
Alexandre Rademaker
Vinay K. Chaudhri (Eds.)

FOMI’2014
Formal Ontologies meet Industry

6th Workshop on Formal Ontologies meet Industry
Workshop co-located with 8th International Conference on For-
mal Ontology in Information Systems
Rio de Janeiro, Brazil, September 22, 2014
Proceedings

c©2014 for the individual papers by the papers’ authors. Copying permitted for private
and academic purposes. Re-publication of material from this volume requires permission
by the copyright owners. This volume is published and copyrighted by its editors.

Editors’ addresses:
IBM Research Brazil Lab, Rio de Janeiro, Brazil
SRI International, CA, USA

alexrad@br.ibm.com, vinay.chaudhri@sri.com

Preface

This volume contains the papers presented at FOMI 2014: Sixth Workshop on Founda-
tional Ontologies Meet Industry held on September 22nd, 2014 in Rio de Janeiro, Brazil.
FOMI is an international forum where academic researchers and industrial practitioners
meet to analyse and discuss application issues related to methods, theories, tools and ap-
plications based on formal ontologies.

This volume contains seven peer reviewed articles that were presented at the workshop. In
addition, the workshop featured an invited talk by Mara Abel on the use of ontologies in
the petroleum industry and a panel discussion.

We thank the authors for their submissions and the program committee for their hard work.

September 2014 Vinay K. Chaudhri
Alexandre Rademaker

3

Organizing Committee

Alexandre Rademaker, IBM Research, Brazil
Vinay K. Chaudhri, SRI International, USA

Program Committee

Adam Pease, IPsoft, USA
Chris Partridge, Boro Solutions, UK
Elisa Kendall, Thematix Partners LLC, USA
Maira Gatti, IBM Research, Brazil

4

Contents

Representing Organizational Structures in an Enterprise Architecture Language
Diorbert Pereira and João Almeida 7

ISA-88 formalization. A step towards its integration with the ISA-95 standard
Marcela Vegetti and Gabriela Henning 17

Improving Ontology Service-Driven Entity Disambiguation
Patrice Seyed, Zach Fry and Deborah McGuinness 26

Towards an Ontological Grounding of IFC
Stefano Borgo, Emilio Sanfilippo, Walter Terkaj and Aleksandra Sojic 36

Ontologies in Enterprise Application: Dimensional Comparison
Valeria de Paiva, William Jarrold, David Martin, Peter Patel-Schneider, Karen
Wallace and Peter Z. Yeh 45

Towards Ontological Support for Principle Solutions in Mechanical Engineering
Thilo Breitsprecher, Mihai Codescu, Constantin Jucovschi, Michael Kohlhase, Lutz
Schörder and Sandro Wartzack 53

5

6

Representing Organizational Structures in an Enterprise

Architecture Language

Diorbert C. PEREIRA

Computer Science Department

Vitória, Brazil

diorbert@inf.ufes.br

João Paulo A. ALMEIDA

Computer Science Department

Vitória, Brazil

jpalmeida@ieee.org

Abstract

Enterprise Architecture (EA) promotes the establishment of a holistic view

of the structure and way of working of an organization. One of the aspects

covered in EA is associated with the organization’s “active structure”,

which concerns “who” undertakes organizational activities. Several

approaches have been proposed in order to provide a means for

representing enterprise architectures, among which the ArchiMate, an EA

modeling language. In this paper, we present a semantic analysis of the

fragment of the ArchiMate metamodel related with the representation of

active structure. In addition, we present a proposal to extend the metamodel

based on a well-founded ontology for the organizational domain. Our

objective is to enrich the language with important capabilities to represent

organizational structures using a principled ontology-based approach.

Introduction

Enterprise Architecture (EA) promotes the establishment of a holistic view of the organization in order to provide

organizations with the ability to understand its structure and way of working. As defined in [1], the description of an EA

usually “takes the form of a comprehensive set of cohesive models that describe the structure and functions of an

enterprise”. The majority of EA frameworks considers an organization as a system whose elements include: (i)

organizational activities structured in business processes and services; (ii) information systems supporting organizational

activities; (iii) underlying information technology (IT) infrastructures, and (iv) organizational structures (organizational

actors, roles and organizational units).

This last domain of elements is also called “active structure” [2] and concerns “who” undertakes organizational

activities. Active structure focuses on the business agents that perform tasks and seek to achieve goals, encompassing the

definition of business roles, authority relationships, communication lines, work groups, etc. The relevance of

organizational structure is clear from a management perspective in that it defines authority and responsibility relations

between the various elements of an enterprise. Further, from the perspective of enterprise information systems,

organizational actors can be considered as system owners, system maintainers, system users or simply system

stakeholders in general, affecting the usage and evolution of such systems [3]. Our ultimate goal is to produce EA

models that represent organizational reality faithfully and thus serve for the purposes of EA documentation, analysis and

communication.

In this paper, we are particularly interested in the modeling of the active structure domain in the widely employed EA

modeling language ArchiMate [2]. A strength of this language is the broad coverage of a wide number of aspects of EA,

and the possibility to describe relations between the various aspects. Nevertheless, the emphasis on providing an

overview of relations seem to have led to a less sophisticated treatment of some aspects, and that includes the active

7

structure domain. As a consequence, some shortcomings have been identified by the ontology community [4][5], such as

limitations on its conceptual coverage and lack of clear real-world semantics for some of its constructs. The limitations

in the coverage of concepts affect the language’s ability to represent important organizational phenomena (affecting

expressiveness, or what is called “completeness” in [6]). The absence of a well-defined real-world semantics opens space

for interpretations not originally intended by a language user, resulting in ambiguous and inaccurate representations and

ultimately in problems of communication between users.

Our primary goal is to address these limitations by proposing means to represent more sophisticated organizational

structures in ArchiMate. We address this task with a principled approach. We first define a reference ontology for the

active structure domain. Our objective for this reference ontology is to focus on core aspects of this domain in

accordance with dominant themes in the management literature. Having this reference ontology enables us to analyze the

capacity of ArchiMate to represent information about the active structure domain. We point out the problems and their

consequences for the generation of high-quality EA models. Finally, we present a proposal to extend the language

metamodel to address the identified issues and contribute to the increase of the expressiveness and clarity of the

language.

This paper is structured as follows: Section 1 reviews basic organizational concepts in order to set minimum

requirements for the representation of the active structure of organizations. Section 2 introduces the OntoUML Org

Ontology (O3). Section 3 introduces ArchiMate active structure constructs briefly. Section 4 the analysis and revision of

ArchiMate using the notions of O3. Section 5 discusses related work. Finally, Section 6 presents our conclusions.

1 Basic Notions in the Organizational Literature

In the organizational literature, some basic organizational notions are frequently referred to in order to characterize

organizations. In this section, we discuss these notions, as they form basic requirements of expressiveness of

organizational structure. We do not aim at exhausting all relevant aspects concerning organizational structure. We focus

on three dominant themes in the management literature: (i) division of labor, (ii) social relations and (iii) types of

structuring units.

1.1 Division of Labor

We, as human beings, have limitations on processing information and on accomplishing tasks [7]. Division of labor

manages our human limitations and coordinates us to achieve organizational goals. Fayol defined in [8] that the division

of labor aims to produce more and better, with the same effort, in addition to reducing the number of objectives upon

which the attention and effort should be applied.

In a top-down view, organizations can be considered as systems composed of subsystems, each of which can be

nested into subsystems recursively [9]. Division of labor consists in the top-down view of dividing an overarching

organizational mission into specialized goals or tasks allocated to distinct well-defined units of work in order to increase

efficiency. The creation of working groups aggregating individuals with heterogeneous skills that pursue a common

purpose represents the definition of these subsystems (which we will call here Organizational Units). In a bottom-up

view, “we are confronted by the task of analyzing everything that has to be done and determining in what grouping it can

be placed […] Workers may be easily combined in a single aggregate and supervised together” [10].

The division of labor in its highest degree of specialization is represented by defining “positions”. At this level of

granularity, the tasks are distributed among the various positions as official duties. This infers a clear division of labor

between positions, as defined in [11]. Positions also allow the formalization of the organization based on descriptions of

duties, rights, requirements and social relations assigned to reusable organizational roles and not directly on the actors

who play them.

1.2 Social Relations

Within the universe of a formal organization, social relations of power and communication are of great relevance.

Concerning power relations, [8] defines that authority is the right to command and the power to be obeyed. Without

authority, i.e., without explicit formal organization in upper and lower positions, where the superiors have more power

than the lower, the organization ceases to be a coordinated entity [12]1. Apart from power relations, communication

relations allow the definition of interactions between business actors without requiring the establishment of relations of

authority. The existence of a relationship of authority between organizational actors implies the existence of a

relationship of communication between them, but the contrary is not always true.

1 This reveals our interest specifically in organizations that are, to a certain extent, hierarchical

Representing Organizational Structures in an Enterprise Architecture Language

8

1.3 Types of Structuring Units

The working groups that compose organizations have different natures. Different structuring principles (functional, line-

staff, divisional, matrix and flat organizations) lead to different types of structuring units like departments, divisions, line

units, staff units, teams and task forces.

In organizations structured following the line-staff model, one of the main distinctions is between line and staff units.

The line units comprise the functional organization and represent the specialization of division of labor in

functional/production units following different criteria of aggregation of individuals. The line units can relate through

relationships of authority and are composed of other line units [13]. In contrast, staff units are units without

administrative authority, who have the responsibility of advising the production units to perform actions and do not have

full responsibility for the execution of tasks [14]. The “staff authority is subordinate to line authority, and they tend to

identify line with managers or administrators and staff with experts and specialists” [14].

Other types of working groups present in organizations that adopt the matrix model are the teams and task forces [15],

which are units with dual authority relationship, where the relationship of power is balanced between formal authority

and technical authority [15]. Teams and task forces aggregate employees belonging to different

departments/divisions/line units and can have limited lifetime. In addition, these types of structuring units put together in

a single unit the authority and information necessary for performing tasks [15]. The main difference between teams and

task forces lies in the fact that task forces are used to solve temporary problems, while teams are used to solve recurring

problems [15].

2 The Reference Domain Ontology

The basis of the semantic analysis of ArchiMate performed in this paper is a reference domain ontology which we call

OntoUML Org Ontology (O3). It covers the organizational domain, focusing on the themes discussed in the previous

section. In order to represent this reference ontology, we employ OntoUML, a UML profile that incorporates the

foundational distinctions of the Unified Foundational Ontology (UFO) using UML stereotypes. Thus, our domain

ontology employs and specializes the more general domain-independent notions of objects, types, events, social entities,

etc. (A brief description of the required UFO concepts is given below in sections 2.1 and 2.2. See [6] and [16] for

thorough presentations.) Our choice for UFO is based on the key role it has played in previous efforts in domain

ontology engineering [16], harmonization of semantic models [17][18] and evaluation and revision of enterprise

languages [3][19]. By specializing UFO, O3 provides an ontologically well-grounded view that covers the basic notions

of the organizational domain.

2.1 Basic Entities

We start with the basic distinction in UFO between Individuals and Universals. Individuals are entities that exist in

reality instantiating one or more universals and possessing a unique identity. Universals (more specifically first-order

universals) are patterns of features that can be realized in a number of individuals. Roughly speaking, individuals can be

viewed as elements and first-order universals as their types.

Substantials are individuals that do not need others individuals to exist, i.e., are existentially independent (e.g., a car,

an apple, Bill Gates). Moments are particularized properties inherent to an individual and are existentially dependent on

the individuals on which they inhere. Moments can be intrinsic or relational. Intrinsic moments apply to a single subject

(e.g., an apple’s color, someone’s headache). Relational moments are called relators and depend on various relata (e.g.,

an employment contract relating an employee and an employer, a marriage contract between husband and wife) [6].

The stereotypes in OntoUML correspond to ontological distinctions for universals of UFO, enabling us to use class

diagrams to represent ontologies that employ the distinctions of UFO. For instance, a class stereotyped as <<category>>

represents a rigid concept, i.e., a class that applies necessarily to its instances (throughout their entire existence). A class

stereotyped as <<kind>> also represents a rigid concept but one that supplies a principle of identity to its instances (e.g.,

Person). A class stereotyped as <<role>> (or <<role mixin>>), in turn, is an anti-rigid concept, applying contingently to

its instances (e.g., a Person is only an Employee contingently and can cease to play that role and still exist). A role is also

relational dependent, i.e., it defines contingent properties exhibited by an entity in the scope of a relationship (when an

individual instantiates a role universal, it is thus connected to at least one other individual through a relator).

2.2 Intentional and Social Aspects

UFO includes a social layer that specializes its core with distinctions to account for intentionality and social reality [16].

An important distinction in this layer is that between agentive and non-agentive objects. Agentive objects (agents) can

perform actions and have mental/intentional moments (intentions, desires and beliefs). Agents are differentiated in

Representing Organizational Structures in an Enterprise Architecture Language

9

physical agents (e.g., a person) and social agents (e.g., an organization). Objects are passive entities that can be used,

consumed, destructed, modified and created by agents. Objects are partitioned into physical objects (e.g., a computer, a

pen) and social objects (e.g., a piece of legislation, a language).

Normative descriptions are social objects that define rules/norms recognized by agents. Normative descriptions can

define nominal universals, such as social objects (e.g., the crown of the King of Spain) and social roles (e.g., IT Analyst,

surgeon).

2.3 OntoUML Org Ontology (O3)

O3 has been defined by extending the social concepts of UFO, such as social role, social agent and physical agent. In this

paper we present fragments of O3 focusing on the concepts required for the purpose of this paper, namely, the analysis

and revision of the ArchiMate active structure elements. We discuss the ontology following two points of view: (i)

organizational structure (section 2.3.1) and (ii) roles (section 2.3.2).

2.3.1 Organizational Structure

Figure 1 presents the fragment of O3 related with the organizational structure concepts. The top-most concept is

organization, specializing the UFO notion of Social Agent. As defined in [12], organizations are (artificial) social units

built with the explicit intention of pursuing specific goals. In another definition, organizations are defined as

"collectivities that have been established for the pursuit of relatively specific objectives on a more or less continuous

basis" [20]. Human resources are among the major means used by organizations to achieve its goals [12]. In healthy

organizations, the organizational goals are assimilated by its human resources in combination with its personal goals.

Organizations include corporations, armies, hospitals and churches, but exclude tribes, ethnic groups, families and

groups of friends. Organizations are characterized by division of labor, presence of one or more power centers that

control the combined efforts of the organization and coordinate activities to achieve goals. Members of an organization

can be replaced or relocated to other functions without the organization ceasing to exist. An organization may be

structured into other social agents that together contribute to the operation or behavior of the whole, defining thus what is

called a functional complex in [6]. (See [19] for a discussion on the whole-part relation of UFO applied at the

organizational context.)

We specialize organizations into formal organizations and organizational units. Formal organizations are formally

recognized by the external environment. Their creation is determined by normative descriptions or speech acts which are

recognized by the normative context in which formal organizations exist. Examples of formal organization include

Microsoft Inc., the UK Government and the Fed. University of Espírito Santo.

Organizational units are those organizations that are only recognized in the internal context of a formal organization

and represent the working groups of a formal organization. An organizational unit can be a structural unit or a missionary

unit. Structural units are closely related to functional structure of the organization, including line units and staff units. A

line unit has authority relationships with other line units (upper or lower). Such relationships result in a hierarchy of

authority. Furthermore, it may be composed of other line units, resulting in a relationship of authority (represented by the

relationship “manages”) between parts. The justification for the structuring of line units through two distinct

relationships (whole-part and authority) lies in the fact that the whole-part relationship (in the organizational domain)

naturally implies power, but power does not imply a whole-part relation. Examples of line unit include a Marketing

Department, a Board of Directors and a Sales Division. As seen in Section 1, a staff unit is a “counselor” unit, which has

no administrative authority, thus it is not part of line hierarchy composed by line units. Although they have no line

authority, staff units relate to line units through the relation “staff of”, which determines the line unit to which a staff unit

responds. Examples of staff unit: a Group of Financial Advisors and an Internal Audit Group. Missionary units represent

teams and task forces related to the matrix structure of the formal organization, such as a project group and a task force

to deliver a product to the market in the schedule. A feature of this type of work group is the aggregation of actors

belonging to different line units. Examples of missionary unit include an ERP Project Team, an Audit Committee and a

Financial Task Force.

Representing Organizational Structures in an Enterprise Architecture Language

10

Figure 1: Fragment of OntoUML Org Ontology related with organizational structure.

2.3.2 Organizational Roles

Figure 2 presents the concepts related with the agents that compose the organization and the types of roles they may

play. We are concerned in this fragment with the roles persons play, first of all as a member of a formal organization

(formal organization member), and then when they are given more specific places in the power structure, either in a

structural (line or staff) unit (structural unit member) or in missionary units (missionary unit member). (For the sake of

brevity the diagram omits the <<relator>> classes that connect the individuals playing the roles and the formal

organization, structural and missionary units.) Note that in order to play a particular role in an organizational unit, a

person needs to be a formal organization member first.

In the scope of each organization, different specializations of these more general roles are required. For example, in a

university, employee types such as “Professor” and “Secretary” become relevant, while in a hospital employee types

such as “Doctor” and “Nurse” may be defined. Therefore, O3 includes the second-order notions of employee type and

other business roles. They are to be instantiated in particular settings creating thus specific roles. The instances of

employee type specialize formal organization member, and the instances of business role specialize either structural unit

member or missionary unit member. We represent them by following UML’s “powertype” representation pattern with

the second-order concept stereotyped <<hou>> (for higher-order universal), highlighted in gray. Specific employee types

define the set of roles (business roles) that a typified employee can occupy in the organization (see “cover” relationship).

Business roles defines more specific capabilities, duties and prerogatives possibly in the scope of organizational units.

An employee allocated to a structural unit plays a structural business role; employees assigned to missionary units play

missionary business roles. Authority relations between these types of business roles can be define through the

relationships “is superior to”.

Representing Organizational Structures in an Enterprise Architecture Language

11

Figure 2: Fragment of OntoUML Org Ontology related with organizational roles.

3 An Overview of Active Structure in ArchiMate

For the purposes of this paper, we focus on the active structure aspects of ArchiMate’s business layer, whose abstract

syntax metamodel is presented in Figure 3.

Figure 3: ArchiMate metamodel fragment and relations between active structure elements. Adapted from [2].

In the ArchiMate specification, a Business Actor is defined as “an organizational entity that is capable of performing

behavior” [2]. It can represent an individual entity or a group entity, as a department, for example. Examples of Business

Actors are: “John”, “Customer” and “Marketing Department”. A Business Role is the “responsibility for performing

specific behavior, to which an actor can be assigned” [2]. Examples of Business Role include “Project Manager”,

“Secretary” and “Sales Consultant”. In ArchiMate, a Business Role can be assigned to a Business Actor through a

relation called “assignment”. The Business Collaboration construct represents the interactions between two or more

Business Roles. The Business Collaboration does not have an official status within the organization and can be

temporary [2]. An example of Business Collaboration is a “Supply Chain” collaboration performed between two

organizations, which one plays the role of “Customer”, and the other plays the role of “Supplier”. A Business Interface

exposes the functionality of a business service to Business Roles and Business Actors, or expects functionality from other

business services. The exposed interface is a channel that provides means to interaction, e.g., “Internet”, “Mail”,

“Telephone” and “Care Unit”. Finally, Location, in the scope of Business Active Structure, allows the definition of the

distribution of the Business Actors. A Location “is defined as a conceptual point or extent in space” [2]. (In addition to

the relations shown in Figure 3, all elements in ArchiMate can be related with other elements of the same type through

the generic relations of composition, aggregation, association and specialization.)

