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Abstract. In Model-Driven Engineering (MDE) the modification of a metamodel
typically can invalidate many different sorts of artifacts. In order to mitigate the
pragmatic consequences of such problem, several coupled evolution techniques
have been introduced over the last few years mainly focussing on restoring the
validity of models, transformations, and editors. However, none of the proposed
techniques addressed the coupled evolution of metamodels and template-based
code generators, which has been largely neglected despite the relevance of such
systems. In an attempt to fill the gap, this paper presents an approach for the
coupled evolution of Acceleo-based templating including the OCL embedded in
its notation. The approach has been implemented and illustrated by means of a
running example.

1 Introduction

In Model-Driven Engineering [1] (MDE) the employment of metamodels is perva-
sive. They are used to formally describe a wide range of artifacts, including models,
transformations, concrete syntaxes, and editors. In essence, metamodels are at the core
of any modeling ecosystem and their management is therefore key to success. Simi-
larly to any software component metamodels are expected to evolve during their life-
cycle [2]. However, because of the dependencies between metamodels and the related
artifacts, modifying a metamodel might compromise the validity of the latters. Unfortu-
nately, restoring the validity of such artifacts in a semi-automated manner is intrinsically
difficult because it must consider both the purpose of the metamodel modification (i.e.,
updative, adaptive, performance, corrective or reductive) and the technical aspects (i.e.,
the when, where, what and how of changes) [3]. While several approaches already in-
vestigated the coupled evolution of models (e.g., [4,5,6]), transformations (e.g., [7,8,9]),
and editors (e.g., [7,10]), the coupled evolution of template-based code generators has
been largely neglected at the expense of reduced pragmatics.

In this paper, we propose an approach to the coupled evolution of metamodels and
template-based code generators. In particular, we provide a solution to the problem
of adapting Acceleo1-based templates when the metamodels of the input models are
changed. The proposed approach is able to adapt corrupted Acceleo templates and it
is performed by means of an ATL adaptor, i.e., a model transformation which takes
the metamodel changes (represented in an opportune model-based notation), the model

1 http://www.obeo.fr/pages/acceleo
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(a) Initial version (b) Evolved version

Fig. 1: OrgChart simple metamodel evolution

associated to the corrupted Acceleo template and returns the adapted template. The
approach presents many similarities to other approaches focussing on the adaptation of
other kinds of artifacts, however it presents also specific difficulties: a) all the possible
metamodel refactorings (see [11]) must be dealt by the adaptor, and b) Acceleo provide
model traversing facilities by means of the Object Constraint Language2 (OCL) whose
expressions must be adapted as well. Interestingly, to the best of our knowledge none
of the current approaches focussed on code-generators, despite the relevance they have
in a wide range of projects.

The paper is organized as follows. In Section 2 we clarify the context of this work,
exposing briefly Acceleo and the co-evolution problem using a real case study. In Sec-
tion 3 we propose the process for the resolution of the presented problem and we show
the models before and after the resolution. In Section 4 a related section is organized for
the comparison of the existing works and the presented one. We conclude also including
the future works in Section 5.

2 The coupled evolution problem in model-to-text transformations
Almost any artifact involved in a model-driven development processes at different ex-
tent depends on the considered metamodels. Dependencies can emerge at different
times during the metamodel life-cycle, and with different degrees of causality depend-
ing on the nature of the considered artifact. An ecosystem of modeling artifacts and
tools developed atop of a metamodel, like the OrgChart metamodel shown in Fig. 1.a
and presented later in the paper, is a living set of artifacts working together and built
on the top the considered domain. For example graphical and textual editors might
be developed to support the specification of OrgChart models. Model transformations
might be also developed to generate target models or code out of source OrgChart mod-
els. Moreover, the Acceleo-based WebPages code generator is one of the possible code
generator used to generate target Web pages from source OrgChart models.

When metamodels are changed e.g., to satisfy unforeseen requirements or simply to
better represent concepts of the considered domain, the already existing artifacts might
be compromised and they have to be adapted in order to recover their conformance
with the new version of the changed metamodel. The metamodel evolution problem
and the consequent ecosystem migration has been discussed [12] and to the best of our
knowledge the adaptation of Acceleo-based generators has not been investigated yet
and it represents the main goal of this paper.

2 http://www.omg.org/spec/OCL/

23



III

Fig. 2: Sample Acceleo templates

The remaining of the section is organized as follows: an overview of Acceleo is
given in Section 2.1. Section 2.2 introduces the problems related to the adaptation of
Acceleo-based transformations according to the changes operated on the corresponding
metamodels.

