
An Extensible Framework for Query Optimization on
TripleT-Based RDF Stores

Bart G. J. Wolff
Eindhoven University of

Technology
b.g.j.wolff@alumnus.tue.nl

George H. L. Fletcher
Eindhoven University of

Technology
g.h.l.fletcher@tue.nl

James J. Lu
Emory University

jlu@emory.edu

ABSTRACT
The RDF data model is a key technology in the Linked Data
vision. Given its graph structure, even relatively simple
RDF queries often involve a large number of joins. Join
evaluation poses a significant performance challenge on all
state-of-the-art RDF engines. TripleT is a novel RDF in-
dex data structure, demonstrated to be competitive with
the current state-of-the-art for join processing. Query opti-
mization on TripleT, however, has not been systematically
studied up to this point. In this paper we investigate how the
use of (i) heuristics and (ii) data statistics can contribute to-
wards a more intelligent way of generating query plans over
TripleT-based RDF stores. We propose a generic framework
for query optimization, and show through an extensive em-
pirical study that our framework consistently produces effi-
cient query evaluation plans.

Categories and Subject Descriptors
H.2.4 [Database Management]: Query processing

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
RDF, SPARQL, TripleT, indexing, query processing

1. INTRODUCTION

Motivation. The goal of the Linked Data vision is to cre-
ate a global “web of data”: an infrastructure for machine-
readable semantics for data on the web [9]. This vision aims
to make data from a wide variety of sources available under
the standardized RDF data model, allowing for this data to
be shared across different domains using web standards.

As adoption of the linked data vision grows, data stores
have to be able to deal with increasingly large datasets.

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

This poses a scalability problem, both for storage and in-
dexing, as well as for query evaluation. By its triple-centric
graph-like nature, even the most basic RDF queries involve a
large number of (self-)joins, which pose a significant perfor-
mance challenge on state-of-the-art RDF database engines.
At present, real-world RDF datasets can involve hundreds
of millions or even billions of triples, making it challenging
to offer interactive query response time.

When compared to relational database technology, RDF
stores are a relatively new concept. A number of RDF stores
exist, one of them being the Three-way Triple Tree data
structure (TripleT) [6], which features a value-based, role-
free indexing scheme, unique among the current state-of-
the-art. Research has shown this approach to be competi-
tive with, and often at an advantage to, alternative indexing
schemes, in terms of both storage and query evaluation costs
[6]. However, query optimization on TripleT-based RDF
stores has not been systematically studied up to this point.

Our contributions. In this paper, we present our experi-
ences and results of a comprehensive investigation of query
optimization on TripleT [18]. In particular, we study how
the use of (i) heuristics and (ii) dataset statistics can con-
tribute towards a more effective generation of query plans,
minimizing query execution time over the TripleT RDF store.
Our aim here is to understand the effectiveness of various
parts of the heuristics that influence query plan generation.
These query plans are tailored to (and evaluated on) our
implementation of the TripleT store, which we also describe
in this paper.

The novelties of our work include an extensible generic
rule-based framework for query optimization over TripleT,
and an extensive empirical study into the effectiveness of
proposed rules in generating optimized query plans. Fur-
thermore, the complete experimental framework, including
both disk-based storage and the query processing pipeline,
is available as open-source code for further study.1

Our proposed optimization framework, together with a
few key heuristics rules, is able to consistently produce ef-
ficient query plans for a wide variety of query types and
datasets. In comparing heuristics-based and statistics-based
rules, our aim was to understand the benefit offered by the
use of statistics. Our study shows that not only do rules
using statistics in general offer little performance improve-
ments compared to heuristics-only rules, but also that a
purely heuristics-based approach may exhibit an order of
magnitude reduction in evaluation costs in certain situa-

1https://github.com/b-w/TripleT



tions. These observations support those of Tsialiamanis et
al. in their study of heuristics-based optimization of RDF
queries [17].