Figure 4a presents an example of an ArchiMate model concerning business active structure. In this example, two

Business Actors (“Insurance Department” and “Customer”), play the Business Roles of “Insurance Seller” and

Representing Organizational Structures in an Enterprise Architecture Language

12

“Insurance Buyer”, and interact through a telephone interface. Figure 4b presents an example of nested business actors,

representing a composition or aggregation of actors in ArchiMate.

Figure 4: Examples of ArchiMate model with active structure elements [2].

4 ArchiMate Analysis and Revision

Using O3 as a semantic background, and based on the ArchiMate specification and official examples, a number of

observations can be made with respect to the expressiveness of ArchiMate in the specification of organizational

structures. First of all, we can note that the Business Actor construct is used indistinctively to model both social agents

and natural persons. Absence of such distinction prevents the specification from elaborating on rules for the language’s

syntax, e.g., aggregation (a whole-part relation) may be used inadvertedly by language users to relate business actors

representing natural persons (e.g., Mary as part of John).

Another point of attention identified is related with the inability to indicate that a business role is pertinent to an

organizational unit. Despite the absence of such possibility in the current version of ArchiMate, this type of relationship

was possible in earlier versions, as explained in [5]. In addition, it is not possible to represent the relation between staff

units and line units, a basic notion of organization charts.

There is further no explicit construct for representing missionary units. Although there is a business collaboration

construct, it is unclear whether business collaboration results in the definition of a new social agent. Finally, observing

the ArchiMate metamodel (Figure 3), business collaboration seems to hide several problems: we can see that business

collaboration can aggregate business actors without the intermediary of roles. Moreover, because it is a business role,

business collaboration inherits all relationships of the business role construct, thus, an actor can “play” a collaboration.

These situations defy a clear interpretation of the business collaboration construct as is.

Considering these shortcomings, we propose a revision of the metamodel, as shown in Figure 5. Classes marked with

darker colours represents constructs added.

The constructs natural person, organizational unit, formal organization, staff unit, line unit, missionary unit and

employee type of the revised metamodel have a direct mapping to the corresponding O3 concepts. The business actor

construct is partitioned in three sub-categories: formal organization, organizational unit and natural person. The

specialization of business actor comes in response to the overload of constructors present in the original meta-model.

Figure 5: Extended metamodel of ArchiMate.

Representing Organizational Structures in an Enterprise Architecture Language

13

Besides the constructs added to the metamodel, we have added or removed some of the relationships between the

constructs of the original metamodel. We modify extensively the business role construct, including a different proposal

of semantic interpretation, which eliminates the semantic overload existing between a role in an internal context (played

by an employee) and a role in an interaction context, e.g., between a supplier and an organization. In the revised

metamodel the business role construct is thus specialized into: internal business role and collaboration role.

An internal business role defines more specifically than employee type the capabilities, duties and privileges of an

employee who plays a certain role. Moreover, while it is a member of the organization, an agent can play different

internal business roles (both at the same time, as well as switching between different roles). The internal business role

construct also limits the range of business roles that a member of the organization that plays a certain Business Role can

claim (through the "cover" relationship). This situation is common in matrix organizations where an employee can play a

business role in a department and a different business role in a project. A business role is defined in the context of a

formal organization.

Collaboration roles represent roles played in recurrent interactions outside and inside the organization. It is defined in

the context of the business collaboration construct, being part of the definition of a collaboration. The collaboration role

is more flexible than internal business role, admitting that an external actor (physical or social) may play the

collaboration role, while only members of the organization can play internal business roles. In the revised metamodel,

the business collaboration construct is also not a specialization of business role. We made this change in response to the

semantic problems that arise from relationships that were inherited from business role in the original metamodel but that

cannot be applied meaningfully to collaborations.

5 Related Work

The organizational structure domain has been the focus of a number of ontologies since the end of the 90s. The

Enterprise Ontology EO, e.g., includes a fragment that addresses the organization structure domain [21]. It is described

in natural language and is based on formalized meta-ontology, with good coverage of concepts related to organization

structure. Differently from O3, it makes no distinction between staff, line and missionary units. EO also includes a direct

relationship between a “person” and an “organisation unit” (“working for”), without the intermediary of roles or

positions they play in the scope of an “organizational unit”. In case a person plays multiple roles its not possible to define

which role is played in the context of each “organisation unit”. The organization ontology for the TOVE enterprise

model [22] chooses for a fixed structure with three levels: organization, division and sub-division. It has a notion of team

that is independent of these levels of decomposition. It does not distinguish staff and line units as well as the different

categories of roles individuals may play. Roles are also not related to organization units (only indirectly through

authority). The Organizational Structure Ontology of the SUPER project (OSO) [23] is aimed at providing organizational

context for the execution of business processes. Differently from O3, OSO is not specified using a well-defined language

and is not based on a foundational ontology. Further, it does not include some important distinctions in O3 (line vs. staff

units, different sorts of roles). The W3C Org Ontology [24] concerns the description of organizational structure for

Semantic Web applications. It is defined in OWL and, given its focus on Semantic Web data, it is less suitable for

meaning negotiation, which is required in our intended application (semantic analysis and language revision). It does not

make fine distinctions in the sorts of roles that can be played in an organization as well as the different kinds of

organizational units (staff, line, missionary). The W3C Org Ontology is further not grounded in a foundational ontology.

Finally, E-OPL [25] aims to provide a basis for an enterprise pattern language whose fragments can be selected flexibly.

It is grounded in UFO and is defined using OntoUML, however it does not cover missionary and staff units, which is

important to the representation of organograms in EA descriptions. We intend to add patterns to E-OPL that reflects the

distinctions in O3 as part of our future work.

In a broader scope, some approaches aim to provide languages for representation of EA aspects in general, including

the organizational structure aspects. UPDM [26], e.g., is a profile for DoDAF and MODAF frameworks focused on

representation of EA aspects in UML, including active structure elements. It is grounded on the IDEAS foundational

ontology. UPDM lacks expressivity, since it does not differentiate types of organizational units and types of business

roles. It could also have been the subject of our analysis (along with other EA modelling techniques beyond ArchiMate).

The use of reference ontologies for evaluating and revising enterprise modeling languages have been shown to be

promising, as observed in [4][5][3][19]. The efforts most closely related to this work include: a semantic analysis of

another fragment of ArchiMate (more specifically the motivational layer [4]); a semantic analysis of the notion of role in

ArchiMate and other EA description techniques [5]; and an analysis and revision of the ARIS capabilities for

organizational structure modeling [3]. Here we address a different language (or language portion) and we use more

specialized domain concepts (with domain distinctions that complement general UFO notions).

Representing Organizational Structures in an Enterprise Architecture Language

14

6 Final Considerations

This work demonstrates the application of an organizational ontology in the semantic analysis and improvement of a

modeling language and is part of a research for defining a well-founded ontology for the organizational domain. The

organizational domain ontology presented covers the basic aspects discussed in the organizational literature, such as

division of labor, social relations and classification of structuring units. We have intentionally left out in the current

version aspects related to skills, resource allocation, business interaction and communication relations.

The use of the well-founded OntoUML profile for modeling O3 leverages the conceptual distinctions in UFO as well

as the tool support already developed for OntoUML. Future work in the development of O3 include employing the

OntoUML tools for formal verification of the model (guaranteeing that the models are compliant with UFO axioms),

validation of the model via visual simulation (relying on an OntoUML infrastructure developed on top of the Alloy

Analyzer) as well as the systematic implementation of O3 in computational level languages such as OWL.

The analysis using O3 has revealed predominant themes of the literature on organizational structure – those that have

influenced the design of the O3 – have been left out of the range of expressions of ArchiMate. We have proposed a

revised metamodel that address the identified shortcomings, enabling a more sophisticated representation of

organizational structures in the language. We have strived to maintain the alignment of the introduced revisions with the

original metamodel in order to favor the acceptance by prospective users. Thus many of the additions are in fact

specializations of the existing constructs of the language. Further investigation is required in order to propose graphical

conventions to represent the abstract syntax elements identified here.

6.1.1 Acknowledments

This research is partially funded by the Research Funding Agencies FAPES (59971509/12), CNPq (310634/2011-3 and

485368/2013-7) and CAPES.

References

[1] B. Jarvis, “Enterprise Architecture: Understanding the Bigger Picture – A Best Practice Guide for Decision Makers

in IT,” 2003, p. 9.

[2] The Open Group, “ArchiMate(R) Version 2.1 Technical Standard,” 2012. [Online]. Available:

http://pubs.opengroup.org/architecture/archimate2-doc/.

[3] J. Santos, J. P. A. Almeida, and G. Guizzardi, “An ontology-based analysis and semantics for organizational

structure modeling in the ARIS method,” Inf. Syst., vol. 38, no. 5, pp. 690–708, 2013.

[4] C. L. B. Azevedo, J. P. A. Almeida, M. Van Sinderen, D. Quartel, and G. Guizzardi, “An Ontology-Based

Semantics for the Motivation Extension to ArchiMate,” 2011 IEEE 15th Int. Enterp. Distrib. Object Comput. Conf.,

pp. 25–34, 2011.

[5] J. P. A. Almeida, “Applying and extending a semantic foundation for role-related concepts in enterprise modelling,”

Enterp. Inf. Syst., 2009.

[6] G. Guizzardi, Ontological Foundations for Structural Conceptual Models, vol. 015, no. CTIT Ph.D.-thesis series

No. 05–74. Enschede, The Netherlands: Centre for Telematics and Information Technology, University of Twente,

2005, p. 441.

[7] H. A. Simon, The Sciences of the Artificial. Mit, 1981.

[8] H. Fayol, General and Industrial Management. Pitman, 1949.

[9] R. L. Daft, Organization Theory and Design. South-Western Cengage Learning, 2010.

[10] L. H. Gulick and L. F. Urwick, Papers on the Science of Administration. Institute of Public Administration,

Columbia University, 1954.

[11] H. Guetzkow, “Formal Organizations: A Comparative Approach. By Peter M. Blau and Richard W. Scott.,” Am.

Polit. Sci. Rev., vol. 56, no. 02, pp. 428–429, 1962.

[12] A. Etzioni, Modern organizations. Prentice-Hall, 1964.

[13] R. Radner, Hierarchy: The Economics of Managing. New York: NYU, 1990.

Representing Organizational Structures in an Enterprise Architecture Language

15

[14] A. Etzioni, Authority Structure and Organizational Effectiveness, Vol. 4. Administrative Science Quarterly, 1959.

[15] J. R. Galbraith, Matrix Organization Designs: How to Combine Functional and Project Forms. 1971.

[16] G. Guizzardi, R. Falbo, and R. S. S. Guizzardi, “Grounding Software Domain Ontologies in the Unified

Foundational Ontology (UFO): The case of the ODE Software Process Ontology,” Softw., no. i, 2008.

[17] J. P. A. Almeida, E. C. S. Cardoso, and G. Guizzardi, “On the Goal Domain in the RM-ODP Enterprise Language:

An Initial Appraisal Based on a Foundational Ontology,” EDOCW, pp. 382–390, 2010.

[18] E. Cardoso, P. S. Santos, J. P. A. Almeida, R. Guizzardi, and G. Guizzardi, “Semantic Integration of Goal and

Business Process Modeling,” in CONFENIS, 2010, no. 45444080.

[19] J. P. A. Almeida and G. Guizzardi, “An ontological analysis of the notion of community in the RM-ODP enterprise

language,” Comput. Stand. Interfaces, vol. 35, no. 3, pp. 257–268, Mar. 2013.

[20] W. R. Scott, “Theory of Organisations,” in Handbook Of Modern Sociology, Robert E.L. Faris, Ed. Chicago: Paul

McNally and Corp., 1964.

[21] M. Uschold, M. King, S. Moralee, and Y. Zorgios, “Enterprise Ontology specification,” 1998. [Online]. Available:

http://www.aiai.ed.ac.uk/project/enterprise/enterprise/ontology.html.

[22] M. S. Fox, M. Barbuceanu, M. Gruninger, and J. Lin, “Simulating Organizations,” M. J. Prietula, K. M. Carley, and

L. Gasser, Eds. Cambridge, MA, USA: MIT Press, 1998, pp. 131–152.

[23] W. Abramowicz, A. Filipowska, et al, “Organization Structure Description for the Needs of Semantic Business

Process Management,” 3rd Int. Work. Semant. Bus. Process Manag., 2008.

[24] W3C, “Org Ontology specification,” 2014. [Online]. Available: http://www.w3.org/TR/2014/REC-vocab-org-

20140116/.

[25] R. de A. Falbo, F. B. Ruy, G. Guizzardi, M. P. Barcellos, and J. P. A. Almeida, “Towards an Enterprise Ontology

Pattern Language,” in Proc. 29th Annual ACM Symp. Applied Comp., 2014, pp. 323–330.

[26] OMG, “UPDM specification,” 2014. [Online]. Available: http://www.omg.org/spec/UPDM/.

Representing Organizational Structures in an Enterprise Architecture Language

16

ISA-88 Formalization. A Step Towards its Integration with the ISA-

95 Standard

 Marcela Vegetti Gabriela Henning

 INGAR (CONICET-UTN) INTEC (CONICET-UTN)

 mvegetti@santafe-conicet.gov.ar ghenning@intec.unl.edu.ar

Abstract.

 ANSI/ISA-88 and ANSI/ISA-95 are two well accepted standards in the industrial domain that

provide a set of models considered as best engineering practices for industrial information

systems in charge of manufacturing execution and business logistics. The main goal of

ANSI/ISA-88 is the control of batch processes, whereas the one of the ANSI/ISA-95 standard

is the development of an automated interface between enterprise and control systems. In

consequence, both standards should interoperate. However, there are gaps and overlappings

between their corresponding terminologies. Moreover, there are additional problems, such as

semantic inconsistencies within each of the standards, as well as the use of an informal

graphical representations in one of the ANSI/ISA-88 models. This work presents an

ontological approach that aims at formalizing the ISA-88 standard as a first step towards its

integration with a formal representation of the ANSI/ISA-95 one. Additionally,

methodological aspects of the ontology development process are presented.

1 Introduction

Industrial organizations address their planning activities within the context of the enterprise hierarchical planning
pyramid. This pyramid (see Figure 1) includes activities performed at different time frames, handles information
having distinct granularities, and involves scheduling interplaying with the Production Planning and Control (PPC)
and Plant Control (PC) functions. The difficulties associated with these interactions were pointed out almost a
decade ago [Sho02] and this topic has recently gained renewed attention. To tackle the integration of PPC and
scheduling, researchers have proposed various solution strategies [Mar09]. In addition, a few authors have pointed
out the requirements that apply to the data exchange in order to support such integration [Kre06]. Similarly,
regarding integration between scheduling and plant control, researchers have started to draw the attention to data
exchange problems [Mun10], [Har09]. Moreover, the standards ANSI/ISA-88 [Ans10] and ANSI/ISA-95 [Ans00]
(referred as ISA-88 and ISA-95 for simplicity reasons) have been developed to tackle issues related to planning,
scheduling and control activities and data. Whereas both standards address the exchange of data between the
scheduling function and its immediate upper and lower levels in the planning pyramid, a more comprehensive
approach is required to address integration problems, since this matter entails much more than data exchange.

The aforementioned problems are related with semantic issues, which constitute challenges that should be
addressed to reach a semantic integration of enterprise applications. For example, the batch concept has three
definitions in ISA-88. This term is used as an abstract contraction of the words "the production of a batch"[Ans10].
Therefore, according to the context, batch means both the material made by and during the process and also an
entity that represents the production of that material. In a similar way, the terms procedure and recipe component
have different meanings within the ISA-88 standard. The opposite situation, more than one term to represent a given
concept, also occurs between the ISA-88 and ISA-95 standards. Both use different terms to define concepts such as
"amount of material", "equipment", "group of products scheduled to be manufactured" and "how to make a product".
Moreover, ISA-88 lacks a formalism to represent the procedural part of a recipe, since it employs an informal
graphical model

1

Copyright by the paper's authors. Copying permitted for private and academic purposes.

In: Alexandre Rademaker and Vinay K. Chaudhri (eds.): Proceedings of the 6th Workshop on Formal Ontologies meet Industry,
Rio de Janeiro, Brazil, 22-SEP-2014, published at http://ceur-ws.org

17

Figure 1. Scheduling function in the enterprise hierarchical planning pyramid

To overcome these semantic challenges, this work proposes the formalization of the ISA-88 [Ans10] standard as
a first step towards its semantic integration with the ISA-95 [Ans00] one. This article is organized as follows:
section 2 briefly introduces the ISA-88 standard. Section 3 presents general methodological considerations for the
development of the proposal, describes the main concepts of the ontology and its application to a case study.
Conclusions and future work are drawn in Section 4.

2 ISA-88 standard

The ISA-88 standard originally addressed batch process control issues, and was later extended to tackle discrete
manufacturing and continuous processes. It organizes knowledge along three different perspectives: the physical
model, the process model, and the procedural control one. All these representations are hierarchical ones.

The physical model hierarchically organizes the enterprise into sites, areas, process cells, units, as well as
equipment and control modules. The three higher levels are more precisely defined in the ISA-95 standard, as they
are often beyond the scope of batch control. The criteria for establishing these boundaries are not well defined
neither in the ISA-88 nor in the ISA-95 standard. The process model is a multi-level hierarchical model for the high
level representation of a batch process, and it is the basis for defining equipment independent recipe procedures.
The ISA-88 standard divides a batch process hierarchically into process stages, process operations and, finally,
process actions. The procedural control model is a hierarchical representation that depicts the orchestration of
procedural elements to carry out process oriented tasks.

According to ISA-88 a recipe provides the necessary set of information that uniquely defines the production
requirements for a specific product. Recipes are defined at different abstraction levels: General, Site, Master and
Control. Distinct recipes (at the same abstraction level) may exist for different sets of raw materials that can be used
to manufacture the same product. This work focuses on the Master and Control recipes since they are the ones that
take part on integration issues. A Master recipe includes cell specific information, which is based upon equipment
types and classes. Finally, the Control recipe is obtained from the Master one by incorporating batch specific
information, such as batch size, the allocation of process equipment, and the definition of quantities of raw materials
by scaling the recipe parameters according to the adopted batch size. Thus, the master recipe acts as a template for
the derivation of control recipes. Typically, the information comprised in a recipe includes: (i) the header, with the
recipe ID, version, status, date, etc., (ii) the formula, containing process inputs (data about the materials, energy and
other resources that are required), expected outputs (products, by-products and waste products), and process
parameters (temperatures, flowrates, processing times, etc.), (iii) equipment requirements, (iv) the recipe procedure,
which defines the sequential and parallel actions needed to produce a batch of a certain product, and (v) safety and
compliance information.