2.1 Acceleo-based model-to-text transformations

Acceleo is a model-to-text transformation tool typically used to develop code genera-
tors. Acceleo generators are based on templates that identify repetitive and static parts
of the applications, and embody specific queries on the source models to fill the dy-
namic parts. Fig. 2 shows a fragment of the Acceleo template that has been developed
to generate graphical representations of source OrgChart models as shown in Fig. 3.
In particular, the template generates HTML and Javascript code that uses the Google
Chart API3 to get the chart representations like the one in Fig. 3.b from source orga-
nizational models. Each Acceleo-based text generator starts with the specification of a
module referring to the metamodel that will be used during the generation process (see
line 2 in Fig. 2). Lines 3-32 consist of the template used to transform instances of the
President metaclass in Fig. 3a. In particular, for each president in the source model a
corresponding HTML file is generated (see line 5). The file name is obtained from the
attribute companyName in the aPresident variable, that is an instance of President.

From line 8 to 17 the template consists of static JavaScript code to create the chart.
Interestingly, lines 18 to 21 consist of an iteration that creates the rows related to the

3 https://developers.google.com/chart/
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members to be represented as boxes in the charts. Each row contains information taken
from the Member instance e.g., the name and the role. Once the president element
has been transformed, the other members are generated by means of the template gen-
erateSubMembers (see lines 33-44)specifically developed to manage instances of the
metaclass Member. Such a template iterates on the subemployees relations in order to
generate corresponding boxes.

2.2 Invalidating Acceleo-based templates with metamodel evolution

As previously mentioned, existing modeling artifacts might be affected by the changes
operated on the corresponding metamodels, and Acceleo templates are not an option.
For instance, the metamodel evolution shown in Fig. 1b compromises the Acceleo tem-
plates previously analyzed that become invalid in different points. In particular, the new
version of the OrgChart metamodel has been obtained by operating the following meta-
model change patterns [6]:

i) a new metaclass with name Company has been added with the attribute company-
Name moved into it. Such a modification refers to the extract metaclass pattern;

ii) the attribute address in the initial Member metaclass has been removed by applying
the remove attribute pattern;

iii) the reference boss has been renamed as supervisor by applying the rename refer-
ence pattern.

Because of such changes the templates presented in the previous section are in-
valid and cannot be applied on models conforming to the new version of the OrgChart
metamodel. In particular, the references to the companyName attribute (e.g., see the ex-
pression ”aPresident.companyName” at line 5 in Fig. 2) have to be migrated since the
attribute has been moved to a new metaclass. A similar problem occurs at lines 36-42
that refers to the attribute address that has been removed. Finally, lines 35-41 have to be
also migrated since they refer to the feature boss that has been renamed as supervisor.

Adapting Acceleo templates without a proper supporting can be a strenuous and
error-prone task. In the next section we propose an approach based on model-differencing
and model transformations that under certain conditions is able to automatically adapt
affected Acceleo templates.

(a) Source OrgChart model (b) Generated HTML5+JS chart

Fig. 3: Simple OrgChart model and corresponding graphical representation
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Fig. 4: Adaptation process

3 Adaptation of Acceleo templates

In this section we propose an approach able to adapt Acceleo templates that have to
be migrated because of changes operated on the corresponding metamodels. The ap-
proach is based on the process shown in Fig 4 and it resembles the techniques we have
already applied to adapt ATL transformations [7], TCS specifications [13], and GMF
editors [10], that are different kinds of artifacts having the same co-evolution problem.
In particular, the adaptation process consists of the following main activities:
. Difference calculation, given two subsequent versions of the same metamodel, their
differences are calculated to identify the changes which have been operated on the first
version of the model to obtain the last one. The calculation can be operated by any of
the existing approaches able to detect the differences between any kind of models, like
EMFCompare 4;
. Difference representation, the detected differences have to be represented in a way
which is amenable to automatic manipulations and analysis. To take advantage of stan-
dard model driven technologies, the calculated differences should be represented by
means of another model[14];
. Generation of the adapted Acceleo templates, the differences represented in the dif-
ference model are taken as input by the Acceleo Adapter Transformation able to adapt
the source templates with respect to the operated metamodel modifications.

Concerning the last step of the process it is important to recall that metamodel
changes can be classified as follows [6,9]:
. non-breaking changes: changes that do not break existing Acceleo templates that are
still valid with the new version of the metamodel;
.breaking and resolvable changes: changes that affect the validity of existing Acceleo
templates but that can be automatically adapted to be applied on models conforming to
the new version of the metamodel;
. breaking and unresolvable changes: changes that affect the validity of existing Ac-
celeo templates and user intervention is required to migrate them.

By considering the previous classification, the adaptation process shown in Fig. 4 is
able to migrate Acceleo templates only in case of breaking and resolvable changes. In
case of unresolvable changes, comments are added in the generated templates in order
to highlight the parts of the templates that have to be fixed by developers. Because
of space limitations, in this paper we do not list the catalogue of metamodel changes
according the classification above and interested readers can refer to [6] for a detailed
discussion. In the remaining of the section we give some details about the representation

4 EMFCompare: http://www.eclipse.org/emf/compare/
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Fig. 5: Delta model representing the differences between the metamodels in Fig. 1

of metamodel differences (Section 3.1) and about the management of some breaking
and resolvable changes (Section 3.2).