2. BACKGROUND

Definitions. We present the basics of data and queries.
Further details can be found in [1, 18]. Let U be a set of URIs
and L be a set of literals, such that U∩L = ∅. Then we define
an RDF triple as an element (s, p, o) ∈ U×U× (U∪L). We
define an RDF dataset (or, alternatively, an RDF graph), de-
noted T, as a set of n ≥ 0 RDF triples: T = {t1, t2, · · · , tn}.

At the core of many RDF query languages such as SPARQL
lies the concept of Basic Graph Patterns (BGPs) [1]. A BGP
is a conjunction of Simple Access Patterns (SAPs), where
each SAP is a triple consisting of some combination of fixed
values (atoms) and unfixed values (variables). Formally, let
A = U∪L be a set of atoms, and let V be a set of variables,
such that A ∩ V = ∅. Then we define an SAP as a triple
S = (s, p, o) ∈ (U ∪ V)× (U ∪ V)× (A ∪ V). We then define
a BGP as a conjunction of SAPs: P = S1 ∧ S2 ∧ · · · ∧ Sn,
for some n ≥ 0. Equivalently, P may be regarded as the set
{S1, S2, . . . , Sn}.

A binding for BGP P is a function B from the variables
occurring in P to the set of atoms A. We define the applica-
tion of binding B to P , denoted B(P ), as the set of triples
resulting from replacing every occurrence of every variable
v in P with B(v). Finally, the result of querying graph T
with P , denoted P (T), is the set of all bindings B such that
for each B ∈ B it holds that B(P ) ⊆ T.

We indicate variables with the prefix ‘?.’ As a small exam-
ple, the BGP P = (jan, knows, ?p) ∧ (?p, fanOf,mozart)
on graph

T = {(jan, knows, sue), (jan, knows, tim),

(sue, fanOf,mozart)}

evaluates to P (T) = {〈?p : sue〉}.

Related work. Numerous RDF stores and indexes have been
developed in recent years. Notable examples include Virtu-
oso [5], RDF-3X [15], and Sesame.2 We refer the reader to
Luo et al. [12] for a thorough survey of storage and indexing
solutions for massive RDF datasets.

The study of query optimization is as old as the study
of database systems. On the topic of RDF, Neumann and
Weikum [14, 15] address some of the scalability problems
that arise when processing join queries on very large RDF
graphs. Optimizations for BGPs using statistics for selec-
tivity estimation are discussed by Stocker et al. [16], while
Tsialiamanis et al. present a number of heuristics for BGP
static analysis and optimization [17]. Various studies have
been made on techniques for selectivity and cardinality esti-
mation using precomputed information over RDF datasets
[7, 10, 13, 15].

TripleT was originally proposed by Fletcher and Beck [6].
Value-based indexing for join processing was also shown to
be effective in the context of relational and complex-object
databases (e.g., [2, 3, 4]). Some prior work exists featuring
TripleT. The performance of different join algorithms on the
TripleT index was investigated by Li [11]. An extension of

2http://www.openrdf.org

TripleT was used by Haffmans and Fletcher [8] as physical
representation of data used for a proposed RDFS entailment
algorithm, where it was shown to be good candidate for
RDFS data storage.

3. A THREE-WAY TRIPLE TREE
The primary novelty of the TripleT index is that it is

built over the individual atoms in a dataset, rather than
over complete triple patterns. TripleT uses a number of
buckets that store the actual triples in the dataset. Each
bucket stores all the (s, p, o) triples in the dataset, ordered
on some permutation of {s, p, o}. For instance, an SOP-
bucket would (conceptually) store the triples sorted first on
subject, then on object, and lastly on predicate. The possible
bucket orderings are thus SPO, SOP, PSO, POS, OSP, and
OPS, though in our implementation we limit ourselves to
using SOP-, PSO-, and OSP-buckets only. The remaining
permutations, SPO, POS, and OPS, are symmetrical and
are not considered in our investigation. Of important note
is that each bucket does not contain the triple part (s, p, or o)
that corresponds to its primary sort order. This information
is implied by the index and does not need to be repeated.