The recipe procedure, which is the core part of a recipe, can be hierarchically decomposed into recipe unit
procedures, recipe operations and recipe phases, which define the procedural control model. Each unit procedure
consists of an ordered set of operations, which consist of an ordered set of phases. The ISA-88 standard proposes a
graphical model, referred as the Procedure Function Chart (PFC), in order to represent the recipe procedure for both,
the Master recipe and the Control one. Although there are several accepted ontologies for process representation,
like PSL (Process Specification Language) [ISO04], the model included in the standard is one adopted by batch

Business
Planning

Production Planning
and control

Scheduling

Plant Control

ERP

APS/MES

Control Systems

Years, month, weeks

Month, weeks, days

Month, weeks, days,

hours, minutes

Minutes, seconds

ISA-88

ISA-95

ISA-88 formalization. A step towards its integration with the ISA-95 standard

18

industries for the specification of their production processes. Therefore, in this article a formalization of PFC is
done. A PFC is defined by a set of symbols representing recipe procedural elements, begin and end points, resource
allocations, synchronization elements, recipe transitions and directed links, as well as selection and simultaneous
sequences. Figure 2 illustrates the PFC of a recipe for Mint Swirled Toothpaste production and partial details of the
low level PFC associated with this recipe [Par00]. According to the control model of ISA-88, the recipe of a Mint
Swirled toothpaste batch is related to a procedure called Mint Swirled Toothpaste Production in the example. Figure
2 shows three encapsulated unit procedures, which correspond to the production of mint and gel toothpaste and the
mixing of both components. Figure 2 also shows the details of the Make Gel Toothpaste unit procedure, which
encapsulates a sequence of three operations: Add Ingredients, React and Prepare to Transfer. The first operation
combines various ingredients to form a new intermediate material. The second one mixes, heats, and then cools the
new mixture to create toothpaste. Finally, the last operation gets the vessel ready to transfer its contents to the
blender/extruder unit. The last two operations are linked by an explicit transition, which implies that the condition
Approved by lab has to be satisfied before the Prepare to Transfer step operation starts.

An expansion of the Add Ingredients operation is included in the right part of Figure 2. Five phases are
comprised in this operation. Each phase performs a unique and independent function. The phase Add Water
precedes the following three parallel phases: Add Filler, Add Flavorings and Add Stabilizers. The three phases have
to be completed before the Add Sodium Fluoride phase starts. The two pairs of horizontal lines represent the begin
and end of the parallel sequence.

Figure 2. PFC example

As it can be seen in Figure 2 any procedural element above the level of a phase may represent an encapsulation
of other procedural elements pertaining to the subsequent lower level in the procedural control hierarchy. Moreover,
the level of the control model to which a step belongs, is represented by 1 to 4 diagonal lines located at the corners
of the step rectangle. Therefore, the different types of steps are identifiable only by a person that analyzes the
diagram. Only such person is capable of detecting which steps (unit procedures, operations, phases) are executed in
parallel, which is the predecessor or the successor of a given step, or which are alternative steps. In consequence,
the relation between a procedural element and the components that it encapsulates is not understandable without a
human eye. Therefore, the implicit nature of this graphical representation makes it impossible for a computer to
infer knowledge from it. In addition, the graphical representation of a PFC lacks the capacity to automatically
validate the correctness of a diagram. The formalization of the PFC that is presented in this work helps to overcome
this drawback.

Make mint
toothpaste

+
Make gel

toothpaste

+

Swirl
toothpaste

+

Mint swirled thootpaste
production procedure

Add Ingredients

+

React

+

Prepare to
Transfer

+

Make Gel toothpaste
unit procedure

Add ingredients operation

Add Water

Add
Fillers

Add
Flavorings

Add
Stabilizers

Add
Sodium Fluoride

Procedure

+

Unit Procedure

+

Operation

+

Phase

Steps

Begin Node End Node
Implicit
Transition

Explicit
Transition

Simultaneous
sequence

References

Approved By
Lab

ISA-88 formalization. A step towards its integration with the ISA-95 standard

19

3 ISA-88 Formalization. A First Step towards its Integration with ISA-95

In order to deal with the semantic challenges introduced in section 1, this work proposes a formalization of the ISA-
88 and ISA-95 standards by defining an ontology per each standard and then an ontology to integrate them. This
approach avoids defining just one big ontology, which would be very complex and rigid, by sticking to a "divide
and conquer" strategy.

The development of each ontology has been carried out separately. The formalization of ISA-88 has been done
first because it is the one that has the major semantic inconsistencies in its term definitions. The models proposed
within ISA-88 are taken into account to divide the proposed ontology into small ontology modules. The same
approach was considered in the formalization of the other standard. Due to space limitations, only a part of the
formalization of the ISA-88 ontology is presented in this paper. In particular, the main concepts involved in its
Procedural Control Module, which is the one of the most advanced modules in this project's implementation, are
introduced in the following paragraphs.

For the development of the Procedure Control ontology, an ad-hoc methodology based on well accepted
principles has been proposed. It has the following four stages:

• Requirements specification: identifies the scope and purpose of the ontology.
• Conceptualization stage: organizes and converts an informally perceived view of the domain into a semi-

formal specification using UML diagrams.
• Implementation stage: codifies the ontology using a formal language.
• Evaluation stage: allows making a technical judgment of the ontology quality and usefulness with respect

to the requirements specification, competency questions and/or the real world.
It should be mentioned that these stages were not truly sequential; indeed, any ontology development is an

iterative and incremental process. If some need/weakness was detected during the execution of a given stage, it was
possible to return to any of the previous ones to make modifications and/or refinements. Moreover, as it is proposed
by Ontology Summit 2013 Communiqué [Neu13], some evaluation activities have been done in all the stages of the
proposed development process. Some highlights of these methodological stages are given in the remaining of this
section.

3.1 Requirement Specification

Competency questions, which were proposed by Uschold and Gruninger [Usc96] in their methodology, helped at
this stage to identify the requirements. The gathered competency questions were classified in groups related to the
levels defined in the control model. A small sample of the competency questions that were stated, are the following:

• Which are the procedural elements associated with a given Master Recipe?
• Which are the conditions that should be fulfilled to start a given Operation?
• Which are the operations comprised in a given Unit Procedure?
• Which are the phases that need the conclusion of a given phase P in order to start their execution?
• Which phases are executed in parallel with a given phase P?

3.2 Conceptualization

The second main step in the development process required the identification and capture of the domain concepts

and their relationships, trying to fulfill the previous requirements. To support this activity, UML (Unified Modelling

Language) [OMG13] was adopted. In addition to class diagrams, constraints about the objects in the model and

invariants on classes have been added using OCL (Object Constraint Language) [OMG14]. The complete results of

this stage are not described due to lack of space. However, a partial model will be described in this section.

As it was mentioned in Section 1.1, the ISA-88 procedural control model describes recipe procedures. Therefore,

the main concepts in the corresponding ontology are related to recipes and their components. Figure 3 introduces

the main concepts associated with recipe definition.

The RecipeEntity is the combination of a ProceduralElement with associated recipe information, which includes

a Header, EquipmentRequirements and a Formula.

Each Recipe Entity is built up of lower-level recipe entities. But these levels should be hierarchically organized

according the procedural control model. Therefore, the concepts ProcedureRecipeEntity,
UnitProcedureRecipeEntity, OperationRecipeEntity and PhaseRecipeEntity have been added to the ontology in

order to represent recipe entities at Procedure, UnitProcedure, Operation and Phase Level respectively. Eq. 1

shows how the instances of ProcedureRecipeEntity are inferred. Similar expression have been defined to compute

recipe entities at the other levels. In addition, to guarantee consistency in this hierarchy, constraints on the

composedOf relationship have been added to the proposed ontology. All RecipeEntities, except the ones at Phase

level, which does not have components, should include composedOf recipe entities belonging to the immediate

lower level. Eq. 2 states this constraint for the ProcedureRecipeEntity.

ISA-88 formalization. A step towards its integration with the ISA-95 standard

20

Figure 3. Recipe entity and its procedural structure definition

context ProcedureRecipeEntity::allInstances():Set(ProcedureRecipeEntity)

body: RecipeEntity.allInstances()->Select(r| r.level.oclIstypeOf(ProcedureLevel))
(1)

context ProcedureRecipeEntity inv ProcedureComposedOfUnitProcedure:

self.component->forall(r:RecipeEntity | r.oclIsTypeOf(UnitProcedureRecipeEntity))
(2)

A Recipe is a RecipeEntity, which is defined at the highest level of the procedural control model. In particular, a

MasterRecipe is a RecipeEntity at the ProcedureLevel, which is the highest one (Eq. 3). Similarly, a ControlRecipe

is also a RecipeEntity that is derivable from a MasterRecipe.

context MasterRecipe::allInstances():Set(MasterRecipe)

body: RecipeEntity.allInstances()->Select(r:RecipeEntity|

r.level.oclIstypeOf(ProcedureLevel))

(3)

Figure 3 also shows the relation of a recipe entity with its components: Header, EquipmentRequirement,

ProceduralStructure and Formula. As it was indicated in Section 2, ISA-88 suggests the use of Procedural Function

Charts (PFC) to describe the procedural structure of a recipe. The proposed ontology formalizes the elements that

this type of diagram includes. A ProceduralStructure is a set of procedgural elements (PSElement in Figure 3) that

depicts the procedural logic for all levels of the recipe: recipe procedure, recipe unit procedure, and recipe

operation.

A Procedural Element may be a Link or a Node. A Node is a procedural element that represents an action

(procedure, unit procedure, operation or phase) or a symbol that controls the transition between steps. A Link

defines a relation between two nodes. Different types of links and nodes are defined in order to formalize all PFC
symbols. Some of the proposed links and nodes are shown in Table 1.

Valid diagrams have to follow consistent rules for threads of execution. The formalization of the procedural

structure allows the definition of constraints that helps building valid procedural structures. For example, the

specialization of the Step concept to represent steps at different levels of the Procedural Control Model allows

defining restrictions that avoid the construction of a PFC in which UnitProcedures, Operations or Phases could be

mingled in the same diagram. For lack of space, the restriction are not shown in this article.

ISA-88 formalization. A step towards its integration with the ISA-95 standard

21

Table 1: Different types of links and nodes

Type of Link

Transition A direct link between nodes.

Implicit Transition A transition whose only condition is that the directly preceding step has to
finish its execution.

Explicit Transition A transition having a condition that has to evaluate to true in order to

activate the following step in the transition.

Synchronization A link that relates recipe elements among which there is a certain form of

synchronization.

Material

Transfer

A link that represents material transfer from a step to another one.

Interaction A kind of synchronization that does not involve movement of material.

Type of Node

Step A node that represents a recipe procedural element: procedure recipe entity, unit

procedure recipe entity, operation recipe entity or phase recipe entity. According to
the level of the procedure control model associated to the PFC in which the step is

defined, this concept can be specialized in ProcedureStep, UnitProcedureStep,

OperationStep, and PhaseStep.

Control Node A node that controls de intended thread of execution of the recipe procedural

elements.

Begin Node A node that identifies the start of each procedural structure and/or each subordinate

structure.

End Node A node that indicates the end of a procedural structure and/or a subordinate structure.

Fork Node A node that defines the start of independent threads of execution of certain recipe

elements, which are executed in parallel.

Join Node A node that indicates the end of independent threads of execution.

Decision Node A node that specifies the beginning of alternative threads of execution.

Merge Node A node that shows the joining of alternative threads of execution.

3.3 Implementation and Evaluation

The main goal of the ontology implementation activity is to create a computable model deployed in an ontology
language from the conceptual model created during the conceptualization phase. Based on its ample acceptance, the
OWL 2 language [14], developed by the W3C (World Wide Web Consortium), was chosen to implement the
ontology and the Protegé 4.3 editor has been selected to support the ontology development and implementation.

The development process has been guided by the principles of coherence, conciseness, intelligibility,
adaptability, minimal ontological commitment and efficiency. Some of these principles are conflicting among
themselves. Due to such incompatibilities, a suitable balance between the clashing principles was sought. Nowadays
it is widely accepted that there is a lack of a formal methodology that considers all these criteria, which could be
applied to evaluate domain ontologies. According to Gómez-Pérez [Gom96] , the ontology evaluation phase
comprises three aspects: (i) ontology validation, (ii) ontology verification, and (iii) ontology assessment. Validation
and verification activities are associated with a technical judgment of the content of the ontology with respect to a
frame of reference, which can be requirement specifications, competency questions, or the real world. In turn,
assessment focuses on judging the ontology content from the user’s point of view. The results of using the proposed
ontology in the development of different types of applications in various contexts are required to be analyzed in
order to assess the ontology.

Although there is no formal methodology that considers all the aforementioned evaluation criteria, many authors
have reached an agreement on assessment needs during all the ontology lifecycle stages [Neu13]. Having them in
mind, partial evaluation through competency questions has been done during the implementation phase. To do so,

ISA-88 formalization. A step towards its integration with the ISA-95 standard

22

the ontology has been applied to represent recipe information of several literature case studies [Hai11] [Fis90],
including the PFC that is shown in Figure 2 [Par00]. In particular, the results of executing some of the competency
questions of this case study are introduced in Table 2. For the sake of simplicity, prefixes are omitted in Table 2.
While the namespace corresponding to the proposed ontology is represented with the p0 prefix, the rdf one
identifies the namespace of the RDF (Resource Description Framework) language.

The formal competency question in the first row of the table asks about explicit transition links (?lk rdf:type
p0:ExplicitTransition) having a condition (?lk p0:HasCondition ?cnd.) that points to a step (?lk p0:To ?stp.) at the
operation level (?stp p0:HasStepLevel p0:Operation.) and, from this set of links, the query filters the operation step
Prepare2TransferStep (FILTER (?stp = p0:Prepare2TransferStep). The execution of this SPARQL query gives as a
result the ApprovedByLab condition which according to the PFC shown in Figure 2 is necessary to be fulfilled in
order to start the mentioned operation.

The second SPARQL query in Table 2 selects all the recipe entities (?rcp rdf:type p0:RecipeEntity.) at the
UnitProcedure level (?rcp p0:HasLevel p0:UnitProcedure.) whose procedural structure has some step as element
(?rcp p0:HasProceduralSTR ?up,
?up p0:HasElement ?op and ?op rdf:type p0:Step triples). From this set of results, the query filters the unit
procedure that is of interest to the competency question (FILTER (?rcp = p0:MakeGelRcp)).

The third question searches whether there is a phase that needs the end of the AddWater phase to start its
execution. This query is more complex because it should consider different situations in which the mentioned phase
is located in the PFC: (i) before a DecisionNode; (ii) before a ForkNode; (iii) in a simple sequence, (iv) after a
JoinNode; or (v) after a MergeNode.

Table 2. SPARQL queries used to formalize some competency questions

Informal CQ SPARQL query Results

Which are the
conditions that

should be fulfilled

to start the

Prepare2Transer

operation?

SELECT ?cnd WHERE {?lk rdf:type
p0:ExplicitTransition. ?lk p0:HasCondition ?cnd. ?lk

p0:To ?stp. ?stp p0:HasStepLevel p0:Operation. FILTER

(?stp = p0:Prepare2TransferStep)}

|cnd|

SampleAprovedByLab

Which phases are

executed in

parallel with the

AddFillers phase?

SELECT ?ph WHERE { ?frk rdf:type p0:ForkNode. ?lk

p0:From ?frk. ?lk p0:To ?ph. ?ph rdf:type p0:Step. ?lk2

p0:From ?frk. ?lk2 p0:To p0:AddFillersStep. FILTER (?ph

!= p0:AddFillersStep) }

|ph|

AddFlavoringStep

AddStabilizersStep

Which are the
operations

comprised in the

MakeGelToothpas

te UnitProcedure?

SELECT ?op WHERE { ?rcp rdf:type p0:RecipeEntity. ?rcp
p0:HasLevel p0:UnitProcedure. ?rcp p0:HasProceduralSTR

?up. ?up p0:HasElement ?op. ?op rdf:type p0:Step. FILTER

(?rcp = p0:MakeGelRcp)}

|op|

AddIngredientStep

ReactStep

Prepare2TransferStep

Which are the
phases that need

the conclusion of

AddWater phase

in order to start

their execution?

SELECT ?op2 WHERE { {?lk p0:From ?op. ?lk p0:To ?cnd.
?cnd rdf:type p0:DecisionNode. ?lk2 p0:From ?cnd. ?lk2

p0:To ?op2. ?op2 rdf:type p0:Step. FILTER (?op =

p0:AddWaterStep) } UNION

{ ?lk p0:From ?op. ?lk p0:To ?cnd. ?cnd rdf:type

p0:ForkNode. ?lk2 p0:From ?cnd. ?lk2 p0:To ?op2. ?op2

rdf:type p0:Step. FILTER (?op= p0:AddWaterStep) }

UNION { ?op2 rdf:type p0:Step. ?op rdf:type p0:Step. ?lk

p0:To ?op2. ?lk p0:From ?op. ?op2 rdf:type p0:Step FILTER

(?op = p0:AddWaterStep)} UNION

{ ?lk p0:From ?op. ?lk p0:To ?cnd. ?cnd rdf:type

p0:JoinNode. ?lk2 p0:From ?cnd. ?lk2 p0:To ?op2. ?op

rdf:type p0:Step. FILTER (?op = p0:AddWaterStep)}

UNION { ?lk p0:From ?op. ?lk p0:To ?cnd. ?cnd rdf:type

p0:MergeNode. ?lk2 p0:From ?cnd. ?lk2 p0:To ?op2. ?op

rdf:type p0:Step FILTER (?op = p0:AddWaterStep)} }

|op2|

AddFlavoringsStep

AddFillersStep

AddStabilizersStep

The last question presented in Table 2 looks for phases that should be executed in parallel with the AddFillers

one. In order to do that, the query searches if there is any step that follows the ForkNode to which the AddFillers

ISA-88 formalization. A step towards its integration with the ISA-95 standard

23

phase is linked to. If the mentioned phase does not follow a ForkNode, the query gives an empty result because

AddFillers is not in a parallel sequence.

The implementation of several cases studies, as well as the formalization and execution of the whole set of

competency questions have allowed the identification of missing concepts and properties that have to be added to

the ontology. Among others, these concepts are related to the detailed description of equipment units and their

relations to recipes and the different levels of the procedural control model.

4 Conclusions and Future Work

This contribution describes an ontology based approach that can play a central role in solving nowadays integration

problems that appear in the enterprise hierarchical planning pyramid when adopting the ISA-88 and ISA-99

standards. The definition of three ontologies is suggested: one per each standard formalization and another ontology

to integrate the previous ones. In particular, the article focuses on the formalization of PFCs, the graphical

representation of the recipe procedures proposed by ISA-88. Since knowledge is explicitly and formally expressed,
the ontology supports inference processes and an analysis of the construction of valid PFCs. In addition, some

methodological aspects of the proposed ontology development process are also shown.

