results.

MapReduce paradigm and following technologies have
contributed to advance the big data scenario. Some
methods to adapt the MapReduce model to deal with
record matching are discussed in [16]. Despite these ef-
forts, it is still difficult to find references addressing the
problem of matching records using the advantages of
MapReduce or similar tools.

Computation techniques related to the preparation
steps for record linkage, such as data cleansing and
standardization, are still few discussed in the literature.
In [31], the authors claim that the cleansing process can
represent 75% of the total linkage effort. In fact, prepa-
ration steps can directly affect the accuracy of results.

It is possible to observe that management and some
aspects of service provision in this context are not yet
sufficiently explored [22]. Regarding databases under

coordination of public sectors, as CadÚnico and SUS
databases, we can observe a high sensitivity and strict

requirements for processing and storing such databases
in private clusters. Also, there is a lack, mainly in
Brazil, of probabilistic matching references over large
databases that use the benefits of big data tools.

4. PROPOSED WORKFLOW
Our workflow is divided in four stages, further dis-

cussed in the following sections. The first stage cor-
responds to the analysis of data quality, aiming at to
identify, for each database, the attributes more suit-
able for the probabilistic record linkage process. The
set of attributes is chosen based on metrics such as mis-
sing values or misfiled records. This step is performed
with the support of SPSS software. For security and
privacy reasons, the ministries do not allow direct ac-
cess to their databases; instead, they give us flat files
extracted from the databases listed in Table 1. Two
people of our team are the ones that manipulate these
data based on a strict confidentiality term.

The next stage is pre-processing, being responsible
for applying data transformation and cleansing routines
in these attributes. We based our implementation on
ETL (extract, transform, and load) techniques com-
monly found in data warehouse tools for standardizing
names, filling null/missing fields with default values,
and removing duplicate records.

An important step within this stage regards data pri-
vacy. We apply a technique based on Bloom filters [34]
to anonymize relevant fields prior to the record lin-
kage stage. As stated before, pre-processing is a time-
consuming, data-intensive stage, so we use Spark to
perform data transformation, cleansing, anonymization,
and blocking.

The record linkage stage applies deterministic and
probabilistic algorithms to perform pairing. Between
CadÚnico and PBF databases, we can use a determi-
nistic algorithm for record linkage based on a common
attribute called NIS (social number ID). All beneficiaries

of PBF are necessarily registered in CadÚnico and there-
fore have this attribute. Linkage between CadÚnico
and any SUS database (SIH, SINAN, and SIM) must
be done through probabilistic algorithms, since there
are no common attributes to all databases.

Within SUS databases, the occurrence of incomplete
records is quite high, since many records correspond to
children or homeless people, which do not always have
identification documents or are not directly registered
in CadÚnico. In such cases, we try to find a record
of an immediate family member, when available. Ano-
ther very common problem regards incomplete or ab-
breviated names, which difficults pairing. Again, we
use Spark to execute our linkage algorithms in a timely
manner and produce the resulting data marts (files with
matched and non-matched records).

The last stage is performed by statisticians and epi-
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demiologists with the support of statistical tools (Stata
and SPSS). The goal is to evaluate the accuracy of the
data marts produced by the linkage algorithms, based
on data samples from the databases involved. This step
is extremely important to validate our implementation
and provide some feedback for corrections and adjust-
ments in our workflow.

In the following sections, we discuss a case study on
the linkage of CadÚnico and SIH databases made as
a proof-of-concept of our workflow. The goal was to
generate a data mart covering such databases that is
used to analyze the incidence of tuberculosis in PBF
beneficiaries and non-beneficiaries families. We chose
the databases of the year 2011, respectively with ap-
proximately 76 million records and 56,059 records.

4.1 Data Quality Assessment
Attributes suitable for probabilistic matching should

be chosen taking into account their coexistence in all
databases, their discriminatory capacity, and their qua-
lity in terms of filling requirements and constraints. The
occurrence of null or missing values is the major pro-
blem considered at this stage. This problem can occur
by omission or negligence of the operator responsible for
filling out forms or by the faulty implementation of the
involved information systems. The analysis of missing
values is extremely important, because using a variable
that has a high incidence of empty fields brings little or
no benefit to the matching process.