There is one entry in the index for each unique atom in
the dataset. This entry contains a number of pointers to
triple ranges in each of the bucket files. For instance, the
index entry for an atom a might contain a pointer to range
[x · · · y] in the SOP-bucket, meaning that in this bucket,
which is sorted on subject, triples from position x to position
y contain the value a in their subject position. Similarly,
the same entry might contain pointers to triple ranges in
the PSO- and OSP-buckets that contain a in the predicate-
and object positions, respectively.

The index supports retrieval of bindings matching a single
SAP. The sort ordering of a bucket determines how suitable
it is for retrieving triples matching a particular SAP. An
SOP-bucket, for example, would be well suited for retriev-
ing triples matching (a, ?x, ?y), but would be inefficient at
retrieving triples matching (?x, a, ?y). For the latter case the
bucket ordering implies the entire bucket needs to be read
in order to find all possible matches, while for the former
case the index entry for a directly points to the range in the
bucket where any matches must be contained.

Implementation details. Our work is based on our own
open-source implementation of the TripleT RDF store [18];
we briefly highlight salient features here and refer the reader
to the full report for further details and design rationale. A
single TripleT database is stored on disk across eight dif-
ferent physical files. We use a dictionary to translate be-
tween“friendly”representations and internal representations
of atoms. This dictionary is stored in two BerkeleyDB3 hash
databases. The TripleT index is stored in a single Berke-
leyDB hash database. There is one entry for each unique
atom in the dataset. Each bucket belonging to a TripleT
database is stored in its own separate file. There are three
buckets for each database. The bucket files themselves are
flat binary files containing sequences of triples. Each bucket
contains all triples belonging to the dataset, although the
files themselves contain only the parts of each triple that are
not already present in the index. The statistics of a TripleT
database are stored in a BerkeleyDB hash database. The

3
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb



a
1

b
1

c
2

d
3

e
3

?x
1,2

?y
2,3

(a) The atom collapse CP1

a
1

b
1

c
2

d
3

e
3

?x
1,2

?y
2,3

(b) A join graph JP1

Figure 1: Example graphs for the BGP P1 =
(a, b, ?x)1 ∧ (?x, c, ?y)2 ∧ (?y, d, e)3

statistical database contains information for estimating out-
put sizes for single SAPs or joins between two SAPs, as well
as some summarizing statistics [18].

4. QUERY OPTIMIZATION
Our framework for generating optimized query plans for

BGPs over the TripleT index consists of a generic algorithm
in which a number of decision points can be manipulated
by a given set of rules. In this section, P is defined as a
BGP, consisting of k SAPs (s1, p1, o1), · · · , (sk, pk, ok), de-
noted S1, · · · , Sk, resp.

4.1 Atom collapses
We define the atom collapse CP of P as the undirected

edge-labeled graph with the atoms and variables of P as
nodes, and edges to indicate there is a shared variable be-
tween the SAPs associated with nodes.

Formally, the set of nodes consists of atom-nodes and vari-
able-nodes. For each SAP Si ∈ P we have an atom-node
(a, {Si}) for each unique atom a ∈ Si. We have a variable-
node (v, Pv) for each unique variable v ∈ P with Pv ⊆ P
being the set of SAPs which contain v. For the special case
of SAPs that do not contain any atoms, we have a special
atom node (a0, {Si}), where a0 is a nil-atom.

Let (x,X) and (y, Y ) be nodes in the collapse graph. In
the set of edges we have an undirected edge (x,X)− (y, Y )
with label L if and only if there exists some variable v such
that v ∈ SX , SX ∈ X and v ∈ SY , SY ∈ Y and SX 6= SY .
Label L consists of a set of (Si, Sj , v, pi, pj) tuples, where
there are tuples for every variable v such that v ∈ Si, Si ∈ X
and v ∈ Sj , Sj ∈ Y with Si 6= Sj and with pi and pj denoting
the positions (s, p, or o) that variable v has in Si and Sj

respectively. Note that one variable can occur in multiple
tuples in one label, as long as each tuple as a whole is unique
within L.