It is necessary to perform more activities to evaluate and validate the proposed formalization. In parallel with

these tasks, the formalization of ISA-95 and the definition of the integration ontology are being carried out.

Acknowledgements.

The authors acknowledge the financial support received from CONICET (PIP 11220110100906 and PIP
11220110101145), UNL (PI CAI+D 2011) and UTN (PID 25-O156).

 References

[Ans00] ANSI/ISA-95.00.01-2000: Enterprise-Control System Integration. Part 1: Models and terminology,

2000.

[Ans10] ANSI/ISA–88.00.01: Batch Control Part 1: Models and Terminology, 2010.

[Fis90] Fisher, T. Batch Control Systems: Design, Application and Implementation. Instrument Society of

America, North Carolina, 1990.

[Gom96] Gómez-Pérez, A.: A Framework to Verify Knowledge Sharing. Experts Systems with Application 11,

519–529, 1996.

[Hai11] Hai, R., M. Theiβen, W. Marquardt: An Ontology Based Approach for Operational Process Modeling.
Advanced Engineering Informatics, 25, 748-759, 2011.

[Har09] Harjunkoski, I., Nyström, R., Horch, A.: Integration of Scheduling and Control – Theory or Practice?

Computers and Chemical Engineering, 33, 1909-1918, 2009.

[ISO04] ISO 18629 - Process specification language. Part 1: Overview and basic principles, 2004.

[Kre06] Kreipl, S., Dickersback, J.T., Pinedo, M.: Coordination Issues in Supply Chain Planning and

Scheduling. In: Herrmann, J. (ed), Handbook of Production Scheduling, 177-212. Springer ,2006.

[Mar09] Maravelias, C., Sung C., Integration of Production Planning and Scheduling: Overview, challenges

and opportunities, Computers and Chemical Engineering, 33, 1919-1930, 2009.

[Mun10] Muñoz, E., Espuña, A., Puigjaner, L.: Towards an Ontological Infrastructure for Chemical Batch

Process Management, Computers and Chemical Engineering, 34, 668-682, 2010.

[Neu13] Neuhaus, F., Vizedom, A., Baclawski, K., Bennett, M., Dean, M., Denny, M., Grüninger,

M., Hashemi, A., Longstreth, T., Obrst, L., Ray, S., Sriram, R., Schneider, T., Vegetti, M., West,

M., Yim, P. Towards Ontology Evaluation Across the Life Cycle. Journal of Applied Ontology, 8,

179-194, 2013.

[OMG13] Object Management Group. Unified Modeling Language (UML) Version 2.5 - Beta 2

http://www.omg.org/spec/UML/2.5/Beta2/. 2013

[OMG14] Object Management Group. Object Constraint Language (OCL) Version 2.4.

http://www.omg.org/spec/OCL/. 2014

[Par00] Parshall, J., L. Lamb. Applying S-88: Batch Control from a User’s Perspective. Instrument Society of

America, North Carolina, 2000.

ISA-88 formalization. A step towards its integration with the ISA-95 standard

24

[Sho02] Shobrys, D.E, White, D.C.: Planning, Scheduling and Control Systems: Why Cannot they Work

Together? Computers and Chemical Engineering 26, 149-160, 2002.

[Usc96] Uschold, M. and M. Gruninger. Ontologies: Principles, Methods and Applications. Knowledge

Engineering Review 11, 93-155, 1996.

[W3c04] W3C OWL Working Group, OWL 2 Web Ontology Language Document Overview. Technical
Report. http://www.w3.org/TR/owl2-overview/. 2004

ISA-88 formalization. A step towards its integration with the ISA-95 standard

25

Improving Ontology Service-Driven
Entity Disambiguation

A. Patrice SEYED a Zachary FRY b and Deborah L. MCGUINNESS b

a 3M HIS, Silver Spring, MD
b Rensselaer Polytechnic Institute, Department of Computer Science,

Tetherless World Constellation, Troy, NY

Abstract.
One of the long-standing challenges in natural language processing is uniquely

identifying entities in text, which when performed accurately and with formal on-
tologies, supports efforts such as semantic search and question-answering. With
the recent proliferation of comprehensive, formalized sources of knowledge (e.g.,
DBpedia, Freebase, OBO Foundry ontologies) and advancements in supportive Se-
mantic Web technologies and services, leveraging such resources to address the en-
tity disambiguation problem in the industry setting as “off the shelf” within natu-
ral language processing pipelines becomes a more viable proposition. In this pa-
per, we evaluate this viability by building and evaluating an entity disambiguation
pipeline founded on publicly available ontology services, namely those provided
by the NCBO BioPortal. We chose BioPortal due to its current use as an ontology
repository and provider of ontological services for the biomedical informatics com-
munity. To consider its usage outside the biomedical domain, and given our imme-
diate project goal for facilitating semantic search over Earth science datasets for the
DataONE project, we focus on the disambiguation of geographic entities. For this
work, we leverage NCBO’s Term service in conjunction with NCBO’s entity dis-
ambiguation service, the Annotator, to demonstrate an enhancement of the Annota-
tor service, through application of a vector space model representation of ontolog-
ical entities and relationships to drive scoring improvements. This work ultimately
provides a methodology and pipeline for improving publicly available ontology
service-based entity disambiguation, demonstrated through an enhanced version of
the NCBO Annotator service for geographic named entity disambiguation.

Keywords. entity disambiguation, ontology, geospatial

Introduction

One of the long-standing challenges in natural language processing is uniquely identify-
ing entities in text, which when performed accurately and with formal ontologies, sup-
ports efforts such as semantic search and question-answering. Semantic search would
greatly facilitate our project, the Data Observation Network for Earth (DataONE), as it
is aimed at limiting the excessive time and effort spent to discover, acquire, interpret,
and use related data for biological, ecological, environmental and Earth science data.1

1 http://dataone.org

26

The DataONE metadata catalog is composed of content uploaded by participating re-
search institutions, that includes a keywords field populated by data managers, where
these keywords and keyword-“worthy” terms in the scientific abstracts are not yet linked
to domain knowledge in a formal way to aid discovery, besides what exist as disparate
controlled vocabularies. Clearly here, the use of publicly available formal ontologies to
disambiguate terms of relevance for search provides advanced capabilities for precise
search and a “free extension” to their existing vocabularies that does not require manual
development.

With the recent proliferation of comprehensive, formalized sources of knowledge
(e.g., DBpedia,2 Freebase,3 OBO Foundry ontologies4) and advancements in supportive
Semantic Web technologies and services, leveraging these resources to address the entity
disambiguation problem in the industry setting as “off the shelf” within natural language
processing pipelines becomes a more viable proposition. In this paper, we evaluate this
viability by building and evaluating a novel entity disambiguation pipeline founded on
publicly available ontology services, namely those provided by the NCBO BioPortal. We
chose BioPortal due to its central role as a ontology repository and provider of ontolog-
ical services for a given community, that being biomedical informatics. To consider its
usage outside the biomedical domain, and given our immediate project goal for facilitat-
ing semantic search over Earth science datasets for the DataONE project, we focus on
the disambiguation of geographic entities, using the Gazetteer Ontology (GAZ).

In this work, we use NCBO’s Term service in unison with NCBO’s own entity dis-
ambiguation service, the NCBO Annotator, to demonstrate an enhancement over the An-
notator service, using a vector space representation of ontological entities and relation-
ships to drive scoring improvements. Fittingly then, we evaluate our results against the
NCBO Annotator, and apply the TopN scoring method, since both systems are suited
to provide inputs to a semi-automated semantic-mapping workbench environment. Ul-
timately, this work evaluates whether our techniques improve on TopN mapping accu-
racy of the Annotator service, including if introducing all domain-level relationships into
the vector space provides additional discriminatory power over just those relationships
considered “broader”, while at the same time provides insights into the process of us-
ing and augmenting publicly available ontology-service driven web services for entity
disambiguation.

Our overall approach extracts named entity labels from natural language text, and
where applicable, maps each to a resource of an ontology that best represents and disam-
biguates its meaning. The set of entities that can be disambiguated within our pipeline
is flexible, to disambiguate what in the formal ontology community is referred to as par-
ticulars or concepts (or types), and what in the Web Ontology Language (OWL) con-
siders individuals or classes,5 that the Semantic Web community at large via the Re-
source Description Framework (RDF) refers to simply as resources.6 Thus we describe
our pipeline at the abstraction of “resource”, and where appropriate for its current ap-
plication we describe how it functions for geographic named entities disambiguation. In
the following sections we describe related work, background on the topic-based vector

2 http://dbpedia.org/
3 http://www.freebase.com/
4 http://www.obofoundry.org/
5 http://www.w3.org/TR/owl-ref/
6 http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

Improving Ontology Service-Driven Entity Disambiguation

27

space model algorithm we apply, and our methodology and pipeline that utilizes these
algorithms and services. In Section 4 we evaluate results using the TopN scoring met-
ric, comparing against the existing annotation service using an initial, hand-curated gold
standard. In Section 5 we present qualitative findings that resulted from application of
our the pipeline, and in sections 6 and 7 we discuss future work and conclusions.

1. Background on eTVSM

In this section we formally present the definition and implementation of an eTVSM
model [10][5]. An eTVSM formalizes how resources represent named entity labels by
first including a TVSM of the ontology, and then representing entity labels within the
TVSM based on links between named entity labels and resources. The first step in build-
ing an eTVSM is to encode a graph representation of resources connected through a
given set of relationships into resource vectors that compose a TVSM. This graph repre-
sentation is based on candidate resources and their related resources. (We consider can-
didate resources those resources which are discovered by initial lexical matching and
potentially represent to what a named entity label refers.) For each resource, we consider
P(r,k) to be the power set of all resources at distance k from resource r. We construct a
resource vector~r as follows:

~t =

〈
β

∑
k=0

∑
r1∈P(r,k)

αk, . . . ,
β

∑
k=0

∑
rn∈P(r,k)

αk

〉
,~r =

1
‖~t‖

~t (1)

Each resource in the graph representation of an ontology is assigned an index from 1
to n, which means that each resource vector has size n and there are n resource vectors.
The vector for resource n is calculated by assigning an exponentially declining weight
to connected resources and summing the total weights for each resource. For example,
resource i is assigned a weight of 1, all resources one node away from i adds a weight of
0.5, resources two nodes away from i add a weight of 0.25, etc. The sum of the weights
are normalized. In this way we assign a resource vector to each candidate resource. The
constant α is an exponential decay which is used to determine how important resources
are distant from the candidate. [5] experiments with different decay values and identify .9
as being optimal for the DBpedia Ontology; in our work we apply an exponential decay
constant of .5 and leave this analysis for future work. The constant β is used to limit the
distance between resources that we wish to consider; in our case β is 5.

Next, an interpretation vector is constructed from an interpretation, i, which is a
unique mapping of a named entity label to a resource, which we multiply by an ambiguity
weight:

~i =~r g(i) (2)

In order to reduce the effects of ambiguous mappings (i.e., which map labels to multiple
resources), we weigh each interpretation vector by an ambiguity weight g(i), defined as:

g(i) =
1

| j : j ∈ I(k),k ∈ K(i)| (3)

Improving Ontology Service-Driven Entity Disambiguation

28

The ambiguity weight g(i) forces labels which are mapped to many resources to have
less weight toward disambiguating other named entity labels. Here, K(i) is the set of all
labels for interpretation i, and I(K) is the set of all interpretations derived from label k.
We represent the document as the collection of all resource mappings by summing the
weighted interpretation vectors:

~td = ∑
i∈I

wd,i~i (4)

Each interpretation vector is weighted by multiplying the frequency at which the named
entity label for interpretation i is found in the extracted named entities from document
d. The cosine similarity metric is used to compare individual interpretation vectors for
the document against the document vector,~td . Incorrect interpretations will not signif-
icantly affect the document vector and result in a low cosine similarity score, whereas
interpretations that are more similar to other interpretations will result in a higher cosine
similarity.

2. Pipeline

We apply a three-phase pipeline for executing our entity disambiguation approach, in-
cluding NER, resource mapping, and eTVSM scoring. We describe each phase as a
black-box system, with inputs and outputs which link the phases together. Our overall
pipeline takes as input an unstructured text document in the form of a science publication
abstract from DataONE outputs a ranked list of candidate resources.

The NER phase of our pipeline extracts named entities embedded in unstructured
text using the Natural Language Tool Kit (NLTK) [11]. This phase serves the sole pur-
pose of generating a set of labels to be processed for resource mapping in the next phase.
The NLTK software library contains NER algorithms that extract named entity labels
from unstructured text. It applies a series of tokenizers to parse sentences into terms,
and using part-of-speech tagging generates parse trees as input to supervised learning
algorithms for named entity detection. The unstructured text which is passed through the
NER phase of our pipeline outputs a list of named entity labels for each given document.

The resource-mapping phase of our pipeline processes a list of named entity labels
and returns a set of named entity label to resource mappings and an ontology portion
(i.e., a set of statements) describing each matched resource. In the context of geospatial
named entity recognition, there are multiple resources which are referred to by the same
preferred label annotation. For example, in the United States, the city of Springfield
can refer to greater than 40 different cities located in multiple states. Also some states,
such as Wisconsin, have multiple cities named Springfield. Therefore, the purpose of
the resource-mapping phase is to map each named entity label to those resources which
define a unique instance of that particular location with that name. For every named
entity label extracted from the NER phase, we query the NCBO Annotator Service for a
list of candidates, that is, resources which could potentially define that particular named
entity within an ontology.

Next, we obtain statements about the resources, including annotations as well as
object property and subclass statements, using the NCBO Term Service, by supplying a

Improving Ontology Service-Driven Entity Disambiguation

29

resource URI and ontology identifier as parameters to the service.7 The object property
and subclass-based statements are filtered according to a preselected set of properties,
where the objects of these statement are recursively submitted to the Term Service. In this
way, we perform a breadth-first search along a set of properties until the final resource
in the path is reached. This phase concludes when the statements are collected for each
candidate resource.

The eTVSM scoring phase scores each entity label-to-resource mapping in a given
document by first generating a TVSM of the obtained ontology graph, and then encoding
the resource mappings into an eTVSM. We use the cosine similarity metric to determine
how strongly one candidate resource is related to all candidate resources for a given doc-
ument [5]. Given an eTVSM that encodes each mapping of a named entity label to can-
didate resources into a vector space, closely related candidate resources will have higher
scores than those than are more indirectly related or not related at all to other candidate
resources. Ultimately, the eTVSM scoring phase provides a quantitative measure for how
strongly a resource disambiguates a named entity label.

3. Evaluation

In this section we introduce a small hand-annotated dataset which we use as a gold
standard for comparing our result against the existing NCBO Annotator Service. We
score output from the NCBO Annotator Service and from our pipeline using the TopN
scoring metric. We demonstrate how our approach contributes an enhancement to the
NCBO Annotator Service for geographic named entity disambiguation using the eTVSM
algorithm. The process for which we created our gold standard is described below.

First, we selected scientific paper abstracts by processing each abstract through our
pipeline and selecting those which have at least one named entity label that has greater
than 10 candidate concept mappings. This decision was due to a lack of preexisting gold
standard data and our desire to disambiguate highly ambiguous named entity labels. For
each named entity label we hand-annotated it with a concept in the Gazetteer Ontology
which correctly identifies it. The result is 24 unique named entities labels, which were
extracted using the NER phase of our pipeline. For these 24 named entity labels, there
are 18 unique candidate concepts contained in the GAZ ontology, which we discovered
by querying the annotator service with our named entity labels. The remaining six named
entity labels were either too generic for us to assign a unique concept, or the correct con-
cepts are not contained in the most current version of GAZ; in order to get a meaningful
comparison of our pipeline against the NCBO Annotator Service we excluded these six
labels for our evaluation. The 18 named entity labels were hand-mapped to concepts in
GAZ, composing our gold standard dataset which we use in our evaluation.

In the setting of a semantic-mapping workbench, when a prospective curator inspects
the list of candidate concepts for a set of named entities extracted from a document, the
most accurate or correct concept will ideally appear at or near the top of a ranked list
of candidate concepts. In fact, the Annotator website presents candidate concepts in this
ranked manner. To be fair, there are just two levels of ranking produced by the Annotator

7 We describe the atoms of the ontology portion extraction in terms of statements, to maintain our abstrac-
tion at the level of resources. In the case of named entity disambiguation these statements are a mix of
assertions and axioms, and in the case of conceptual entities these statements are primarily axioms.

Improving Ontology Service-Driven Entity Disambiguation

30

service, determined by whether a match was made on the preferred or alternate term,
while our approach uses a much more granular similarity score metric. Still, we evaluate
our augmented version of the annotator alongside the publicly available Annotator Ser-
vice in order to demonstrate improvement upon the existing service. Therefore we evalu-
ate the two approaches using the position of the correct concept returned in a ranked list
of concept-mapping scores. To do this, we use the TopN scoring metric [12,5]:

TopN =

N
∑
j=1

αk j
c

N
∑

i=1
α i

c

(5)

where N is the number of named entity labels which are mapped to a concept in the
gold standard. k j is the position of concept j in the returned concepts from the Annotator
Service. αc is an exponential decay coefficient used for penalizing concepts that appear
later in the list. A score of 1 is realized for a document if for all named entity labels,
the top scoring candidate concept corresponds to the gold standard’s concept for that
document. Note that since we only consider concepts that are in our gold standard, and
by definition, are returned by the Annotator Service, the TopN score can never have a
value of 0. However, if all the correct concepts for each entity are returned at the bottom
of the list, the TopN score will be significantly small. We chose a value of 0.8 for our
constant αc, so, for example, the position of the correct concept will contribute 0.1 to the
score if it appears in the tenth position [5].

For the evaluation of our pipeline, we construct our vector space using two methods.
The first construction uses located in, while the second uses all (13) relationships con-
tained in the GAZ ontology. This comparison provides some evidence that including rela-
tionships beyond those considered generalizations improves scoring. Table 189 shows the
comparison between the NCBO Annotator Service and our pipeline as constructed using
the two methods. These results demonstrate that the application of the eTVSM-scoring
phase outperforms the Annotator Service for disambiguating geographic named entities.
The results demonstrate that a quantitative approach for disambiguation which measures
and ranks the strength of each concept mapping outperforms an approach which relies
on simple lexical matching.

4. Qualitative Findings

In this section we present some qualitative insights of applying our pipeline to a sample
scientific publication abstract. Figure 110 shows a graph output of our pipeline as applied
to a sample scientific abstract. In this run we included all geographic relationships from
GAZ during the concept-mapping phase.

We confirmed that our ontology-based resource mapping approach successfully
down ranks irrelevant resources and thus outperforms purely lexical-based resource map-

8 A version of this paper with figures included is available at
http://tw.rpi.edu/web/doc/ImprovingOntologyServiceDrivenEntityDisambiguation/.

9 https://www.flickr.com/photos/127739444@N02/15066654769/
10 https://www.flickr.com/photos/127739444@N02/15230553716/

Improving Ontology Service-Driven Entity Disambiguation

31

pings. For instance, where only lexical matching algorithms are used (e..g., the cur-
rent Annotator Service), the entity label ‘Oregon’ receives equal ranking for “State
of Oregon (GAZ:00002515)” as resources “Oregon (GAZ:22225751)” and “Oregon
(GAZ:00084619)” (cities in Michigan and Illinois). Our approach leverages fine-grained
geographic relationships and considers relationships with other mapped named entities
mentioned in the same abstract (e.g., Deer Creek, Josephine County), so that the similar-
ity score of the mismatches for ‘Oregon’ is significantly lower than the correct one.