In our case study, we analyzed the occurrence of null
and missing values in the CadÚnico and SIH databases.
Tables 2 and 3 show the results obtained for the most
significant attributes in each database. Based on the re-
sults, we chose three attributes: NOME (person’s or pa-
tient’s name), NASC (date of birtyp), and MUNIC RES
(city of residence).

Attribute Description Missing (%)

NIS Social number ID 0,7
NOME Person’s name 0

DT NASC Date of birth 0
MUNIC RES City of residence 55,4

SEXO Gender 0
RG General ID 48,7

CPF Individual taxpayer ID 52,1

Table 2: CadÚnico — missing values.

4.2 Data Pre-processing
Datamarts produced in our case study are composed

of linked information that reflect the pairing process
output. They should contain information about people
hospitalized in 2011 with a primary diagnosis of tuber-
culosis and their socioeconomic data, if registered in

Attribute Description Missing (%)

MUNIC RES City of residence 0
NASC Date of birth 0
SEXO Gender 0
NOME Patient’s name 0
LOGR Street name 0,9

NUM LOGR House number 16,4
COMPL LOGR Address’ complement 80,7

Table 3: SIH — missing values.

CadÚnico, relevant for epidemiological studies.
To facilitate the linkage and increase accuracy, the va-

lues of NOME attribute are transformed to uppercase
and accents (and possible pontuaction) are removed,
so as not to influence the similarity degree between
two records. Attributes with null or missing values are
treated through a simple substitution to predefined va-
lues. This ensures all records are in the same format
and contain the same information pattern.

A fundamental concern in our work is confidentiality.
We must use privacy policies to guarantee that per-
sonal data is protected throughout the workflow. Lin-
kage routines should not be able to identify any person
in any database. To accomplish this, we use Bloom
filters for record anonymization. Bloom filter is an ap-
proach that allows to check if an element belongs to a
set. An advantage of this method is that it does not
allow false negatives: if a record belongs to the set, the
method always returns true. Furthermore, false posi-
tives (two records that do not represent the same en-
tity) are allowed. This could be advantageous if the
goal is to include records containing small differences in
the matched pairs.

The construction of Bloom filters is described in [34]
and involves a vector initially populated with 0’s. De-
pending on each attribute, specific positions of this vec-
tor, determined by hash functions, are replaced with 1’s.
Our approach considers an array of 110 positions that
maps each bigram (two characters) of the attributes in-
volved. Each attribute affects a fraction of the vector:
NOME comprises the first 50 bits, NASC comprises the
following 40 bits, and MUNIC RES the last 20 bits, as
shown in Figure 1.

Fractions were chosen considering two aspects: the
ideal size a filter must have in order to represent an
attribute with a minimum probability error and the in-
fluence (or “weight”) each field has in the matching de-
cision. Accuracy depends on the filter size (and thus the
weight of each attribute), the number of hash functions,
and the number of elements added to the filter [36].
The smaller the filter, more errors and false positives
are expected because different records can generate very
similar vectors with 1’s coincidentally mapped in same
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Figure 1: Bit vector generated by Bloom filter.

positions. So, there is a classic tradeoff between size
and performance: the vector must be large enough to
increase accuracy and, at the same time, small enough
to not overload the similarity tests.

For testing our Bloom filter, we constructed three
controlled scenarios and use two databases with 50 and
20 records, respectively. The idea was to determine the
best vector size and the distribution (number of bits
for each field) that provides the best accuracy. Ta-
ble 4 shows our simulation results. In scenario 3, we
simulated filling errors. We can observe that when one
attribute has similarity index lower than the expected
value, pairing can be saved by the other two attributes
that have satisfactory similarity index.