As an example, Figure 1(a) shows the atom collapse for

the BGP P1 = (a, b, ?x)1 ∧ (?x, c, ?y)2 ∧ (?y, d, e)3. For ease
of reference, we have numbered the SAPs. Here we have an
edge between (e, {S3}) and (?x, {S1, S2}), due to the shared
variable ?y of S3 and S2, but no edge between (e, {S3}) and
(a, {S1}), since S3 and S1 do not share a variable.

4.2 Join graphs
We define a join graph JP of P as a subgraph of atom

collapse CP , with the nodes from JP being a subset of the
atom-nodes from CP such that for each SAP Si ∈ P there
is exactly one node (a, {Si}) in JP , and the edges from JP

being the same as those from CP . The nodes from the join
graph are known as seed nodes as they represent the physical
access path for each of the SAPs, which is the TripleT bucket
used for retrieving them.

Formally, the set of nodes in JP is defined as

NODES(JP ) ⊆ {(x,X) ∈ NODES(CP ) | x is an atom}

such that ∀Si ∈ P.(∃!(x,X) ∈ NODES(JP ).(X = {Si})).
The set of edges is defined as

EDGES(JP ) = {((x,X)− (y, Y ) : L) ∈ EDGES(CP )

| (x,X), (y, Y ) ∈ NODES(JP )}.

Note that P can have multiple distinct, valid join graphs.
Figure 1(b) shows a possible join graph for P1.

4.3 Decision points
The goal of the optimizer is to generate a query plan over

the TripleT engine, where a query plan is a tree consisting of
physical operators as internal nodes and index bucket scans
as leaves, for evaluating P . Our optimization framework
takes the BGP P as input, first computes its atom collapse
CP , then a join graph JP , and lastly produces a query plan
QP for JP .

The computation features four distinct decision points,
and we follow a rule-based approach for dealing with them.
For computing the join graph there is one such point: (1)
deciding which seed node to select from the collapse graph
CP of P . The computation of JP proceeds by selecting seeds
until all SAPs of P are accounted for. For computing the
query plan QP from JP there are three: (2) deciding which
join edge to select from JP ; (3) deciding which join type
to apply for the selected join edge; and, (4) deciding what
scan to select for a given SAP. All four decision points are
resolved by a number of configurable rules that are separate
from the rest of the algorithm.

The rules. Decision points 1 and 4 are identical (both in-
volve selecting a seed for an SAP) and can be resolved by
two possible rules. Rule seed-1 (S1) selects one preferred
seed for each distinct SAP in the input set based on the
positions of the atoms in the SAP, following the ordering
s � o � p. The intuition here is that subjects are more
selective than objects, which in turn are more selective than
predicates. Rule seed-2 (S2) does the same but prioritizes
the atoms in the SAP according to their selectivity as indi-
cated by dataset statistics.

Decision point 2 has the greatest influence on query re-
sponse time, as it determines the order of joins in the query
plan. It is resolved by five rules. Rule join-1 (J1) aims
to prioritize those joins for which it is possible to do a
merge join, which is intuitively cheaper to perform given



the TripleT index organization. Rule join-2 (J2) prioritizes
joins involving the most selective SAPs, where selectivity
is determined through the ordering (s, p, o) � (s, ?, o) �
(s, p, ?) � (?, p, o) � (s, ?, ?) � (?, ?, o) � (?, p, ?) � (?, ?, ?).
Here, s, p, o denote arbitrary atoms and ? denotes an ar-
bitrary variable; and, S � T indicates pattern S is more
selective than pattern T . Rule join-3 (J3) aims to prior-
itize joins between two SAPs that have the most selective
positioning of join variables, following the ordering s ./ p �
o ./ p � s ./ o � s ./ s � o ./ o � p ./ p. Rule join-4 (J4)
prioritizes joins between SAPs which feature a literal value
(e.g. “Sue”) in one of its positions, over those featuring only
URIs (e.g. “http://example.org/Sue”). The intuition behind
rules J2-J4 generalizes our intuition behind S1. Rule join-5
(J5) prioritizes joins between SAPs which, according to the
statistics database over the dataset, produce the smallest
intermediate result sets.