We also identified improvements to the scoring of correct resources after applying
additional relationships in the resource-mapping phase of our pipeline, beyond those
considered generalizations (e.g., located in). For example, for the abstract of the fourth
study of our gold standard, the named entity label ‘Cumberland River’ was mapped to
three distinct candidates. When only the located in relationship is applied, the two incor-
rect resources received a score while the correct resource (GAZ:00150754) did not (see
left side of Table 211); however, when applying all geographic relationships, the correct
resource accurately received the highest score. This is due to relationships to other re-
sources, via the inclusion of additional kinds of geographic relationships, that have been
mapped to other named entity labels extracted from the abstract (shown in Figure 212).

Finally, we learned that our pipeline improves the quality of ontologies available
through Bioportal, by facilitating curators in the process of identifying and reporting ex-
isting gaps. For example, in an abstract that mentions the Deer Creek Field Station and
Educational Center of the state of Oregon, the named entity label ‘Deer Creek’ returned
29 unique resources labeled as ‘Deer Creek’, none of which were the correct one. We in-
formed the GAZ team, who quickly created the resource and appropriate statements, in-
creasing coverage of the ontology. Figure 1 illustrates the results of the pipeline after the
newly added resource “Deer Creek (GAZ:00633440)” was included, which became the
highest ranking candidate resource for ‘Deer Creek’ due to relationships to “Josephine
County” and “State of Oregon”.

5. Related Work

In this section we discuss recent work that applies ontologies to the named entity recog-
nition (NER) problem, including that which the current work uses and builds upon:
the NCBO Annotator and enhanced topic-based vector space modeling (eTVSM). Re-
searchers at the BBC experimented with eTVSMs [10] to automatically apply editor tags
to archived radio programs for use in a manual curation environment [5]. Concepts con-
tained in the DBpedia ontology were represented in a topic-based vector space model
(TVSM), a model constructed by creating vectors for each concept that include those
concepts related by SKOS broader13. The eTVSM was built by linking text transcribed
from radio programs to concepts in the DBpedia Ontology,14 scoring each link using the
relationships between concepts that were encoded in the TVSM. Links that were closely
related scored higher, while incorrect links which were not as closely related scored
lower. Our work reuses the same underlying theory for using a vector space model for

11 https://www.flickr.com/photos/127739444@N02/15066727059/
12 https://www.flickr.com/photos/127739444@N02/15253595325/
13 http://www.w3.org/2004/02/skos/
14 http://wiki.dbpedia.org/Ontology

Improving Ontology Service-Driven Entity Disambiguation

32

disambiguation, and additionally explores the benefits of using relationships more ex-
plicit than broader, to take advantage of knowledge beyond that found in a generalization
hierarchy, formalized by expert curators.

The NCBO BioPortal project supports efforts to linking unstructured text to ontolo-
gies through publicly accessible services for leveraging community based ontologies [2].
The NCBO Annotator Service matches inputted text to ontological terms contained in
community-developed ontologies by applying a lexical string matching algorithm to a
lexicon based on preferred and synonym labels [3,4].15 By default, the Annotator Ser-
vice is configured to consider all ontologies published through BioPortal, however there
is a parameter for restricting it to a set of target ontologies. [3] highlights the additional
need for enhancing the service by developing components that use the knowledge in on-
tologies to recognize relationships between concepts, which is a focus of this paper. The
service returns a list of candidate concepts from the selected ontologies and provides
a score for each candidate concept based on whether the concept was matched on pre-
ferred label or synonym. Our approach builds on this service and ultimately creates an
enhanced version of it that quantitatively measures how suitable each candidate concept
represents a named entity. Further, our approach and pipeline starts by recognizing to-
kens in the text, while the Annotator spots named entities using terms from the target
ontologies and supporting lexicons. Therefore with our approach a curator is more easily
able to find and report gaps in the existing ontologies in a semantic-mapping workbench
setting, since extracted token are immediately available for inspection. We describe how
we practically applied this mechanism in Section 3.

Aside from the BBC and NCBO efforts, there exists extensive previous research
in the area of entity disambiguation leveraging ontology or more generally, linked data
sources. Alexopoulos et al. [6] propose a disambiguation framework that utilizes DB-
Pedia to detect intended meaning of named entities (e.g., soccer clubs, organizations) in
unstructured text, using an algorithm similar to [10]. Kleb et al. [8] focus on disambigua-
tion using spreading activation on an RDFS-based ontologies. Mendes et al. [9] provides
disambiguation and mapping to DBpedia URIs, within DBpedia Spotlight. Hoffart [7]
applies a novel collective disambiguation strategy using a new form of coherence graph
using DBpedia and Yago. There are also many off-the-shelf concept extraction tools
available: Open Calais,16 Zemanta,17 Alchemy API18); all of these approaches identify
entities and generate URIs for them through disambiguation.

Our work differs from these in that we focus on the practicality of using NCBO
Bioportal and its APIs as an ”off the shelf” resource for applying eTVSM for semantic
disambiguation within an NLP pipeline. BioPortal is of particular interest because the
ontologies registered with it include many that are developed by expert curators. The
benefit of our approach is that the more explicit relationships and to what resources they
relate are used for disambiguation and subsequently for fine-grained semantic search
capabilities. What results from our work is an enhanced version of the NCBO Annotator
for geographic entity disambiguation. Due to the Annotator’s wide usage, it provides
immediate utility to the community upon release.

15 http://bioportal.bioontology.org/annotator
16 http://www.opencalais.com/
17 http://www.zemanta.com/
18 http://www.alchemyapi.com/

Improving Ontology Service-Driven Entity Disambiguation

33

6. Future Work

In future work, we will expand our gold standard to help determine if they further vali-
date our results. Since it is a time-intensive process, we will seek external resources for
performing the work, such as Mechanical Turk.19 We will also leverage such resources
for tagging corpora for geographic named entities, which can be used for statistically
training the NLP tokenizer that we employ in the pipeline.

Our methodology and pipeline lays a foundation for widening its use to conceptual
entities and other types of named entities. Therefore, in future work we will evaluate
how well, in practice, that our results are generalizable for disambiguating concepts and
named entities for other domains, such as biomedical. On the side of named entities,
one requirement is to request the NCBO to add additional ontologies that are specific to
individuals, similar to the crowdsourced content available via Dbpedia.

For concept-based disambiguation, we lose the immediate benefit of the NLTK
named entity recognizer, but which is mitigated when corpora tagging is carried out for
the concept domain of interest, via Mechanical Turk or use of some other resources (e.g.
PubMed). While there exists a wide range of biomedical ontologies available that cover
similar sets of concepts, we will incorporate and test publicly available mappings be-
tween NCBO-registered ontologies, though performing the mapping task itself falls out
of our scope. For the ontology extraction task of the resource-mapping phase, the mech-
anism for obtaining axioms at the class level instead of assertions at the instance level
remains the same via the NCBO Term service.

In cases where concept mappings are not available, selecting the ontology to use
that provides the best coverage and overall representation becomes more critical, as the
eTVSM approach requires the selection of one ontology. This selection should be an au-
tomated process, as within the context of an annotation software tool for semi-automated
mapping, it reduces burden on the annotator, enabling them to focus on finding the most
accurate concept match in a ranked list of candidates. Therefore, in future work we will
leverage a domain classifier for selecting the most suitable ontology for disambiguation.

To further support annotation software tools that leverage our pipeline, we will make
modifications to capture the statements in RDF and/or OWL for ease of rendering in
graph form; currently we are applying the XML-based results from the NCBO services
in a non-RDF graph representation for processing into the vector models. We anticipate
that, generally, the graph representations (as shown in Figure 1), when presented, will
provide a curator context and visual justification of the ranking scores. Finally, at the
time of this writing the NCBO ontology service for the version of BioPortal being used
is deprecated, therefore we are working to port our code to leverage the latest version
prior to making it publicly available.

7. Conclusions

To help address the challenge of using publicly available ontology services for entity dis-
ambiguation, in this paper we 1) provide an enhanced version of the NCBO Annotator
service for geographic named entity through novel application of vector space model-
based disambiguation in concert with existing NCBO Term and Annotator services; 2)

19 https://www.mturk.com/

Improving Ontology Service-Driven Entity Disambiguation

34

demonstrate that using the available fine-grained relationships in an expert-curated ontol-
ogy improves disambiguation; and 3) provide insights into the process of using publicly
available ontology-service driven web services and expert-curated domain ontologies for
entity disambiguation and organically improving upon those services.

In support of future semantic mapping workbench applications, this approach pro-
vides a ranked list of results using quantitative scoring methods to disambiguate named
entities. In Section 4 we evaluated the performance of our pipeline against the Annotator
Service using the TopN scoring metric and demonstrated how in the context of a manual
curation workbench, our pipeline provides benefit by reducing the time a curator would
spend looking for the concept that correctly matched an extracted named entity label. To
further demonstrate its value as an enhanced version of the NCBO BioPortal Annotator
Service, in Section 5 we presented some insights resulting from the pipeline being ap-
plied to Earth and environmental science abstracts, leveraging domain-level relationships
available in GAZ to power the disambiguation process.

Our approach also helps aid curators to create gold standard datasets as training data
for performing entity disambiguation using statistical machine learning methods. For cu-
rators who manage metadata like those within the DataONE project, the output from our
pipeline could be added as metadata, improving metadata quality by showing how named
entities in the text are related, which can we used to enhance search capabilities. Our
approach provides benefits over using methods that do not rely on ontologies for the dis-
ambiguation task, or when ontologies with minimal semantics (e.g., broader relationship
in SKOS) are used, as subsequent search interface capabilities will have better precision.

References

[1] Heath, T. and Bizer C. Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on
the Semantic Web. Morgan and Claypool Publishers, 2011.

[2] Musen MA, Noy NF, Shah NH, Whetzel PL, Chute CG, Story MA, Smith B; NCBO team. The National
Center for Biomedical Ontology. J Am Med Inform Assc. 2012 Mar;19(2):190-5. Epub 2011 Nov 10.

[3] Jonquet C, Shah NH, Musen MA. The open biomedical annotator. Summit on Translat Bioinforma. 2009
Mar 1;2009:56-60. PubMed PMID: 21347171; PubMed Central PMCID: PMC3041576.

[4] Shah, N., Bhatia, N., Jonquet, C., Rubin, D., Chiang, A., & Musen, M (2009). Comparison of concept
recognizers for building the Open Biomedical Annotator. BMC bioinformatics, 10(Suppl 9), S14.

[5] Raimond, Y., & Lowis, C. Automated interlinking of speech radio archives.
[6] P. Alexopoulos, C. Ruiz, J.M. Gmez-Prez (2012), Scenario-Driven Selection and Exploitation of Se-

mantic Data for Optimal Named Entity Disambiguation, Proceedings of the 1st Semantic Web and In-
formation Extraction Workshop (SWAIE 2012), Galway, Ireland, October 8-12, 2012.

[7] Hoffart, J., Yosef, M.A., Bordino, I., Frstenau, H, Pinkal, M., Spaniol, M., Taneva, B., Thater, S.,
Weikum, G.: Robust disambiguation of named entities in text. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, ACL, Stroudsburg, PA, USA, 782-792.

[8] Kleb, J., Abecker, A.: Entity Reference Resolution via Spreading Activation on RDF-Graphs. In Pro-
ceedings of the 7th ESWC, pages 152-166, Springer Berlin, Heidelberg, 2006.

[9] Mendes, P.N., Jakob, M., Garcia-Silva, A., Bizer, C.: DBpedia spotlight: shedding light on the web of
documents. In Proceedings of the 7th International Conference on Semantic Systems, ACM, New York,
USA, 1-8, 2011.

[10] Polyvyanyy, A. (2007). Evaluation of a novel information retrieval model: eTVSM. Master’s thesis,
Hasso Plattner Institut.

[11] Bird, Steven, Edward Loper and Ewan Klein (2009). NLP with Python. O’Reilly Media Inc.
[12] Adam Berenzweig, Beth Logan, Daniel P. W. Ellis, and Brian Whitman. A large-scale evaluation of

acoustic and subjective music-similarity measures. Computer Music Journal, 28(2):6376, Summer 2004.

Improving Ontology Service-Driven Entity Disambiguation

35

Towards an Ontological Grounding of IFC

Stefano Borgo1

stefano.borgo@cnr.it
Emilio M. Sanfilippo1,2

emilio.sanfilippo@itia.cnr.it
Aleksandra Šojić2

aleksandra.sojic@itia.cnr.it

Walter Terkaj2

walter.terkaj@itia.cnr.it

1Laboratory for Applied Ontology (ISTC-CNR), Trento, Italy;
2Institute of Industrial Technologies and Automation (ITIA-CNR), Milan, Italy

Abstract

The Industry Foundation Classes (IFC) is a standard providing an open
vendor-independent file format and data model for data interoperability
and exchange for Architecture/Engineering/Construction and Facility
Management. Some works in the literature addressed the conversion of
the standard to the Web Ontology Language, but there is still need of an
in depth ontological analysis of its constructs. With this work we start
such an analysis focusing on the IFC type/occurrence distinction. The
goal is to increase the correct understanding and use of the standard
while ensuring logical coherence, ontological soundness and conceptual
clarity.

1 Introduction

Information and Communication Technologies (ICT) play a central role in supporting various engineering tasks in
the field of manufacturing, building and construction industry. Nevertheless, the use of heterogeneous application
tools supporting industrial activities, the lack of a common conceptualisation of the terms used by various actors
across different communities, and the lack of formal representations threaten the quality of process and product
modelling as well as the effective sharing of data between the stakeholders [25, 30]. In this paper, we focus on
the Industry Foundation Classes (IFC) [6], an information modelling standard supported by several Computer
Aided Design (CAD) systems. According to the U.S. National Building Information Modeling Standard [17],
IFC is the most mature and widespread schema for the building industry.

In order to overcome some drawbacks related to the native language specification of IFC, namely EXPRESS,
and benefit from the use of Semantic Web based approaches and technologies, different communities have been
working on the conversion of the standard into the Web Ontology Language (OWL) [33]. Nevertheless, the
development of IFC-like ontologies has not yet delved into the ontological grounding of the standard, its as-
sumptions and rules that are not always explicitly formalized (e.g. the distinction and relation between type and
occurrence entities; the inheritance and overriding of property sets). A simple conversion of IFC into OWL is not
enough because ontologies should attempt at making explicit the implicit ontological commitments and concep-
tualisations of the world laying behind information systems terminologies. When concepts used for knowledge
representation and data sharing are not analysed and clearly defined, the different information systems using

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: V. Chaudhri and A. Rademaker (eds.): Proceedings of the 6th Workshop on Formal Ontologies meet Industry (FOMI), Rio de
Janeiro, Brasil, 22-September-2014, published at http://ceur-ws.org

36

them cannot be rigorously (thus reliably) aligned for automated information sharing and exploitation. Indeed,
a rigorous ontological perspective, as suggested modern theories of Ontology Engineering [9, 10, 34, 5, 23], is
crucial to take full advantage of modern ontological tools.

We focus hereby on the IFC type/occurrence distinction, which plays an important role in the standard, aiming
at exploiting the re-use of data and minimising the replication of information. Thus it is important to correctly
understand to what types and occurrences refer, especially if one aims at developing IFC-driven ontology-based
applications. In the next section we introduce IFC and its general structure; Section 3 presents the state of the
art about the conversion of IFC into OWL; Section 4 analyses the IFC type/occurrence distinction, from both
a terminological and ontological perspective. We conclude with some remarks about future work.

2 Industry Foundation Classes

The Industry Foundation Classes (IFC) is a standard providing an open vendor-independent file format and data
model for data interoperability and exchange for Architecture/Engineering/Construction and Facility Manage-
ment (AEC/FM). It is released by buildingSMART International and its current release (IFC 4) is registered
as ISO 16739. IFC supports interoperability across different applications used to design, construct and op-
erate construction facilities by capturing information about all aspects of a building throughout its lifecycle
[14, 30, 2, 21].

The IFC data model is defined in the EXPRESS modelling language, the dedicated formal language developed
within the ISO 10303 STEP standard [11]. The current IFC release is built on a modular structure that
distinguishes among four conceptual layers, which are tailored in turn in different schemas (aka modules):

• Resource layer: it specifies classes that do not stand in taxonomical relationships with classes defined
in the other layers, but they can be rather recalled by means of specific relationships. For example, it
includes amongst its schemas the IfcGeometryResource, which contains entities needed to define geometric
representations (e.g. IfcCartesianPoint, IfcPlacement, IfcSurface). In this way, a product (as a
physical object) - defined in the Core Layer (see below) as a IfcProduct - can be characterised by a specific
placement by the ObjectPlacement attribute that points to IfcPlacement;

• Core layer: it contains the most general concepts of the IFC data model. Its purpose is to provide the main
backbone concepts and relationships of the IFC data model. It thus supports interoperability among the
IFC layers and compatibility with the various IFC releases. The Core layer comprises two main schemas:

1. IfcKernel, which collects the most general concepts of the standard like IfcRoot,
IfcObjectDefinition, IfcProcess, IfcContext;

2. IfcCoreExtension, which is further subdivided into three modules: IfcControlExtension, IfcProcessEx-
tension and IfcProductExtension. These specialise the IfcKernel with AEC/FM concepts. In partic-
ular, the IfcControlExtension contains entities for control objects like IfcPerformanceHistory and
IfcControl; the IfcProcessExtension specifies entities for the representation of process-like entities,
e.g. IfcEvent, IfcProcedure, IfcTask; the IfcProductExtension contributes to the specialisation of
entities related to product modelling like IfcElement, IfcElementAssembly, IfcGrid;

• Interoperability layer: it contains concepts, defined in the Domain layer (see below), shared by multiple do-
mains and used for inter-domain exchange and sharing of construction information. Amongst its schemas,
it includes the IfcSharedBuildingElements and the IfcSharedFacilitiesElements. The former specialises the
IfcProductExtension (Core) schema by classes used for representing building structures. Amongst its entities,
it includes IfcChimney, IfcDoor, IfcRamp. The latter provides a set of entities concerning facilities manage-
ment. Some of them specialise the IfcProductExtension schema (e.g. IfcFurniture, IfcFurnitureType),
while others are attached directly under the IfcKernel (e.g. IfcInventory, IfcOccupant);

• Domain layer: it contains the most specific concepts of IFC. The Domain layer organises concepts according
to industry disciplines and amongst its schemas it includes the IfcArchitectureDomain and the IfcBuilding-
ControlsDomain. The former defines concepts used in architecture, like IfcDoorStyle, IfcWindowStyle,
IfcWindowPanelProperties, among others. The latter supports the modelling of building automation, con-
trol, instrumentation and alarm. Amongst its entities, it includes IfcActuator, IfcAlarm and IfcSensor.