Among all distributions that provide correct results,
the distribution with 50, 40, and 20 bits is better for
all scenarios. In this sense, the attribute MUNIC RES
must have less influence than NOME because the pro-
bability that the same value for NOME in different
databases refers to the same person is more significant
than two identical values for city.

Another important task performed during the pre-
processing stage is blocking construction. The record
linkage process requires all records from both databases
be compared in order to determine whether they match
or not. So, it demands M x N comparisons, being M
and N the sizes of the databases. However, most of the
comparisons will result in non-matched records.

In our case study, the number of comparisons between
CadÚnico (approximately 76 million records) and SIH
(56,059 records) could be quite prohibitively, so we de-
cide to group records in each database according to a
similarity criterion. We chose the MUNIC RES (city
of residence) attribute as blocking key, so that only in-
dividuals who live in the same city will be compared.
As blocking strategies are a difficult problem, we are
also considering another approaches such as adaptative
blocking [2], predicates, and phonetic codes (such as
Soundex [38], Metaphone [30], and BuscaBR [7]).

4.3 Calculation of Similarity
The decision on pairing two records depends on the

analysis of their similarity factor. In this work, we use
the Sørensen index [35], also known as Dice [9], to cal-
culate the similarity based on bigrams (two characters)

extracted from the bit vector generated by the Bloom
filter.

Given a pair of records similar to those shown in Fig-
ure 1, the similarity test runs through every bit from
both vectors in order to find three metrics: h — re-
presenting the count of 1’s in the same position in both
vectors, a and b — representing the total of 1’s in the
first and second vectors, respectively, regardless their
positions. With these values, it is possible to calculate
the Sørensen index using the following formula:

Da,b = 2h / (|a| + |b|)
Perfect result expects the number of 1’s contained in

the first vector added to the second vector be exactly
equal to twice the number of common 1’s. When this
happens, we have a result equal to 1 (great accuracy).
If two records turn out different, the value of h decreases
and the ratio starts to be smaller than 1.

We use a product by 10,000 to represent the Dice
coefficient, therefore values ranging from 0 to 10,000
are used to represent the similarity degree between two
vectors. Records are inserted in three distinct groups, as
depicted in Figure 2. Every pair whose similarity degree
is less than 9,000 is considered non-matched. Values
between 9,000 and 9,600 are included in an indecison
group for manual analysis, whereas values above 9,600
are considered true matches.

Figure 2: Similarity degrees for Dice calculation.

4.4 Record Linkage
Practical applications of record linkage exist in se-

veral areas. For the impact assessment of strategies, for
example, it is often necessary to use individual search
methods to prove if a specific situation happens in the
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Total size
and weight
distribution

Scenario 1
No matched

records expected

Scenario 2
Five perfectly matched

records expected

Scenario 3
Expected five matched records
with one incorrect character

Expected
pairings

Pairings
found

Expected
pairings

Pairings
found

Expected
pairings

Pairings
found

20x20x20 0 310 5 347 5 348
30x30x30 0 29 5 41 5 42
40x40x40 0 11 5 17 5 16
50x50x50 0 0 5 5 5 5
50x50x40 0 0 5 5 5 5
50x40x40 0 0 5 5 5 5
50x40x30 0 0 5 5 5 5
50x30x30 0 2 5 6 5 6
50x40x20 0 0 5 5 5 5

Table 4: Comparison of different vector sizes and weight distributions.

whole group being analysed. Therefore, record linkage
is a suitable method to follow cohorts of individuals
by monitoring databases that contain continuous out-
comes [32]. The interest group can be individually ob-
served in order to obtain more accurate results or to
identify variations in the characteristics of each indivi-
dual. This situation is called a longitudinal study [19].

Probabilistic approaches can be used to match records
without common keys from disparate databases. To
succeed, we must use a set of attributes for which a
probability of pairing can be set. This method requires
a careful choice of the keys involved in matching or inde-
terminancy decisions [10]. This is the case, for example,
of determining whether the records ”Maria dos Santos
Oliveira, Rua Caetano Moura, Salvador” and ”Maria
S. Oliveira, R. Caetano Moura, Salvador” refer to the
same person. The main disadvantages of probabilistic
approaches are their long execution times and the debug
complexity they impose.