Decision point 3 is resolved by a fixed heuristic: whenever
it is possible to do a merge join (i.e. the left- and right input
sets involved in the join are both sorted on their shared join
variables), we do so; if not, we perform a hash join instead.

The rules for resolving decision points 1, 2, and 4 can
be used in any configuration (i.e. which rules are and are
not used, and in which order are they applied). Hence at
each decision point there is a variable, ordered list of rules R
which act as filters and which are applied in sequence on the
set of options in order to arrive at a final choice. Each rule
r ∈ R reduces the set of options I to a set of options I ′ ⊆ I
through filter step I

r−→ I ′. Any items in I ′ are then said to
be equivalent under r. Similarly, an ordered list of rules R

performs filtering step I
R−→ I ′, with any items remaining in

I ′ being called equivalent under R.

5. EXPERIMENTAL STUDY
The goal of our experiments is to gather evidence relevant

to answering the following questions:

1. How effective is each individual rule for generating op-
timized query plans?

2. How effective are combinations of rules for generating
optimized query plans?

3. Does the order in which rules are applied matter?

4. What is the impact of using statistics?

5. How do our optimization techniques perform under dif-
ferent types of queries?

6. How do our optimization techniques perform under dif-
ferent kinds of datasets?

These questions can be divided into four sections: (a) the
value of rules, (b) the value of statistics, (c) the difference
between queries, and (d) the difference between datasets.

The value of rules. As discussed in Section 4.3, our opti-
mization techniques make use of a number of different rules,
which are applied in a certain sequence when we arrive at
a decision point where a choice needs to be made. Most of
them work based on some heuristic. One would not expect
each rule to be just as effective as the next; in fact, such
would be a highly surprising outcome. Instead, one would
expect there to be noticeable differences in the effectiveness
of individual rules. One would also expect that certain com-
binations of rules will prove to be highly effective, more so

than what the sum of the parts might suggest. The order
in which rules are applied at a decision point would be ex-
pected to matter to a certain degree but be less important
than which rules are and are not used.

The value of statistics. Although we have described only
two rules in Section 4.3 which make use of statistics, their
purpose is the same as that of all of our heuristics-based
rules: to minimize intermediate result sizes produced during
query plan execution. Of course, the use of these statistics-
based rules comes at a cost: a full statistics database needs
to be computed and maintained over the dataset.

The difference between query types. There are several
different types of queries we use in our experiments. As our
datasets are essentially graphs and our queries are graph
patterns, it’s easy to visualize them as such. In Figure 2
the four common query shapes that our queries are based
around are shown, where a query’s SAPs are represented by
nodes which are connected if they share a variable.

(a)
Chain
query

(b)
Star
query

(c) Star-chain
query

(d) Loop
query

Figure 2: Different query shapes we study

Aside from their shape, other variables we study are
query size (in number of SAPs), and query selectivity.
The influence of query size on execution time is difficult to
predict. On one hand, more SAPs means more joins; on the
other, more SAPs can also mean higher selectivity which
can be exploited by the plan generator. As for query selec-
tivity, a query which features more atoms in more selective
positions in its SAPs generally produces a smaller result set.
Again, selective SAPs in a query can be favorably exploited
by the plan generator.

The collection of concrete queries used in our experiments
– covering the full range of combinations of shape, size, and
selectivity – is detailed in Wolff [18].

The difference between datasets. The test data we have
used comes from three different sources, covering both real
and synthetic data: DBpedia,4 SP2Bench,5 and UniProt.6

From each source we have obtained three different datasets:
one 100.000 (100K) triples dataset, one 1.000.000 (1M) triples
dataset, and one 10.000.000 (10M) triples dataset. For all
datasets, the 100K set is a strict subset of the 1M set, which
in turn is a strict subset of the 10M set.