Towards an Ontological Grounding of IFC

37

The modular architecture operates on a so-called gravity principle: at any layer, an entity may refer only
to an entity at the same or lower layer [21]. For instance, entities at the Core layer may refer to other Core
classes, as well as to Resource layer classes, but cannot refer to entities within the Interoperability or Domain
layers. The same principle applies also within the Core layer, in the sense that IfcKernel entities cannot refer to
IfcCoreExtensions, while the reverse is allowed.

The concepts of IFC, modelled in EXPRESS by the ENTITY construct, are organised into taxonomies
via the supertype/subtype partial ordering relation. For instance, IfcProcess is the supertype of IfcEvent,
IfcProcedure and IfcTask. Some concepts (e.g. IfcProcess) are declared to be abstract, in the sense that they
can only be instantiated through their subtypes. Inheritance is allowed along the hierarchy, so that subtypes
inherit those attributes defined at the level of the supertypes. For example, Fig.1 shows the EXPRESS specifi-
cation of IfcProduct. This is modelled by ENTITY and stands for the abstract super-type of different classes,
which are mutually disjoint (the construct ONEOF specifies the disjointness). The relationship SUBTYPE
OF states that IfcProduct is subsumed under IfcObject. ObjectPlacement, Representation and ReferencedBy
are attributes, while WHERE is a rule specifying a certain condition.

Figure 1: IfcProduct in EXPRESS, from [6]

3 Owl-izing IFC

IFC supports data exchange among Building Information Modeling (BIM) applications [30]. Nevertheless, dif-
ferent communities have explored its conversion into the Web Ontology Language (OWL) [33] to overcome draw-
backs due to some limitations of EXPRESS, and to benefit from the exploitation of Semantic Web technologies
for the management of BIM data [18].

Beetz and colleagues [3, 4], as well as Krima et al. [1], draw attention to the EXPRESS lack of formal
semantics, so that a logic-based language as OWL is preferable for the definition of axiomatic theories aimed at
supporting knowledge representation and data sharing. Additionally, Beetz et al. [4] stress that the popularity of
EXPRESS among the engineering community is very limited, apart from the STEP initiative, so that the reuse
of existing ontologies or tools for interoperability is often inhibited, especially those related to the Semantic Web
initiative. In the paper, the authors explore a semiautomatic method for lifting EXPRESS schemas onto OWL
files.

Schevers et al. [24] as well as Zhang et al [35], argue that the conversion of IFC into OWL facilitates the
linkage between different IFC models and databases, apart from enabling the exploitation of Semantic Web
technologies for building information models. Katranuschkov and colleagues [13] develop an ontology framework
aimed at supporting data modelling and data sharing in civil engineering by reusing the IFC data model.
However, differently from other approaches, their library of ontologies is developed as an XML Schema. Pauwels
and colleagues [18, 19] present a conversion service of the XML-based schema into OWL ontologies in order to
represent building information through the enriched RDF graphs, which can be used with reasoning engines [19].
Following the Linked Data approach, the authors stress the advantages of a semantic rule checking environment
for the AEC domain [18].

Terkaj et al. [27] propose a modular OWL ontology for virtual factory modelling and data sharing between
heterogeneous and geographically distributed software tools. The main structure of the ontology, called Virtual
Factory Data Model (VFDM), is based on IFC and the conversion of the standard from EXPRESS to OWL
mainly follows the pattern proposed in [3, 4]. The VFDM models the main building blocks of manufacturing

Towards an Ontological Grounding of IFC

38

systems and their inter-relations, namely, products to be manufactured, manufacturing processes, manufacturing
resources and the factory building. The ontology is used as a key enabler inside an integration framework [31]
to interoperate different software applications by developing ontology-based plugins for both commercial (e.g.
Arena by Rockwell Automation [28], Plant Simulation by Siemens PLM [12]) and non-commercial (e.g. GIOVE
Virtual Factory [32], OntoGUI [29]) software tools, aiming at realising an integrated software platform that can
support the design and management of a factory along its lifecycle phases [7]. The VFDM shows how an OWL
version of IFC can be more easily extended and integrated with other ontologies to represent specific knowledge
domains (e.g. factory sustainability [26, 8] and ambient assisted living [22]).

4 Types and occurrences in IFC

As it stands today, IFC is a data model that relies on human interpretation, in the sense that the meanings of
its modelling elements are not constrained by means of formal semantics. As discussed in the previous section,
semantic considerations lead to look for a formalization of IFC in some formal language, primarily OWL, which
is frequently used for computational reasons (which we do not discuss in this paper). However, if the change
of language helps to improve some aspects of the standard (e.g. making explicit semantics), it does not per se
lead to the clarification of the ontological coherence laying behind IFC. For this reason, the use of ontological
analysis can help to highlight possible drawbacks in the standard and in the conversion patterns used to build
IFC-driven ontological systems.

There are different ways to analyse a standard from the ontological viewpoint. The aim of this section is to
verify whether the main distinctions on which IFC relies are well defined and understood. In this initial work, we
focus on the distinction between IFC modelling elements named ‘type’ and ‘occurrence’ aiming at clarifying what
they amount to in ontological terms. The IFC conceptual schema applies this distinction to several modelling
constructs, e.g. IfcObject and IfcTypeObject; IfcProduct and IfcTypeProduct. Types and occurrences are
linked through the (objectified) relationship IfcRelDefinesByType, as showed in Fig.2. We want to understand
what kind of entities are involved in the distinction, how they are classified, and what kind of relationships hold
between them. The investigation aims at reducing the risk of an erroneous implementation of the standard in
languages such as OWL by clarifying the notions and how they should be used for modelling purposes.

Figure 2: IfcObject and IfcTypeObject with the subclasses IfcTypeProduct and IfcProduct

Let us consider a paradigmatic case: IfcTypeProduct vs. IfcProduct. As anticipated in Section 2,
IfcProduct is a subclass of IfcObject, while IfcTypeProduct is a subclass of IfcTypeObject (see Figures
1 and 2). According to the IFC documentation: “The IfcProduct is an abstract representation of any object
that relates to a geometric or spatial context. Subtypes of IfcProduct usually hold a shape representation
and an object placement within the project structure. [...] Any instance of IfcProduct defines a particular
occurrence of a product[...]” ([6], section 5.1.3.10). Therefore, from the definition, IfcProduct is a class because
it has (a) subtypes (thus structured in a hierarchy) and (b) instances.

The construct IfcTypeProduct is defined in the following way: “IfcTypeProduct defines a type definition of
a product without being already inserted into a project structure (without having a placement), and not being in-
cluded in the geometric representation context of the project. It is used to define a product specification, that is,
the specific product information that is common to all occurrences of that product type” ([6], sect. 5.1.3.49). Al-
though some terms are left unspecified, e.g. project structure, it seems clear that the IfcTypeProduct construct
represents a class as well. In particular, an instance of IfcTypeProduct refers to a set of product specifications,
i.e., properties that can be common a set of instances of IfcProduct.

The terms instance and class are commonly used with a variety of meanings in the literature, thus we need
to make their interpretation precise. The main distinction between a class and an instance is that the former
is a collection of entities (its members), whereas the latter is not1: a class is said to have instances, whereas an

1We do not distinguish classes from sets and call instance any member of a class which is not a class itself.

Towards an Ontological Grounding of IFC

39

instance itself cannot instantiate. For example, a particular automobile produced by fiat, call it FIAT500#001,
is an instance of the class fiat car, and the distinction between the class and the instance relies on the way
they are related to the expression being fiat car: we say that any instance of the class satisfies the expression
and that the class is characterised by such an expression. More specifically, being fiat car is a property used
to talk about instances: some instances are cars produced by fiat, while others, e.g. a product manufactured by
Microsoft as well as the Everest mountain, are not. Properties help to discriminate entities because they allow
to state which entities are distinct and why. To be an instance of the class fiat car is thus equivalent to satisfy
the property being fiat car, which is a shortcut for a conjunction of several more specific properties regarding
the engine size, the chassis model, the chassis colour, among others. This complex property is known, in logical
and ontological terms, as the intension of the class, while the collection of the entities satisfying the property is
called the extension of the class. The difference between intensionality and extensionality plays a relevant role
in ontological engineering, because it allows understanding whether a class is bound or not to the particulars it
talks about [9].

Following the distinction between extensionality and intensionality, IFC occurrences can be understood as
extensional classes, whose intensional properties can be also defined by the properties associated with the types.
The type-ocurrence dichotomy can be further discussed by referring to Fig. 3. Recall that IFC, being formalized in
EXPRESS, explicitly models the upper side of the schema only (IfcTypeObject, IfcObject and RelDefByType),
while the boxes in the middle and lower side (TypeTruck, IC FIAT 500, id1, OccTruck, Fiat500#001, among
others) are here included to help in the interpretation.

Figure 3: Example of IFC type/occurrence

The relationship of instantiation holding between classes and their corresponding members is labeled
instance of in Fig. 3. RelatingType and IsTypedBy are (non-objectified) relationships holding between
the represented modelling constructs at both the class and the instance levels. The bottom-right elements (e.g.
Fiat500#001) of the figure are instances representing particular objects, e.g. a particular car that someone owns
and drives. This object is characterised by a conjunction of properties (like having chassis model, having chassis
color, having engine size) that provide the identity criterion for belonging to the class OccAutomobile. The ob-
ject FIAT500#001 and the class OccAutomobile are thus connected by the instantiation relationship. Moreover,
the qualifications of these properties (i.e. values and ranges like chassis model #F22, chassis color #red3F
and engine size 1200) are used as the criterion to link an instance (FIAT500#001) with its corresponding type
(IC FIAT 500), belonging to a type class (TypeAutomobile).

The class OccAutomobile is associated to a unique subclass of IfcTypeObject, namely TypeAutomobile. This
relationship is at the intensional level, in the sense that it relies on the properties characterizing OccAutomobile
and does not depend on its instances (whether they exist or else). We have seen some examples of these properties:
having chassis model, having chassis colour and having engine size. TypeAutomobile thus refers to the collection
of some common properties that characterize OccAutomobile but, generally speaking, not on their values. We

Towards an Ontological Grounding of IFC

40

call the relationship between the type and occurrence elements, i.e. the classes on the top of Fig. 3, typization
since it allows to associate to each homogeneous collection of instances in the right hand-side of the diagram a
single general description, i.e. a set of properties in terms of which it is meaningful to consider a comparison of
instances2.

Finally, an instance of TypeAutomobile, that is, an element in the bottom-left of Fig. 3, is associated with
a collection of these very properties with specified values and ranges: in our example, having chassis model
#F22, having chassis colour #red3F , having engine size 1200 and the like. We call this object IC FIAT 500. In
ontological terms, IC FIAT 500 is called an information object. Also, we could call the relationship between the
collection of qualified properties IC FIAT 500 and the instance(s) FIAT500#001 that satisfies them a realization
since the object FIAT500#001 manifests all the properties given by the information object IC FIAT 500 with
the requested qualifications. This relationship differs from that between the class TypeAutomobile and the class
OccAutomobile: the first (realization) is between instances and says that an entity satisfies a set of properties
with given values; the latter (typization) is between classes and associates the class corresponding to a set of
properties (a type) to the occurrence class whose members must satisfy those properties for some admissible
value. Note that a realization does not need to be a physical entity; it may very well be a virtual element.

Currently, it is a matter of ambiguity whether an occurrence instance represents in IFC a physical entity (e.g.
the car owned by someone), or a virtual representation in an information system. In our experience we note
that IFC practitioners adopt both readings depending on their application tasks. Note however that physical
and virtual entities have different ontological properties: on the one side, the former has e.g. a spatiotemporal
location according to which it can be classified as a physical object in a formal ontology framework like the one
proposed by the dolce foundational ontology [15]; on the other side, the latter lacks spatial location in the
former sense and is classified in dolce as an abstract object when it also lacks temporal location (in a common
sense perspective that is usually associated with physical objects); or as a concept when existing in time, for
example in the form of a description. Since physical, abstract and conceptual elements are distinguished by
distinct properties, an ontology artefact requires to clearly separate them. Note also that the identification of
classes at the virtual (abstract) and the physical levels plays a relevant role in data sharing, communication and
verification since it determines which data are affected by time and in which way. Consider a scenario in which
a practitioner develops an ontology-based instance model (A-Box) with an occurrence instance o1, which is a
virtual entity. When a user accesses the ontology, s/he would not be able to properly interpret o1 as a virtual
entity unless this is somehow modelled in the system by specific formal constraints. An explicit specification
of the ontological kind of entity that is represented (virtual or physical) could enhance the reliability of the
information sources that use the standard.

5 Conclusion and further discussion

Current attempts towards the OWL formalization of IFC have not been systematically supported by the on-
tological analysis of its terminology and modelling constructs. While bringing the benefits of formal semantics
into IFC, OWL-ized IFC ontologies do not clarify the meanings of its modelling elements. Indeed, choosing how
to interpret IFC notions relies on the users’ knowledge of the standard and their application needs, issues that
threaten automated interoperability between IFC models developed by different communities. Our approach
differs from the state of the art (Section 3), because it proposes a reading of the standard aimed at increasing its
ontological soundness and conceptual clarity. The performed ontological analysis explains the type/occurrence
modelling pattern in terms of the difference between descriptions (i.e., information entities) within the type
hierarchy, and their realizations within the occurrence hierarchy, where realizations might be both physical and
virtual elements in the system.

The distinction between IFC types and occurrence classes should not be confused with the distinction between
meta-classes and classes [16]. Briefly said, meta-classes and classes differ on the abstraction level: the meta-class
has the class as an instance. Yet, if a class instantiates a meta-class, then the meta-class should be associated
with a collection of the properties that are necessary for a class to be classified as an instance. According
to our analysis, TypeAutomobile is related to OccAutomobile via properties like having chassis model, having
chassis colour and having engine size. However, these properties do not necessarily have to be linked to the
properties of the class OccAutomobile for two reasons. First, IFC allows that some properties associated with
types can be overridden [6], thus they are not treated as necessary properties. Second, analogous to the example

2Ontologically speaking, we could say that IFC is a contextual modelling framework since the notion of ‘homogeneous instances’
depends on the user or the application task. This observation is crucial for a suitable choice of the classes to consider in the diagram.

Towards an Ontological Grounding of IFC

41

of IfcBuilding [6], which does not need to have specified IfcBuildingType, it is possible to have an instance of
class OccAutomobile and directly characterize it with as many properties as possible (i.e. chassis et al.) without
linking it to any instance of class TypeAutomobile. This example, together with the possibility to override some
properties associated with the types, demonstrate that the standard currently does not treat the IFC types as
meta-classes of the occurrence classes. Accordingly, the Instance of relationship does not apply to types and
classes of occurrences in IFC.

The difference between IFC type and occurrence classes may remind the materialization modelling pattern [20].
Materialization is a binary relationship holding between abstract and concrete entities, e.g. between the abstract
CarModel and the concrete Car, where the former is a class of properties, and the latter is a class of particular
automobiles defined by the class of properties. Concrete classes are said to materialise abstract ones; e.g. one
could say that John’s and Mary’s Fiat500s materialize the same Fiat500 model, although they are two different
particular cars. However, the abstract-concrete pairs, and thus the materialization relationships, are ambiguously
defined: firstly, materialization holds that one and the same thing can be both concrete and abstract [20] while
ontological theories force to distinguish them as different kinds [15]. Secondly, the semantics of the materialization
relationship is defined through the instantiation and generalization/specialization relationships (together with a
metaclass/class correspondence), but generalization and abstraction are quite different operators, similarly for
specialization and concretization. It remains unclear how abstract and concrete entities are related by these
operators. The study of materialization might enlighten the IFC type/occurrence dichotomy; nevertheless, this
can be assessed only once the semantics of materialization has become conceptually transparent and (possibly)
formally represented.

Acknowledgments

This research has been partially funded by MIUR under the Italian flagship project “Fabbrica del Futuro”, Sub-
project 2, research project “Product and Process Co-Evolution Management via Modular Pallet configuration”
(PRO2EVO).

References

[1] R. Barbau, S. Krima, S. Rachuri, A. Narayanan, X. Fiorentini, S. Foufou, and R.D. Sriram, “OntoSTEP:
Enriching product model data using ontologies,” in Computer-Aided Design, 44(6):575–590, 2012.

[2] V. Bazjanac and D.B. Crawley, “The implementation of Industry Foundation Classes in simulation
tools for the building industry,” tech. rep., Lawrence Berkeley National Laboratory, 1997.

[3] J. Beetz, J. van Leeuwen, and B. de Vries, “An Ontology Web Language notation of the Industry
Foundation Classes,” in 22nd CIB W78 Conference on Information Technology in Construction, 2005.

[4] J. Beetz, J. Leeuwen, and B. Vries, “IfcOwl: A case of transforming express schemas into ontologies,”
Artificial Intelligence for Engineering Design, Analysis and Manufacturing, vol. 23, pp. 89–101, 2009.

[5] S. Borgo, M. Carrara, P. Garbacz, and P. E. Vermaas, “A formalization of functions as operations on
flows,” Journal of Computing and Information Science in Engineering, 11(3):031007 1–14, 2011.

[6] buildingSMART International, “Industry Foundation Classes. IFC release candidate 4,” 1999-2012.

[7] M. Colledani, G. Pedrelli, W. Terkaj, and M. Urgo, “Integrated virtual platform for manufacturing
systems design,” Procedia CIRP, vol. 7, pp. 425–430, 2013.

[8] S. Gagliardo, F. Giannini, M. Monti, G. Pedrielli, W. Terkaj, M. Sacco, M. Ghellere, F. Salamone,
“An Ontology-based Framework for Sustainable Factories,” Computer-Aided Design and Applications,
vol. 12(2):198–207, 2015.

[9] N. Guarino and C. Welty, “An overview of OntoClean,” in Handbook on Ontologies (S.Staab and
R.Studer, eds.), pp. 201–220, Springer-Verlag Berlin Heidelberg, 2009.

[10] M. Grueninger, “Using the PSL ontology,” in Handbook on Ontologies (S.Staab and R.Studer, eds.),
pp. 423–443, Springer-Verlag Berlin Heidelberg, 2009.

Towards an Ontological Grounding of IFC

42

[11] ISO, Industrial Automation Systems and Integration - Product Data Representation and Exchange. Part
11: Description methods: The EXPRESS language reference manual, iso 10303-11:2004(e) ed., 2004.

[12] B. Kádár, W. Terkaj, and M. Sacco, “Semantic Virtual Factory supporting interoperable modelling and
evaluation of production systems,” CIRP Annals - Manufacturing Technology, 62(1):443–446, 2013.

[13] P. Katranuschkov, A. Gehre, and R. Scherer, “An ontology framework to access IFC model data,”
ITcon, vol. 8, no. Special Issue, pp. 413–437, 2003.

[14] L. Khemlani, “The IFC building model: A look under the hood,” 2004.

[15] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A. Oltramari, “WonderWeb Deliverable D18, Ontology
Library (final)”. LOA-ISTC, CNR, Tech. Rep. 2003

[16] J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis, “TELOS: Representing knowledge about infor-
mation systems”, in ACM Transactions on Information Systems (TOIS), 8(4), pp. 325-362.