One of the big challenges in probabilistic record lin-
kage is to link records with different schemas and get
a good accuracy [11]. There are many problems that
hinder pairing, such as abbreviations, different naming
conventions, omissions, transcription, and gathering er-
rors. Another big issue is scaling algorithms for large
data sets. Transformation and similarity calculation
are important challenges for the execution environment
when scaled for large databases.

5. SPARK-BASED DESIGN ISSUES
The pioneering programming model capable of han-

dling hundreds or thousands of machines in a cluster,
providing fault tolerance, petascale computing, and high
abstraction in building applications was MapReduce [8],
further popularized by its open-source implementation
provided by Hadoop [1]. Basically, this model proposed

the division of the input data into splits that must be
processed by threads, cores or machines in a cluster
responsible for implementing map or reduce functions
written by the developer. Intermediate data generated
by the first phase are stored on the local disks of pro-
cessing machines and are accessed remotely by machines
performing reduce jobs.

Hadoop was responsible for driving a number of varia-
tions seeking to meet specific requirements. Hive [37],
Pig [28], GraphLab [20], and Twister [12] are exam-
ples of initiatives classified as ”beyond Hadoop” [26],
which basically keep the MapReduce paradigm but in-
tend to generate new levels of abstractions. However,
some authors have indicated significant lacks in MapRe-
duce specially for applications that need to process large
volumes of data with strong requirements regarding ite-
rations, machine learning or even with different perfor-
mance requisites. New frameworks classified as ”be-
yond MapReduce”, such as Dremel [21], Jumbo [15],
Shark [39], and Spark [41], were created to deal with
these new requirements.

Spark is a framework that allows the design of appli-
cations based on working sets, the use of some general-
purpose languages (such as Java, Scala, and Python),
in-memory data processing and a new data distribution
model called RDD (resilient distributed dataset) [40].
RDD is a collection of read-only objects partitioned
across a set of machines that can be rebuilt if a par-
tition is lost.

The main benefits of using Spark are related to the
creation of a RDD for a dataset that must be processed.
There are two basic ways to create a RDD, both use
the SparkContext class: parallelizing a vector of iterable
items created at runtime or referencing a dataset in an
external storage system (such as a shared filesystem),
HDFS [3], HBase [14], or any data source offering a
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Hadoop-like InputFormat interface [41].
RDDs can be used through two classes of basic ope-

rations: transformations, which creates a new dataset
from an existing one; and actions, which returns a value
to the driver program after running a computation on
the dataset. The first class is implemented using lazy
evaluation and is intended to provide better perfor-
mance and management of large data sets. Transfor-
mations are only computed when an action requires a
value to be returned to the driver program [41]. Table 5
shows the main features of Spark framework we used to
implement our probabilistic record linkage algorithms.

Transformation Meaning
Returns a new RDD by

map(func) passing each element of
the source through func
Similar to map, but runs

mapPartitions(func) separately on each partition
(block) of the RDD.

Action Meaning
Returns all the elements of

collect() the dataset as an array at
the driver program.

count() Returns the number of
elements in the dataset.

Table 5: RDD API used for record linkage.

Another advantage of Spark is its ability to perform
tasks in-memory. Views generated during execution are
kept in memory, avoiding the storage of intermediate
data on hard disks. Spark’s developers claim that it is
possible to reduce the execution time up to 100 times
thanks to the use of working sets, and up to 10 times
if hard disks are used. So, our choice to use Spark
is justified by its performance, scalability, RDD’s fault
tolerance, and a very comfortable learning curve due to
its compatibility with different programming languages.

The pre-processing stage follows Algorithm 1, which
shows how this flow is implemented by the processing of
input data transformations using map functions calling
other procedures. The intention is that the function
map(blocking) starts running as map(normalize) deli-
vers its results; so we use the collect() action to ensure
this. It is important to highlight the use of the cache()
function that fits the memory with the splits extracted
from the input files.