Plan of study. In our experiments we primarily compare
different rule sets to each other. Hence, the composition of
the rule set is the main variable in each experimental run.
We define a run in our experiment as testing one particular
rule set on every dataset using every available query. Here,
testing some rule set x on dataset y using query z is com-

4
http://dbpedia.org/

5
http://dbis.informatik.uni-freiburg.de/forschung/projekte/SP2B/

6
http://www.uniprot.org/



Table 1: Results overview on 1M datasets: execution time (ms)

SP2Bench 1M UniProt 1M
Chain Star Star-chain Selective Non-selective Chain Star Star-chain Selective Non-selective

Run A-3 9975,5 6806,2 5070,5 2376,5 12191,6 1151,9 24328,1 25884,0 17512,9 16729,7
Run A-4 18121,6 6293,4 198520,0 55936,2 92687,1 1194,7 39200,0 2173,3 1472,3 26906,4
Run D-2 12173,2 6876,5 5195,6 3018,5 13145,0 1158,0 28490,1 3620,1 4010,5 18168,2

prised of: opening the TripleT database for dataset y; telling
the query plan generator to use rule set x; feeding query z to
the database; enumerating and immediately discarding the
query results; closing the database. Each run is tested five
times, each time “cold”, i.e. without preserving any caches
between tests, with average costs reported.

The runs we have performed are detailed in Table 2, where
a number indicates that a particular rule was used in that
run, the number itself indicating the order (a lower number
denoting a higher priority). Each of the runs has a particular
purpose: the A-runs are designed to test the heuristics rules
against the statistics rules; the B-runs aim to get a sense
of the value of the individual heuristics rules; the C-runs
focus on the ordering of rules; the D-runs are used to test
different subset combinations of rules.

Table 2: Runs and their rule sets

Rules

Runs

S1 S2 J1 J2 J3 J4 J5

A-1 1 1 2 3 4
A-2 1 1
A-3 1 2 1 2 3 4 5
A-4 2 1 2 3 4 5 1
B-1 1 1 2 3
B-2 1 1 2 3
B-3 1 1 2 3
B-4 1 1 2 3
C-1 1 4 3 2 1
C-2 1 3 2 1 4
C-3 1 2 1 4 3
D-1 1 1 3 2
D-2 1 2 1
D-3 1 1 2 3

5.1 Empirical results
In the interest of space, we highlight only a few of our

main observations here and refer the reader to Wolff [18] for
a detailed presentation and analysis of all results.

The A-runs. These runs were designed to test the per-
formance of the heuristics-based rules (runs A-1 and A-3)
against the statistics-based rules (runs A-2 and A-4).

We focus our discussion on A-3 and A-4 as illustrations of
these two groups. Table 1 presents results for the SP2Bench
and UniProt 1M datasets. We visualize results over all
dataset sizes in Figure 3, where we plot the average query
execution time over all queries, along with the average stan-
dard deviation. These results confirm that the heuristics-
based A-3 rule set offers better performance overall.

For the SP2Bench datasets, the heuristics-based A-3 is
most effective, with execution time of A-4 reaching up to an
order of magnitude higher. The DBPedia datasets showed
performance similar to that of SP2Bench. On UniProt the
differences are less pronounced, though we note that A-4
failed to scale up to the 10M set for the star-chain query.

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

100K 1M 10M

E
xe

cu
tio

nr
tim

er
(m

s,r
lo

gs
ca

le
)

Datasetr sizer (numberr ofr triples)

RunD-2 Runr A-3 Runr A-4

(a) SP2Bench

1E-00

1E-01

1E-02

1E-03

1E-04

1E-05

1E-06

100K 1M 10M

RunwD-2 Runw A-3 Runw A-4

E
xe

cu
tio

nw
tim

ew
Km

sAw
lo

gs
ca

le
M

Datasetw sizew Knumberw ofw triplesM

R

RwExcludingw15w/w60wdatawpointswwithwvaluesw>w1E-06

(b) UniProt

Figure 3: Results overview of runs A-3, A-4, and
D-2

Here, a combination of primarily heuristics rules with statis-
tics as back-up worked best, as seen with A-3.