3.1 Representation of metamodel changes

The differences between different versions of a same metamodel are represented by ex-
ploiting the difference metamodel concept, presented by some of the authors in [15].
In particular, given two Ecore metamodels, their difference conforms to a difference
metamodel MMD derived from Ecore by means of a model transformation as follows:
for each class MC of the Ecore metamodel, the additional classes AddedMC, Delet-
edMC, and ChangedMC are generated in the extended Ecore metamodel by enabling
the representation of the possible modifications that can occur on domain models and
that can be grouped as follows: i) additions, new elements are added in the initial meta-
model; ii) deletions, some of the existing elements are deleted, and iii) changes, some
of the existing elements are updated. Fig. 5 shows a fragment of the model representing
the differences between the metamodels in Fig. 1. For instance, the renaming of the
reference boss into supervisor, is represented by means of the ChangedClass named
Member that has the ChangedReference boss referring by means of the reference to the
new updatedElement to the reference named supervisor.

3.2 Acceleo Adapter Transformation

The adaptation of affected Acceleo templates is performed by means of an ATL trans-
formation that takes as input the model of the affected Acceleo templates, the difference
model representing the evolution of two subsequent versions of the same metamodel,
and generates the adapted Acceleo templates. The transformation consists of a con-
servative copy part, including rules that simply copy the not affected elements in the
template, and a migration part, consisting of one rule, each devoted to the management
of a specific metamodel change. A fragment of the developed transformation is shown
in Listing 1.1.Due to space limitations, Listing 1.1 reports only the rules managing
the change patterns discussed in Section 2.2. Following we will describe the rules of
the Acceleo Adaptater showing how the migration has been done on the template of
our case study. As can be seen in Fig. 6 the corrupted Acceleo template is injected in
a model with extension ”.emtl”, compliant to the Acceleo metamodel. In Figures 6a,
6b, excerpts of the templates and corresponding models have been reported (top is the
model injected from the template source in the bottom).
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1module AcceleoAdapter;
2create OUT:AcceleoMM from IN:AcceleoMM, InitialMM:ECORE, DELTA:DELTAMM, EvolvedMM:

ECORE;
3...
4rule PropertyCallExpExtractMC {
5 from s : AcceleoMM!PropertyCallExp (s.existExtractMC())
6 to t : AcceleoMM!"ecore::PropertyCallExp" (
7 ...
8 referredProperty <- s.getReferenceExtractMC(),
9 source <- t1

10 ),
11 t1 : AcceleoMM!PropertyCallExp(
12 source <- thisModule.VariableExpExtractMC(s.source),
13 referredProperty <- s.getReferredPropertyExtractMC()
14 )
15}
16lazy rule VariableExpExtractMC
17{
18 from s : AcceleoMM!VariableExp
19 to t: AcceleoMM!"ecore::VariableExp"(
20 ...
21 referredVariable <- t1
22 ),
23 t1 : AcceleoMM!"ecore::Variable"(..)
24}
25rule PropertyCallExp {
26 from s : AcceleoMM!PropertyCallExp
27 (not s.deletedEStructuralFeature() or not s.referredProperty.

isChangedEStructuralFeature())
28 to t : AcceleoMM!"ecore::PropertyCallExp" (
29 ...
30 referredProperty <- s.getReferredProperty()
31)
32}
33rule PropertyCallExpChanged {
34 from s : AcceleoMM!PropertyCallExp
35 (s.referredProperty.isChangedEStructuralFeature())
36 to t : AcceleoMM!"ecore::PropertyCallExp" (
37 ...
38 referredProperty <- s.referredProperty.getReferredPropertyChanged()
39)
40}
41...

Listing 1.1: Fragment of the Acceleo adapter transformation

PropertyCallExpExtractMC (lines 4-15 in Listing 1.1) is the matched rule respon-
sible for managing attributes involved in extract metaclass changes, like the attribute
companyName of the metamodel (Fig. 1a), cited in the template highlighted in Fig. 6a
line 5. The filter condition in this rule calls the existExtractMC helper that checks if he
considered attribute is involved in some extract metaclass change pattern. In this spe-
cific case, such a change pattern occurs because of the addition of the metaclass Com-
pany, the deletion of the attribute companyName, the addition of the reference com-
pany and the changed changed metaclass President. The execution of such rule on the
considered template generates two nested PropertyCallExps (see lines 8-14) for the
proper navigation of the extracted attribute, see Fig. 6b, where the expression ”aPres-
ident.company.companyName” corresponds to a nested element in the related model.
The PropertyCallExpExtractMC rule calls the lazy rule VariableExpExtractMC (see
line 12) that creates new VariableExp and Variable OCL elements. The value of re-
ferredProprerty (line 13) binding is set by the helper getReferredPropertyExtractMC
that retrieves the new reference according to the information available in the difference
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(a) Initial version
(b) Final version

Fig. 6: Fragment of the generateElement template

model. This rule is able then to migrate the expression aPresident.companyName to the
new expression aPresident.company.companyName.