[17] National Institute of Building Sciences, “National building information modeling standard, version 1 –
part 1: Overview, principles and methodologies,” tech. rep., 2007.

[18] P. Pauwels, D. Van Deursen, R. Verstraeten, J. De Roo, R. De Meyer, R. Van de Walle, and J. Van
Campenhout, “A semantic rule checking environment for building performance checking” in Automation
in Construction, vol. 20:5, pp. 506–518, 2011.

[19] P. Pauwels and D. Van Deursen ,“IFC/RDF: Adaptation, Aggregation and Enrichment”, in First
International Workshop on Linked Data in Architecture and Construction (LDAC 2012), 2012

[20] A.Pirotte, E.Zimányi, D.Massart, T.Yakusheva, Materialization: A Powerful and Ubiquitous Abstrac-
tion Pattern, in Proceedings of the 20th International Conference on Very Large Data Bases (VLDB),
1994

[21] L.C. Pouchard and A.F. Cutting-Decelle, “Ontologies and standard-based approaches to interoperabil-
ity for concurrent engineering” in Concurrent Engineering in Construction Projects, Taylor & Francis
2007

[22] M. Sacco, E. Caldarola, G. Modoni, W. Terkaj, “Supporting the Design of AAL through a SW
Integration Framework: The D4All Project,” in Universal Access in Human-Computer Interaction.
Design and Development Methods for Universal Access, Lecture Notes in Computer Science, vol. 8513,
pp. 75-84, Springer International Publishing, 2014.

[23] E.M. Sanfilippo, S. Borgo, and C. Masolo. States, events, activities: Is there an ontology behind
BPMN? In International Conference on Formal Ontology in Information Systems (FOIS 2014), FAIA,
IOS Press, 2014.

[24] H. Schevers and R. Drogenmuller, “Converting the industry foundation classes to the web ontology
language,” in First International Conference on Semantics, Knowledge and Grid (SKG), 2006.

[25] S. Szykman, R.D. Sriram, and W.C. Regli, “The role of knowledge in next-generation product devel-
opment systems,” in Journal of Computing and Information Science in Engineering, vol. 1, pp. 3–11,
2001.

[26] W. Terkaj, L. Danza, A. Devitofrancesco, S. Gagliardo, M. Ghellere, F. Giannini, M. Monti, G. Pedrielli,
M. Sacco, and F. Salamone, “A Semantic Framework for Sustainable Factories,” in Procedia CIRP,
vol. 17, pp. 547–552, 2014.

[27] W. Terkaj, G. Pedrelli, and M. Sacco, “Virtual Factory Data Model,” in Workshop on Ontology and
Semantic Web for Manufacturing OSEMA 2012, CEUR Workshop Proceedings, vol. 886, pp. 29–43,
2012.

[28] W. Terkaj and M. Urgo, “Virtual Dactory Data Model to support performance evaluation of produc-
tion systems,” in Workshop on Ontology and Semantic Web for Manufacturing OSEMA 2012, CEUR
Workshop Proceedings, vol. 886, pp. 44–58, 2012.

Towards an Ontological Grounding of IFC

43

[29] W. Terkaj and M. Urgo, “Ontology-based modeling of production systems for design and performance
evaluation,” in Proceedings of 12th IEEE International Conference on Industrial Informatics (INDIN),
pp. 748–753, 2014.

[30] V. Thein, “Industry Foundation Classes (IFC).BIM interoperability through a vendor-independent file
format. a bentley white paper,” tech. rep., Bentley. Sustaining Infrastructure, 2011.

[31] T. Tolio, M. Sacco, W. Terkaj, and M. Urgo, “ Virtual Factory: an Integrated Framework for Manu-
facturing Systems Design and Analysis,” in Procedia CIRP, vol. 7, pp. 425–430, 2013.

[32] G.P. Viganò, L. Greci, S. Mottura, and M. Sacco, “Giove Virtual Factory: A new viewer for a more
immersive role of the user during factory design,” in Digital Factory for Human-oriented Production
Systems. The Integration of International Research Projects, pp. 201–216, Springer London, 2011.

[33] W3C OWL Working Group, “OWL 2, Web Ontology Language document overview (second edition).”

[34] M. West, Developing High Quality Data Models. Morgan Kaufmann, 2011.

[35] L. Zhang and R. R. Issa, “Development of IFC-based construction industry ontology for information
retrieval from ifc models” in EG-ICE Workshop, University of Twente, The Netherlands, July. 2011.

Towards an Ontological Grounding of IFC

44

Ontologies in Enterprise Applications:

Dimensional Comparison

Valeria de Paiva, William Jarrold, David Martin,
Peter F. Patel-Schneider, Karen Wallace, Peter Z. Yeh

Nuance Communications
Sunnyvale, CA 94085 U. S. A

Abstract

Many important categories of applications such as information integra-
tion, data analytics, and personal assistance require access to a general
store of knowledge. The usefulness of such a store depends not only
on its factual content, but also on its conceptual framework, or ontol-
ogy. Ontologies vary markedly in their characteristics, and the value of
an ontology varies according to the purpose for which it will be used.
Thus, selecting one or more ontologies suitable for an application can
be challenging. We have created a set of dimensions to consider when
making this selection. Although these dimensions are motivated by the
needs of conversational assistance applications, they can benefit the
development of a wide variety of enterprise applications. We applied
these dimensions to four large, general-purpose ontologies—Cyc, Free-
base, SUMO, and YAGO—and made qualitative comparisons between
them.

General-purpose ontologies are playing an increasingly central role in many important categories of appli-
cations such as information integration, distributed knowledge management, data analytics, and personal as-
sistance. These ontologies aim to provide a framework for better organization and access of data, effective
information and knowledge sharing, reliable information exchange, and improved coordination between distinct
organizations or among members of the same organization. Consequently, companies face an increasing need to
be able to choose the most suitable ontologies for their applications. This paper addresses that need.

We aim to provide an evaluative framework that may be applied to assess the usefulness of an ontology for any
particular commercial application. Specifically, we set out to define the dimensions under which ontologies can be
compared, and focus on those dimensions that assess terminological knowledge (definitions of concepts and their
properties and relationships), not assertional knowledge (instances of concepts and facts about them). This focus
is warranted because treatments of terminological knowledge are often overshadowed by assertional knowledge,
or overlooked altogether. We believe our dimensions can provide an evaluative framework for comparing the
strengths and weaknesses of different ontologies, which may prove useful for others investigating a robust use of
semantic knowledge.

Our dimensions have resulted from our investigation of different ontologies suitable for conversational systems,
as described in Kaplan’s “Beyond the GUI: It’s Time for a Conversational User Interface” [6], and are exemplified
by our end-to-end speech-driven second screen application for television program discovery, described in [14].
Despite our focus application, we believe that our dimensions and our preliminary results from applying them
should be applicable to a wide variety of companies that need to make the best choice for their applications.

In: Vinay Chaudhri, Alexandre Rademaker (eds.): Proceedings of the Workshop on Formal Ontologies meet Industry (FOMI), Rio
de Janeiro, Brazil, 22-Sep-2014, published at http://ceur-ws.org

45

This is because of the extremely broad range of requirements of conversational systems. A conversational
system is more than just speech recognition and synthesized speech; it must combine these voice technologies
with natural-language understanding of the intention behind those spoken words. The intelligence comes from
contextual awareness (who said what, when and where), perceptive listening (automatically waking up when you
speak), and artificial intelligence reasoning. Moreover, a conversational system needs to be capable of question
answering, intent recognition, semantic database integration, proactive behavior and even social intelligence.

Much work has been done in comparing and evaluating ontologies, especially devising quantitative metrics for
ontologies using OWL as their representation language [13, 3, 12]. [13] characterizes most prior work as focusing
on the mere structural aspects of an ontology and not considering the semantics of the ontology. Our paper shares
the goal of semantic focus, but because our scope is more general in the kinds of languages we want to compare
(i.e.not only OWL-based) it is less formal, and we actually apply our evaluation strategy to four ontologies.
The goals and motivations of [10] are similar to ours, they provide a broad overview and discussion of issues in
ontology evaluation, and approaches that may be used. While [10] touches on some of the same dimensions that
we identify, it does not propose a specific set of dimensions that make up an evaluative framework. Since its
focus is on approaches and specific evaluations from the life sciences literature, it does not give a comparative
evaluation of specific ontologies as we have done. Similarly, we share with the work on OntoQA [12] the goal
of general-purpose ontologies, the idea that one should have independent metrics for schemas, knowledge bases
(KBs) and classes, but we concentrate efforts on qualitative dimensions for the schemas, while they concentrate
on a specific system to measure OWL-based ontologies.

We subjected four general-purpose ontologies to our dimension-based comparison: ResearchCyc [8], Freebase
[2],1 SUMO [9], and YAGO [11, 5]. Resource constraints limited the number to four. Our analysis, and the
numbers we report, are for these systems as they existed in early 2014. We chose these particular four systems
because they are among the most prominent large, general-purpose, broad-coverage ontologies. They also take
quite different approaches to modelling the world. Cyc is a long-standing project to assemble a comprehensive
ontology and knowledge base of everyday common sense knowledge, with the goal of enabling AI applications
to perform human-like reasoning. The Suggested Upper Merged Ontology (SUMO) and its domain ontologies
form a large formal, open-source ontology with significant numbers of definitional axioms and rules. YAGO is
a knowledge base developed at the Max Planck Institute for Computer Science in Saarbrücken, automatically
extracted from Wikipedia, WordNet and other sources. Freebase is a large collaborative knowledge base consisting
of metadata composed mainly by its community members. It is an online collection of structured data harvested
from many sources, including individual ‘wiki’ contributions. Freebase aims to create a global resource which
allows people (and machines) to access common information more effectively. Google’s Knowledge Graph is
powered, in part, by Freebase.

We also looked at the DBpedia [7] ontology and schema.org, http://schema.org, two other efforts that might
be considered to be general-purpose ontologies. However, both of these were immediately seen to be unsuitable
for our needs, as they are both comparatively small and inexpressive. As well, the meaning of constructs in
schema.org is very hard to determine. This is not to say that the data available from DBpedia or the data
described by schema.org markup would not be valuable, just that their ontologies are too limited to form the
background ontology necessary for general conversational systems.

We first discuss the dimensions of comparison that we found useful when comparing the ontological schemas
exemplified by the four chosen knowledge repositories. How the four compared in each one of these dimensions
forms the basis for the matrix shown in table 1. We then discuss the main points or lessons learned from these
one-by-one comparisons.

1 Ontology Evaluation Dimensions

Most knowledge repositories consist of three main components that are of interest to real-world applications: the
ontology (i.e., schema, axioms, etc.), the representation language, and the data (i.e., instances of entity types in
the ontology). These components are equally important, but our focus in this paper is on the ontology, which

• provides a scaffolding to organize data of interest to an application, and

1After we did our comparison, Google announced that Freebase will be discontinued in mid-2015, and that Google will provide
a tool to help users add Freebase content to Wikidata (http://www.wikidata.org). We hope that users will transition most Freebase
content to Wikidata and that the ontology supporting Wikidata will also grow into a general-purpose ontology on par with the
ontologies in SUMO and ResearchCyc.

Ontologies in Enterprise Application: Dimensional Comparison

46

• supports the inferences over the data required by the application.

We propose ten dimensions for evaluating the utility of an ontology with respect to the above roles. These
dimensions are inspired by those from data quality [1], but have been modified (and extended) for ontologies.
We intend for these dimensions to provide a common yardstick for comparison across the ontologies of different
knowledge repositories.

Domain Breadth: What is the breadth of domains covered by the ontology? For example, does the ontology
cover a single domain such as geography or multiple domains ranging from entertainment to pathology? Broad
domain breadth is important for applications that need to support a wide range of domains, such as virtual
assistants.

Axiomatic Depth: Is the ontology complete in terms of the entity types, relations, and axioms for each
domain covered? Axiomatic depth is orthogonal to domain breath, and is important for applications that focus
on specialized domains such as healthcare, finance, etc.

Accuracy: How accurately do the entity types, relations, and axioms in the ontology reflect the real-world
objects and domains they represent? Accuracy directly impacts the organizational quality of the data used by
an application and the validity of any inferences over the data.

Consistency: Are there contradictions or incompatibilities in the ontology, e.g. contradicting axioms, in-
compatible generalizations, etc. If so, then how pervasive are these contradictions and incompatibilities? Like
accuracy, consistency impacts data organization and inference validity. We note that it is impractical to expect
a large ontology to have no inconsistency. Hence, this dimension is not intended to be binary. Instead, the intent
is to provide a measure on the degree of consistency observed.

Integrity: Are the basic relations and axioms (e.g., generalization, instance, disjointness, selectional restric-
tions, etc.) present in the ontology? Have they been codified, or are they captured only in documentation
and comments? Integrity is critical in enabling many common types of inference (e.g. subsumption, constraint
violation, etc.) required by real-world applications, and can be viewed as axiomatic depth applied to the basic
relations and axioms of an ontology.

Uniformity: Are the entity types and relations in the ontology used in a uniform manner? Do these uses
conform with the semantics of the types and relations? Uniformity reduces the likelihood of modeling errors and
hence the organizational quality of the data. Uniformity also improves the maintainability of an ontology and
hence the maintainability of applications that use the ontology.

Redundancy: Are there redundancies in the ontology? For example, an ontology may have multiple entity
types and relations for representing time, or generalizations that share similarities as well as differences. Re-
dundancy is orthogonal to uniformity, and hence increases the difficulty in maintaining and using the ontology.
Moreover, redundancy can result in unanticipated inference behaviors or invalid inference results.

Granularity: How granular are the entity types and relations in the ontology? An ontology that is too
coarse (e.g. every type is a specialization of Thing) is not ideal. Neither is an ontology that is too fine-grained,
e.g. an ontology with types like Person-from-California, a subclass of Person. Ontologies that are too coarse or
fine-grained are difficult to extend, and hence less desirable for applications requiring additional customization.

Timeliness: How frequently is the ontology updated to reflect changes in the real-world objects and domains
it represents? For example, how much time typically elapses for a pathology ontology to be updated when a
new virus is discovered? Timeliness can be viewed as accuracy over time, and is important for applications that
operate in dynamic domains.

Stability: How frequently is the ontology changed to fix mistakes, re-organized for efficiency purposes, etc?
Stability directly impacts the maintainability of the applications that use the ontology.

2 Comparison Between Ontologies

We applied the dimensions outlined above to the ontologies (i.e. schemata) of four well-known knowledge reposi-
tories (i.e., YAGO, SUMO, Freebase, and ResearchCyc) as part of a preliminary comparison. We emphasize that
our comparison focuses on the ontologies of the selected knowledge repositories, not the data or representation
languages. Table 1 shows the qualitative findings that we observed from this comparison. Additional qualitative
observations and remarks along the most salient dimensions for each ontology can be found in their respective
subsections below.

We note that the findings presented are not based on a formal, rigorous evaluation and should be treated
as qualitative observations suitable for high-level guidance. Thus, given the preliminary nature of our work,
additional effort is needed such as providing more quantitative characterizations of the ratings for each dimension.

Ontologies in Enterprise Application: Dimensional Comparison

47

In addition, we deliberately have chosen not to prioritize these dimensions. The relative weights given to the
dimensions should be established in the context of a particular application.

YAGO SUMO Freebase ResearchCyc
Domain Breadth excellent good good excellent
Axiomatic Depth weak average+ average excellent
Accuracy good good+ good excellent
Consistency good excellent average+ good+
Integrity weak good week good+
Uniformity good excellent average excellent
Redundancy average excellent weak excellent
Granularity poor average+ average good
Timeliness weak weak average+ average
Stability weak good average good

Table 1: Qualitative findings from applying the dimensions outlined in the previous section.

2.1 The ResearchCyc ontology

Work on Cyc began in 1984 with the original goal of ontologizing human common sense reasoning and has
continued until the present day. Currently, the Cycorp website claims adoption of Cyc-based products by a
major database company, a Fortune 100 investment bank, and an oil company, among others.

Our focus, ResearchCyc (RCyc; in particular, CycL Version 10.148440, KB 7164), is one of three main offerings.
The other two are OpenCyc (an Apache-licensed free version with almost all of the defining axioms removed)
and EnterpriseCyc (a business-focused version). Cyc’s microtheories are one of the means by which assertions
are contextualized. A given microtheory may contain assertions made from a particular point of view or belief
system or topic area. In addition a microtheory may define the time range of the assertions contained.

As seen in the table above, RCyc’s greatest strengths evaluation were in accuracy, domain breadth, and
axiomatic depth. Since we started use of RCyc in the conversational prototype [14] in the Spring of 2013,
we have collectively looked at thousands of assertions and have only found between 5 and 10 factually incorrect
sentences. That said, these assertions were safely encapsulated in crowdsourced microtheory and thus not subject
to the typical level of review by Cycorp’s professional ontologists. Domain breadth was deemed high because
of the broad range of content and the raw numbers. In terms of “raw numbers”, there is a large number of classes
(52K, contrasted with Freebase’s 25K types) and predicates (26K). Breadth is high, for example because there
are 366 instances of #$GeneralMicrotheory (against a background of all 21K Microtheories) contrasted with 40
domain ontologies listed on the SUMO website. Additionally, there are not only content areas from business
and economics, sciences, arts, etc., there is also a meta-knowledge ontology that enables expressing facts about
provenance, reflection, and database integration. Axiomatic depth is high because RCyc has more definitional
axioms than any of the sources we have looked at.

Timeliness was one of RCyc’s weaker areas. Unlike the vast army of volunteers that a resource like Freebase
has, the RCyc Ontology gets updated depending on what contracts Cycorp has. Granularity was also a
relative weakness largely due to the relatively large number of predicates with highly specifc meaning or non-
obvious distinctions. In stability the RCyc is tied with SUMO for first place. Nonetheless it is another relative
weakness. RCyc is under active development. New terms are added regularly, and sometimes existing term
names are changed.

2.2 The Freebase Ontology

Freebase [2] is a large-scale knowledge graph of topics and relations organized around a schema that provides
typing (approx. 25K types), domain and range constraints, etc.

We observed that the Freebase ontology (which we will refer to as just Freebase for brevity) is strongest
along the dimensions of domain breadth and accuracy. Freebase covers a wide variety of domains ranging
from popular culture (e.g. movies, music, etc.) to the sciences (e.g. physics, geology, etc.). Its breadth is nearly
comparable to the other ontologies examined, but many concepts that are types in the other ontologies examined
are instances in Freebase. For example, specializations of profession (e.g., lawyer and doctor) and organism (e.g.,
dog and cat) are all instances in Freebase, not types.

Ontologies in Enterprise Application: Dimensional Comparison

48

We note that the instance-level data in Freebase (although outside the scope of this comparison) is more
comprehensive than the other systems examined. Freebase has over 40 million topics (i.e. entities), and over 2
billion triples, corresponding to semantic relationships between these topics. This is an important consideration
if the target application has significant data requirements.

Moreover, most types (and their properties) in Freebase accurately reflect the real-world objects they represent.
We reached this observation by examining different types, their properties, and the expected values of these
properties across multiple domains such as entertainment, biology, etc. We note that our observations on
accuracy are on the schema only, not the data.