On closer inspection, the general cause for A-4’s perfor-
mance is that its plans feature more hash joins than those
produced by A-3. Performing a hash join can result in a
significant amount of intermediate result materialization,
whereas this is not the case with the merge join because
it can take advantage of the fact that the input streams are
guaranteed to be sorted. This is illustrated by the actual
plans generated by A-3 and A-4 as presented in Figure 4,
for the following small selective star-chain SP2Bench query:

(?1, http://www.w3.org/1999/02/22-rdf-syntax-ns#type,
http://localhost/vocabulary/bench/Article),

(?1, http://purl.org/dc/elements/1.1/creator,
http://localhost/persons/Paul Erdoes),

(?1, http://swrc.ontoware.org/ontology#journal, ?3)
(?1, http://purl.org/dc/terms/references, ?4),
(?5, http://www.w3.org/1999/02/22-rdf-syntax-ns#type,

http://localhost/vocabulary/bench/Article),
(?5, http://purl.org/dc/elements/1.1/creator,Dell Kosel),
(?5, http://swrc.ontoware.org/ontology#journal, ?3),
(?5, http://purl.org/dc/terms/references, ?7)

The B- and C-runs. These runs were designed to get
a sense of the value for each individual heuristics rule and
to measure the importance of rule ordering, respectively. In



(a) Run A-3

(b) Run A-4

Figure 4: Plans generated for a small selective star-
chain query on the SP2Bench 1M dataset

short, we observed in these experiments that the J1 rule
is the single most important heuristics rule: configurations
that gave it a lower priority often failed to scale up to the
10M datasets. Aside from that there appeared to be no clear
winner in individual rules or ordering of the rules.

The D-runs. In these runs we look at configurations
which use a limited subset of rules. These experiments
showed that minimal rule sets are quite stable and effective
in performance. As a point of comparison with A-3 and A-4,
we present the results for D-2 in Table 1 and Figure 3. Here
we see that even this very limited rule set is always competi-
tive with both A-3 and A-4. The D-2 run appears to provide
the best, consistent performance over all three datasets, and
preferring the J2 rule (selectivity) over the J1 rule (merge-
joins) is one of the few configurations to perform well on
the UniProt star- and star-chain queries, which proved to
be some of the most difficult queries we have tested. This
performance by the D-2 run is somewhat surprising, as this
configuration consists of only three heuristics rules (one seed
rule, two join rules), and does not use statistics at all.

5.2 Discussion
We have seen through an extensive empirical evaluation

how the value of individual rules used by the plan generator
can vary greatly. Especially the merge join prioritization
rule, which is given preference in A-3, appears to be in-

valuable for the generation of efficient query plans. As a
heuristic, there are of course practical scenarios which vio-
late this good behavior of merge join prioritization. In our
experiments, we experienced this only in the case of UniProt
star-chain queries. Indeed, here the performance generally
improved when this rule was given a lower priority, as in D-
2, where the selectivity prioritization rule proved to have the
largest positive impact. The benefits of the three remaining
heuristics rules are similar. In particular, in their absence,
the impact on query response time is roughly the same.

In general, we have observed that the impact of statistics
and the statistical prioritization join rule is measurable but
limited. When used alone or as the primary join rule, the
statistics rule produces query plans significantly worse than
those produced by the heuristics rules, as evidenced by run
A-4. This suggests that the value of statistics rules is found
mostly in a supporting role.

In summary, we recommend the D-2 rule configuration for
general use, as it is a purely heuristic and minimal approach
which delivers excellent results across the board. Overall,
our findings corroborate results obtained by Tsialiamanis
et al. [17], where a heuristics-based planner for SPARQL
queries is shown to be competitive with the cost-based ap-
proach taken in the state of the art RDF-3X store [15].

6. CONCLUDING REMARKS
In this paper we have presented results of a study of query

optimization on TripleT-based RDF stores. We have pro-
posed a query optimization framework that takes the shape
of a generic, rule-based algorithm. We also proposed a num-
ber of heuristic and statistical rules for use by this algorithm.