Algorithm 1 PreProcessing

1: Input← OriginalDatabase.csv
2: Output← TreatedDatabaseAnom.bloom
3: InputSparkC← sc.textFile(Input)
4: NameSize← 50
5: BirthSize← 40
6: CitySize← 20
7: ResultBeta← InputSparkC.cache().map(normalize)
8: Result← ResultBeta.cache().map(blocking).collect()
9: for line in Result :

10: write line in Output
11: procedure normalize(rawLine)
12: splitedLine← rawLine.split(;)
13: for fields in splitedLine:
14: field← field.normalized(UTF8) return splited-

Line.join(;)

15: procedure blocking(treatedLine)
16: splLine← treatedLine.split(;)
17: splLine[0]← applyBloom(splLine[0], NameSize)
18: splLine[1]← applyBloom(splLine[1], BirthSize)
19: splLine[2] ← applyBloom(splLine[2], CitySize)

return splitedLine.join()

20: procedure applyBloom(field, vectorSize)
21: instanceInitialVectorWithSize← vectorSize
22: for n-grams in field :
23: bitsVector← Calculate positions of 1s in Vector

return bitsVector

Algorithm 2 Record linkage

1: InputMinor← TreatedDatabaseAnom1.bloom
2: InputLarger← TreatedDatabaseAnom2.bloom
3: InputSC1← sc.textFile(InputMinor)
4: InputSC2← sc.textFile(InputLarger)
5: var← InputSC1.cache().collect()
6: varbc← sc.broadcast(var)
7: InterResult← InputSC2.cache().map(compare)
8: Result← InputSC2.cache().collect()
9: for line in recordLinkageResult :

10: write line in Output
11: procedure compare(line)
12: for linebc in varbc.value:
13: get Dice index of (linebc) and (line) comparison
14: decide about the similarity
15: if Dice = 9000 then return line
16: else return None

Algorithm 2 shows our record linkage flow. We use a
RDD object, since it is read-only, to map the smallest
database (SIH). We also use a shared variable, called
broadcast by Spark, to give every node a copy of the
largest database (CadÚnico) in an efficient manner, pre-
venting communication costs, file loads, and split mana-
gement. A comparsion procedure calculates the Dice
index and decides about matching.
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6. PERFORMANCE EVALUATION
In order to evaluate the proposed workflow, we ran

out our Spark implementation on a cluster with 8 pro-
cessors Intel Xeon E74820, 16 cores, 126 GB of RAM
and a storage machine with up to 10 TB disks connected
by the NFS protocol. We compared this implementa-
tion with our OpenMP version of the same workflow,
also considering other multicore machines: an i5 pro-
cessor with 4 GB of RAM and 300 GB of hard disk and
an i7 processor with 32 GB of RAM and 350 GB of hard
disk.

6.1 Spark
For Spark, we chose three samples from CadÚnico

and SIH databases, each representing all the cities from
the states of Amapá (Sample A), Sergipe (Sample B),
and Tocantins (Sample C). These samples represent the
smallest Brazilian states in terms of number of records
in CadÚnico. Based on them, we can get an idea of the
number of comparisons and the rise in the execution
time in each case, as shown in Table 6.

Sample Size (in lines) Comparisons Exec. Time

Name CadÚnico x SIH (millions) (seconds)
A 367,892 x 147 54,0 96,26
B 1,6 mi x 171 289,5 479
C 1,02 mi x 389 397,63 656,79

Table 6: Spark results for record linkage.

These preliminary results are very promising if we
consider the possibility of scaling up the number of ma-
chines involved in data processing. Table 7 details the
time spent in each stage of the workflow. Standardiza-
tion, anonymization, and blocking stages are detailed by
Algorithm 1 and take only a few minutes in the larger
database, while the similarity test and the decision on
pairing require a longer running time. The last step
consists in recovering a pair of linked records for crea-
ting a data mart. Together, all steps do not take more
than 12 hours of execution.