The matched rule PropertyCallExp (line 25-32) is one of the conservative copy
rule for the elements in the templates that are not affected by the operated metamodel
changes. In fact, the rule condition at line 27 checks if the considered element is not
deleted or changed according to the information available in the difference model. At
line 30, the value of referredProperty is set by getReferredProperty that derives the
right reference. In our example this rule is responsible for the deletion of the expression
m.address (line 36 in Fig. 2) related to the deleted attribute address in the metamodel.

The matched rule PropertyCallExpChanged (line 33-40) manages reference renam-
ing changes as in the case of the reference boss renamed as supervisor in our metamod-
els (Figures 1a and 1b). The condition of the rule checks if the renaming is occurring
in the difference model, by using the helper isChangedEStructuralFeature. In this case
the new PropertyCallExp is created, setting the referredProperty with the new value
coming from the renamed element in the difference model, by using the helper ge-
tReferredPropertyChanged. For instance, the expression ”m.boss” in Fig. 2 (line 41),
referring to the renamed reference, is replaced with the expression ”m.supervisor”.

4 Related Work

Metamodeling ecosystems and coupled evolution have been presented in [12], explor-
ing the problem artefact by artefact and including the relation definition among them.
Coupled evolution of models and metamodel has been previously exhaustively treated
in [6,5,16]. These works focus on the problem of models migration when metamodel
changes. They use a model migration language, or an higher order transformation for
migrating models. These approaches use a conservative copy for the non-breaking
changes, like in our approach. Obviously the atifact kind is different but the intent is
the same. Moreover, transformations and metamodel co-evolution is another interesting
topic investigated in [8,17,9]. They propose methods and discussions about the prob-
lem that we have changing the metamodel which the transformations refer to. All those
works use the similar definitions for the classification of changes. Other kinds of arte-
facts defined on the top of the metamodel can be concrete syntaxes definitions, like
diagrammatic or textual. Also these artefacts have dependencies to the metamodel that
need to be restored when the metamodel evolves. In [7] and [10] those problems are
respectively treated proposing automation similar to the one described in this paper.

29



IX

This work is strictly related the OCL definition [18], since the migration part is in-
herent to the Object Constraint Language used by Acceleo for the model navigation
in the templates. The work developed for the migration of acceleo templates can be
the inspiration or partially reused in other migration of artifacts using OCL, like OCL
Query or OCl expression in ATL and so on. In [19] the authors have dealt with the
problem of constraints adaptation in order to be compliant to the evolution of their as-
sociated metamodels. Since maintaining OCL constraints can be a tedious task, Kahina
Hassam et al. propose to assist the developer to rewrite them after each evolution of
the associated metamodels. In [20], the authors presented an architecture to automate
coupled evolution on an arbitrary software domain. They compute equivalences and
differences between any pair of metamodels (e.g., representing schemas, UML models,
ontologies, grammars) to derive adaptation transformations from them, and they apply
these adaptations as step wise automatic transactions on the initial metamodel, to obtain
the final metamodel. These works are related for the OCL part that is in common with
our work. In [21] presents ChainTracker, a general conceptual framework, and model-
transformation composition analysis tool, that supports developers when maintaining
and synchronizing evolving code-generation environments. ChainTracker, gathers and
visualizes model-to-model, and model-to-text traceability information for ATL and Ac-
celeo model-transformation compositions.

5 Conclusions and future work
The problem of coupled evolution in Model-Driven Engineering represents one of the
major impediment for the practice of such software discipline. Several approaches have
been already proposed mainly focussing on the adaptation of models, transformations,
and - at different extent - editors. This paper extended existing techniques to the adapta-
tion of template-based code generators, because such kind of code generators are widely
used and part of routinary practices. In particular, the paper proposed an ATL adaptor
to consistently migrate Acceleo templates in accordance to the changes operated on
the corresponding metamodel. The main contribution of the paper consists in a) the
refactoring coverage which is extensive and considers the major refactorings classified
in [11]; and b) the migration of OCL expressions which are used by Acceleo for model
traversing. The approach has been implemented and is illustrated throughout the paper
by means of a running example. To the best of our knowledge, this is the first attempt in
addressing the problem of the coupled evolution of template-based code generators. Fu-
ture work includes the possibility of covering a part of the breaking and non resolvable
cases by introducing models with partiality and uncertainty borrowed from the area of
requirement engineering.
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