We have evaluated this framework in an extensive series
of experiments. These experiments have shown that a small
number of relatively simple heuristics can consistently pro-
duce efficient evaluation plans for a wide variety of queries
and datasets. We have also seen that while statistics do
add value, the value is minimal, and not within reasonable
proportion to the costs involved in constructing and main-
taining statistical data structures over massive graphs.

A number of interesting avenues for future work remain
open. A study of runtime optimization strategies in our
framework, such as sideways information passing [14], and
further sophisticated join-ordering [7] strategies are both
naturally rich areas for exploration. We have also encoun-
tered various challenges with using statistics for query opti-
mization. Additional work in this area would be interesting,
and may yet help our optimization framework produce even
more efficient query plans.

Acknowledgments. We thank Antonio Badia, Paul De Bra,
and Herman Haverkort for their helpful comments.

References
[1] M. Arenas, C. Gutierrez, and J. Pérez. Foundations of

RDF databases. In Reasoning Web, pages 158–204, Brixen-
Bressanone, 2009.

[2] B. C. Desai. Performance of a composite attribute and join
index. IEEE TSE, 15(2):142–152, 1989.

[3] A. Deshpande and D. Van Gucht. A storage structure for
nested relational databases. In Nested Relations and Com-
plex Objects, LNCS 361, pages 69–83. Springer, 1987.

[4] A. Deshpande and D. Van Gucht. An implementation for
nested relational databases. In VLDB, pages 76–87, Los An-
geles, 1988.



[5] O. Erling and I. Mikhailov. RDF support in the Virtuoso
DBMS. In T. Pellegrini et al, editor, Networked Knowledge
- Networked Media, pages 7–24. Springer, 2009.

[6] G. H. L. Fletcher and P. W. Beck. Scalable indexing of RDF
graphs for efficient join processing. In CIKM, pages 1513–
1516, Hong Kong, 2009.

[7] A. Gubichev and T. Neumann. Exploiting the query struc-
ture for efficient join ordering in SPARQL queries. In EDBT,
pages 439–450, Athens, Greece, 2014.

[8] W. J. Haffmans and G. H. L. Fletcher. Efficient RDFS entail-
ment in external memory. In SWWS, pages 464–473, 2011.

[9] T. Heath and C. Bizer. Linked Data: Evolving the Web into
a Global Data Space. Synthesis Lectures on the Semantic
Web. Morgan & Claypool Publishers, 2011.

[10] H. Huang and C. Liu. Estimating selectivity for joined RDF
triple patterns. In CIKM, pages 1435–1444, Glasgow, 2011.

[11] K. Li. Cost analysis of joins in RDF query processing using
the TripleT index. Master’s thesis, Emory University, 2009.

[12] Y. Luo, F. Picalausa, G. H. L. Fletcher, J. Hidders, and
S. Vansummeren. Storing and indexing massive RDF
datasets. In R. De Virgilio et al, editor, Semantic Search
over the Web, pages 31–60. Springer, 2012.

[13] T. Neumann and G. Moerkotte. Characteristic sets: Accu-
rate cardinality estimation for RDF queries with multiple
joins. In ICDE, pages 984–994, Hannover, Germany, 2011.

[14] T. Neumann and G. Weikum. Scalable join processing on
very large RDF graphs. In SIGMOD, pages 627–640, Provi-
dence, Rhode Island, USA, 2009.

[15] T. Neumann and G. Weikum. The RDF-3X engine for scal-
able management of RDF data. VLDB J., 19(1):91–113,
2010.

[16] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and
D. Reynolds. SPARQL basic graph pattern optimization us-
ing selectivity estimation. In WWW, pages 595–604, Beijing,
2008.

[17] P. Tsialiamanis, L. Sidirourgos, I. Fundulaki,
V. Christophides, and P. Boncz. Heuristics-based query
optimisation for SPARQL. In EDBT, pages 324–335, Berlin,
2012.

[18] B. G. J. Wolff. A framework for query opti-
mization on value-based RDF indexes. Master’s
thesis, Eindhoven University of Technology, 2013.
http://alexandria.tue.nl/extra1/afstversl/wsk-i/wolff2013.pdf.