CadÚnico SIH
Size (lines) approx. 87 mi approx. 61 k
Standardization

2310.4 s 36.5 sAnonymization
Blocking
Record Linkage 9,03 hours
Paired Recovery 1,31 hours

Table 7: Execution time within the workflow.

6.2 OpenMP
The OpenMP interface [29] was chosen due to its syn-

tax simplicity. This kind of implementation divides a

task between threads that execute simultaneously, dis-
tributed through processors or functional units. The
OpenMP API supports C, C++ and Fortran program
languages. The C language was chosen because of its
worldwide understanding.

The database sets used for this implementation were
files containing the results from the Bloom filter applied
during the pre-processing stage. These files have N bits
in each line (record). The goal is to make the record
linkage by calculating the Dice coefficient for each pair
of records and writing out the positive Dice results and
its respectives lines in an output file.

Access to the database sets in C language is made
through pointer types. When a parallel region of the
code is initialized, it is necessary to specify global and
local variables to the threads. If a pointer is global to
the threads, there is a race condition problem if they try
to access different positions from the same file. This
problem was solved by making these pointers private
to each thread. As it is not possible to pass pointer
types (only native types), they are created for every
line (record) from one of the files. As the files have
always the same N bits in each line, it is possible to
specify each thread to access uniquely some lines from
these files.

Tools i5 i7 Cluster
Spark 507.5 s 235.7 s 96.26 s

OpenMP 104.9 s 65.5 s 13.36 s

Table 8: OpenMP x Spark metrics (Sample A).

Table 8 shows the execution time achieved by OpenMP
for our Sample A. The machines we used have the fol-
lowing configuration: i5 (4 cores, 8 execution threads),
i7 (8 cores, 16 execution threads). The cluster has been
described in section 6. The execution time over i7 pro-
cessor was 37% shorter than i5, showing that the exe-
cution time could be even shorter when using computers
with more threads per core. Despite its shorter exe-
cution time, this approach does not provide a number
of advantages offered by Spark, such as scalability and
fault tolerance.

The number of matching record was 245. The results
were very satisfactory, taking into account that the ap-
plication runs in only one computer. This shows that
the OpenMP implementation is indicated for small lin-
kages or bigger linkages blocked by smaller parts. We
are also considering the use of OpenMP for generating
the Bloom filter and grouping records to compose the
data marts.

7. CONCLUDING REMARKS
The development of a computational infrastructure

to support projects focusing on big data from health
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systems, like the case study discussed here, was moti-
vated by two factors. First, the need to provide a tool
capable of link disparate databases with socioeconomic
and healthcare data, serving as a basis for decision-
making processes and assessment of the effectiveness
of governmental programs. Second, the availability of
recent tools for big data processing and analytics, such
as those mentioned in this work, with interesting capa-
bilities to deal with new requirements imposed by the
applications.

Among the available tools, we chose Spark due to
its in-memory facility, its scalability, and ease of pro-
gramming. Our preliminary tests present very promis-
ing results, reinforcing the need for some adjustments in
our implementation. New features recently included in
Spark could help us, such as the SparkR extension for
data quality assessment. We are also testing other tech-
niques throughout the workflow, like phonetic codes,
predicates (for blocking) and multi-bit trees.

We plan to continue our tests with OpenMP in or-
der to identify scenarios for which it can provide good
performance. The exploration of hybrid architectures
(multicore + multi-GPUs) is also in our roadmap.

The execution platform developed in this work repre-
sents a major advance in the face of existing solutions
for record linkage in Brazil. It will serve as a basis ar-
chitecture for the installation of a Referral Center for
Probabilistic Linkage, and should be supplemented with
new features regarding privacy, security, storage, among
others.
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mal definida, com base nas Autorizações de
Internação Hospitalar no Sistema Único de Saúde,
Estado do Rio de Janeiro, Brasil. Cad. Saúde
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