On the other hand, we observed that Freebase is weakest along the dimensions of integrity and redundancy.
Although Freebase has generalization and type relations, they are largely absent. For example, Freebase does not
have a unified type hierarchy like Cyc, SUMO, and YAGO. Instead, generalization relations only exist between
select types, via the included types relation, resulting in noticeable gaps in Freebase’s type hierarchy. Similarly,
an instance in Freebase can have multiple, incompatible types (e.g. an instance can be of type person and book
subject). However, Freebase lacks sufficient disjointness constraints to prevent these integrity issues.

Freebase also has significant redundancies. For example, the instance relation in Freebase is used to assert
that an instance X is of type Y. However, in the biology domain, the organisms of this type relation is also used
to capture the same relationship. Similarly, the profession domain uses the specialization of relation to encode
that one profession is a subclass of another. However, the biology domain uses the higher classification relation
to encode the same relationship between organism classifications. These redundancies cause significant overhead
in using, extending, and reasoning with the ontology.

2.3 SUMO

The Suggested Upper Merged Ontology (SUMO) [9], http://www.ontologyportal.org/, together with its domain
ontologies, form a large formal ontology licensed under several open-source licenses. As its name suggests, SUMO
itself is an upper ontology with broad coverage of various categories including time and space, measures, sets,
and classes. SUMO also includes a mid-level ontology (MILO) that expands the upper ontology into general
groupings of domains. SUMO comes with a set of domain ontologies covering a variety of domains including
political regions, people, and transportation. Domain ontologies are mostly contributed, but there is a vetting
process for domain ontologies.

SUMO is written in a variant of KIF [4], which makes SUMO quasi-higher order. SUMO ontologies provide
not just domain hierarchies, but also have a rich axiomatization of the domains. SUMO has tools to extract
standard first-order logic and OWL from SUMO ontologies. SUMO has over 25,000 terms (including classes and
properties) if the domain ontologies are included. However, this is a slightly inflated number, since some of these
terms are nationalities and regions.

The upper and middle levels of SUMO provide excellent breadth for high-level organization of knowledge. At
first glance the domain ontologies provide reasonable depth in their domains, but there are quite a few holes on
closer investigation. For example, movies and tv shows are only lightly covered. There is the class MotionPicture
for representing the class of all physical objects that have motion picture content (e.g. my DVD copy of “Gone
with the Wind”) but no class for representing instances of the conceptual creative works, e.g., “Gone With the
Wind” itself. As well, there are only a limited number of domain ontologies, so many areas are only covered by
the upper and middle levels of SUMO.

The upper and mid-level ontologies have been carefully vetted, and we have not found any problems with
accuracy. The domain ontologies are less well vetted, but neither have we found any problems in them. SUMO
has been machine-validated, meaning that there are no discoverable inconsistencies in its ontologies, nor classes
that are necessarily empty.

The upper and mid-level ontologies are well-integrated and well-axiomatized, forming an excellent, uniform
basis for the domain ontologies. The domain ontologies themselves are somewhat varied, but are generally
well-axiomatized.

The upper and mid-level ontologies are parsimonious, with no observed problematic redundancies. The
domain ontologies are well-separated, with no observable redundancies betwen them. The upper and mid-level
ontologies take a middle, reasonable road on granularity. The domain ontologies are a bit mixed, with some
providing only a coarse specification for their domain.

There is an update mechanism but it largely depends on submissions, and there is not that much use of
SUMO, leading to questions of how timely updates are generated and applied to SUMO. There is a vetting

Ontologies in Enterprise Application: Dimensional Comparison

49

mechanism for all updates to the ontology, leading to good stability. However, there is not a full formal process
for checking that updates are reasonable.

In summary, SUMO and its domain ontologies form a good, well-axiomatized broad-coverage ontology. We
were most impressed with the care that has gone into the upper and mid levels of SUMO, which provides an
excellent scaffolding for general organization of knowledge. However, SUMO is much less useful at lower levels.
There are not that many domains covered and even those that are covered are not always covered in sufficient
detail for use as a core domain in a system.

2.4 The YAGO Ontology

YAGO, of which YAGO2s is the current release, is derived from Wikipedia, WordNet, and GeoNames. It is a
huge semantic knowledge base in terms of the numbers of classes, entities, and facts, but defines a relatively small
number of properties — about 100 properties for facts extracted from Wikipedia, a small number for capturing
temporal and geospatial data, and several for capturing contextual (provenance) information. Roughly speaking,
the upper level classes of YAGO correspond to synsets from WordNet, and the lower level classes correspond
to Wikipedia categories. As of March 2011, YAGO had 292,070 classes based on Wikipedia categories, 68,446
classes based on WordNet synsets, 642 GeoNames-based classes, and 53 of its own classes. (These statistics refer
to the YAGO release available at that time.)

For our purposes, the characteristics of YAGO are dependent on the nature of its three sources, and the limited
ontological structuring provided by those three sources. YAGO naturally ranks high on domain breadth, due
to the encyclopedic breadth of both Wikipedia and WordNet. It ranks high on accuracy, consistency, and
uniformity, partly because of the high quality of those sources, and partly because of the high quality of its
approach to data extraction. However, these high rankings are also partly due to the simplicity of what YAGO
tries to express. In other words, because the bulk of the YAGO ontology is the class taxonomy, along with the
small number of properties mentioned above, there aren’t too many opportunities for mistakes along these three
dimensions.

At the same time, this limited expressiveness of the ontology is reflected in a low score on the dimensions
of axiomatic depth and integrity. The Wikipedia categories are often idiosyncratic, e.g., “Catalan handball
clubs” and “Hotels established in 1806”. Except for the taxonomic relations that YAGO determines for them,
they are not axiomatized (that is, they have no properties directly associated with them). Although it is true
that such categories carry information understandable by a human reader, that information is not accessible to
a computational system without the creation of additional axioms. This could involve a large effort in manual
annotation and/or further research on algorithms for extracting meaning from Wikipedia text. WordNet is not
well structured for reasoning purposes, and has only minimal axiomatization. (Furthermore, some WordNet
properties, such as meronym and holonym, are not present in YAGO.)

YAGO’s ratings on granularity and redundancy are also directly related to the nature of its sources. For
our purposes, granularity is particularly problematic. With over 360,000 concepts, there is a great deal of
clutter; that is, concepts that are unlikely to be directly employed, such as the Wikipedia categories mentioned
above.. In addition, most instances in YAGO have many types — some corresponding to Wikipedia categories
and others corresponding to WordNet senses — and there appears to be no robust automated way to identify
the most useful type(s) for the kinds of use cases we have in mind.

Finally, YAGO’s low ratings on timeliness and stability are simply due to the small number of releases since
its inception, the possibility of non-incremental exploration of future directions, and its status as an academic
research effort with only a small community of contributors.

3 Analysis

The four ontologies we examined fall into two camps. The Freebase and YAGO ontologies are relatively inex-
pressive, containing little more than generalization relationships and role typing. The Cyc ontology and SUMO
are much richer, with disjointness and many other axioms that define the concepts and relationships in the
ontologies.

Of course, if you don’t care too much about this extra information, or cannot utilize it, the added computa-
tional costs in working with expressive ontologies may be daunting. For example, if you are concerned with simple
access to information (i.e., your application performs retrievals over data), then you probably only need simple
typing, and the Freebase ontology would be a reasonable choice, particularly as Freebase contains a large amount

Ontologies in Enterprise Application: Dimensional Comparison

50

of data. In this scenario, the Freebase ontology’s issues with redundancy, integrity, and uniformity become less
critical, because you are only returning retrievals for further analysis by humans, or for import into some other
ontological framework. However, even in this scenario you can run into difficulties; for example, the two different
relationships for birth date in Freebase—one for persons and one for non-human animals—makes even simple
information access more difficult, showcasing a problem caused by Freebase’s lack of uniformity. YAGO can be
similarly used as a simple information source, but is less versatile in that, although it covers many domains, its
ontology says very little about each of them (that is, it defines a much smaller number of properties).

However, if you need to perform reasoning over information, such as we envision in a conversational system to
implement general user requests in terms of a knowledge repository, then the extra organizational power of Cyc
and SUMO is extremely useful. Along with this extra power, Cyc and SUMO are better in terms of accuracy,
consistency, and integrity, all important in a reasoning setting because incorrect information is magnified during
reasoning. Between SUMO and Cyc, we prefer the Cyc ontology because it covers more domains and provides a
more complete organization of many of these domains.

In some sense, any large system is going to have to interact with several ontological setups, as it will be pulling
information from several sources, and the different sources are very likely to have different organizations of their
information. This again argues for a powerful ontological system, one that can axiomatize the relationships
between its organization and the organization of the other ontology.

On a final note, different ontologies, and data sources, come with different licenses. The licenses of some
of the freely-available ontologies may cause problems in an industrial setting and these need to be considered
separately.

4 Conclusion

We have defined 10 dimensions for use in evaluating general-purpose ontologies, and applied them in a qualitative,
informal comparison of four such ontologies – SUMO and the ontologies associated with ResearchCyc, Freebase,
and YAGO. We have discussed these particular ontologies so as to illustrate how the dimensions may be used in
studying a broad range of ontologies. Because ontologies are so varied in their underlying philosophy, formalisms,
and approach, we believe these dimensions provide a structure that can facilitate the selection of ontologies for
many different kinds of enterprise applications.

As stated in Section 2, these results do not constitute a formal, rigorous evaluation. This should be addressed
in the future by a statistically-meaningful evaluation of ontology content.

Our dimensions currently do not cover connections between an ontology and the the natural language expres-
sions that may be used to organize, search or populate it. This is a drawback of our comparison, as ontologies
such as SUMO have a full mapping from WordNet synsets to SUMO concepts, which is beneficial in practice.
Moreover, Cyc and Yago also have similar mappings. Additional investigation is required to assess their strengths
and weaknesses.

This refinement will also enable us to extend our work to comparing lexical ontologies. Clearly some of the
concerns are similar, in that lexical ontologies can be domain-specific or aim for the whole language; lexical
ontologies can pay attention to their consistency or not, etc. We hope that this broadening of the investigation
may prove that our findings are robust. We also hope to help any application developer in need of guidance when
it comes to the many choices offered by Linguistic Linked Open Data (http://linguistics.okfn.org/resources/llod/).

Another direction we would like to take this work is to multilingual ontologies. Many complain about the
fact that hand-curated knowledge repositories can be fragile, as they represent some individual (or group of
individuals) conceptualization of the world, with their social and cultural biases. If our ontologies can be
automatically created in many languages in parallel, some of this criticism is curtailed. There are already some
attempts at such multilingual ontologies (for example UWN, Menta, BabelNet and UBY) and presumably our
dimensional criteria and/or a suitable modification will allow us to compare those.

References

[1] Carlo Batini, Cinzia Cappiello, Chiara Francalanci, and Andrea Maurino. Methodologies for data quality
assessment and improvement. ACM Computing Survey, 41, 2009.

[2] Kurt D. Bollacker, Robert P. Cook, and Patrick Tufts. Freebase: A shared database of structured general
human knowledge. In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, 2007.

Ontologies in Enterprise Application: Dimensional Comparison

51

[3] Juan Garca, FranciscoJose Garca-Pealvo, and Roberto Thern. A survey on ontology metrics. In MiltiadisD.
Lytras, Patricia Ordonez De Pablos, Adrian Ziderman, Alan Roulstone, Hermann Maurer, and JonathanB.
Imber, editors, Knowledge Management, Information Systems, E-Learning, and Sustainability Research, vol-
ume 111 of Communications in Computer and Information Science, pages 22–27. Springer Berlin Heidelberg,
2010.

[4] Michael R. Genesereth and Richard E. Fikes. Knowledge interchange format version 3.0 reference manual.
Report Logic-92-1, Logic Group, Computer Science Department, Stanford University, 1992.

[5] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum. YAGO2: A spatially and
temporally enhanced knowledge base from Wikipedia. Artificial Intelligence, 2012.

[6] Ron Kaplan. Beyond the GUI: Its time for a conversational user interface. Wired, 21 March 2013.

[7] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N. Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, and Christian Bizer. DBpedia - A large-scale,
multilingual knowledge base extracted from Wikipedia. Semantic Web Journal, 2014.

[8] D. B. Lenat. Cyc: A large-scale investment in knowledge infrastructure. Communications of the ACM, 38,
1995.

[9] I. Niles and A. Pease. Towards a standard upper ontology. In Chris Welty and Barry Smith, editors,
Proceedings of the 2nd International Conference on Formal Ontology in Information Systems (FOIS-2001),
2001.

[10] Leo Obrst, Werner Ceusters, Inderjeet Mani, Steve Ray, and Barry Smith. The evaluation of ontologies. In
ChristopherJ.O. Baker and Kei-Hoi Cheung, editors, Semantic Web, pages 139–158. Springer US, 2007.

[11] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO: A Large Ontology from Wikipedia
and WordNet. Journal of Web Semantics, 2008.

[12] Samir Tartir, I Budak Arpinar, Michael Moore, Amit P Sheth, and Boanerges Aleman-Meza. Ontoqa:
Metric-based ontology quality analysis. IEEE Workshop on Knowledge Acquisition from Distributed, Au-
tonomous, Semantically Heterogeneous Data and Knowledge Sources, 9, 2005.

[13] Denny Vrandečić and York Sure. How to design better ontology metrics. In The Semantic Web: Research
and Applications, pages 311–325. Springer Berlin Heidelberg, 2007.

[14] Peter Z. Yeh, Ben Douglas, William Jarrold, Adwait Ratnaparkhi, Deepak Ramachandran, Peter F. Patel-
Schneider, Stephen Laverty, Nirvana Tikku, Sean Brown, and Jeremy Mendel. A speech-driven second screen
application for tv program discovery. In Proceedings of the Twenty-Sixth Annual Conference on Innovative
Applications of Artificial Intelligence (IAAI-14), 2014.

Ontologies in Enterprise Application: Dimensional Comparison

52

Towards Ontological Support for Principle Solutions in

Mechanical Engineering

Thilo Breitsprecher
Dept. of Mech. Eng.

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Mihai Codescu
Dept. of Comput. Sci.

Otto-von-Guericke-Universität
Magdeburg

Constantin Jucovschi
Michael Kohlhase
Comput. Sci.

Jacobs University Bremen

Lutz Schröder
Dept. of Comput. Sci.

FAU Erlangen-Nürnberg

Sandro Wartzack
Dept. of Mech. Eng.

FAU Erlangen-Nürnberg

Abstract

The engineering design process follows a series of standardized stages of
development, which have many aspects in common with software engi-
neering. Among these stages, the principle solution can be regarded as
an analogue of the design specification, fixing as it does the way the final
product works. It is usually constructed as an abstract sketch (hand-
drawn or constructed with a CAD system) where the functional parts
of the product are identified, and geometric and topological constraints
are formulated. Here, we outline a semantic approach where the prin-
ciple solution is annotated with ontological assertions, thus making
the intended requirements explicit and available for further machine
processing; this includes the automated detection of design errors in
the final CAD model, making additional use of a background ontology
of engineering knowledge. We embed this approach into a document-
oriented engineering design process, in which the background ontology
and semantic annotations in the documents are exploited to trace parts
and requirements through the design process and across different ap-
plications.

1 Introduction

Much like software engineering design (in an ideal world), design processes in mechanical engineering proceed
in multiple stages successively refining abstract requirements into a final solution. This process of systematic
engineering design is standardized in models that bear substantial resemblance to the V-model, such as the
German VDI 2221 [?]. However, only the last stage in this process, corresponding to the actual implementation
in software engineering, has well-developed tool support, in the shape of CAD systems that serve to document
the final design. Other stages of the design process are typically documented in natural language, diagrams, or
drawings. There is little or no support available for interconnecting the various stages of the design, let alone
verifying that decisions made in one stage are actually implemented in the next stage.

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: Alexandre Rademaker and Vinay K. Chaudhri (eds.): Proceedings of the 6th Workshop on Formal Ontologies meet Industry,
Rio de Janeiro, Brazil, 22-SEP-2014, published at http://ceur-ws.org

53

Here, we embark on a program to fill this gap, focusing for a start on the last step in the development process,
in which we are given a principle solution and need to implement this solution in the final design, a CAD
model. The principle solution fixes important design decisions in particular regarding physical layout, materials,
and connections but does not normally carry a commitment to a fully concrete physical shape. It is typically
represented by a comparatively simple drawing, produced using plain graphics programs (e.g. within standard
presentation tools) or even by hand. As such, it has a number of interesting features regarding the way it does,
and also does not, convey certain information. The basic issue is that while one does necessarily indicate only
one concrete shape in the drawing, not all aspects and details of this sketch are actually meant to be reflected in
the final design. Some of this is obvious; e.g. it is clear that slight crinkles in a hand drawing are not intended to
become dents in the final product, and to some (possibly lesser) degree it is also clear that not everything that
is represented as a straight line or a rectangle in a simple sketch will necessarily be realized by the same simple
geometry in the actual design. Other aspects are less straightforward; e.g. symmetries in the drawing such as
parallelism of lines or equal lengths of certain parts, right angles, and even the spatial arrangement and ordering
of certain components may constitute integral parts of the principle solution or mere accidents of the sketch.
Other aspects of the design may be indicated by standard graphical symbolism; e.g. crosses often represent
bolts. To aid human understanding of the principle solution, it is typically accompanied by a natural-language
explanation that (hopefully) clears up most of the ambiguities; other aspects of the design are understandable
only in the context of sufficient implicit knowledge, i.e. based on the experience of the design engineer.

The approach we propose in order to strengthen and explicate the links between the stages of the design process
is, then, to integrate the documents associated to each stage into a unified document-oriented engineering design
process using a shared background ontology. This ontology should be strong enough to not only record mere
hierarchical terminologies but also, in our concrete scenario of principle solutions, to capture as far as possible
the qualitative design intentions reflected in the principle sketch as well as the requisite engineering knowledge
necessary for its understanding. (It might be fruitful to combine this approach with work on sketch maps
in GIS [?] in order to distinguish between intended and contingent parts of the sketch automatically.) Such
an ontology will in particular support the tracing of concepts and requirements throughout the development
process; we shall moreover demonstrate on an example how it enables actual verification of a final design against
constraints indicated in the principle solution.

Technically, we realize this approach by means of a modular semantic middleware architecture, the Multi-
Application Semantic Alliance Framework (MASally), which connects a system of knowledge management web
services to standard applications – in particular document players and CAD systems – via a network of thin API
handlers that essentially make the framework parametric in the choice of CAD system. Background knowledge
and design intentions are represented in a modular ontology that provides material for user assistance and forms
the basis for the verification of design constraints. The formalized engineering knowledge required for the latter
task is managed within the heterogeneous logical framework provided by the Heterogeneous tool set Hets [?],
with the Web Ontology Language (OWL) [?] playing the role of the primary representation logic for the sake of its
good computational properties. Sources of ontological knowledge include, besides manually extracted knowledge
on engineering and basic geometry, semantic annotations of the principle sketch and the extraction of assertional
knowledge from a CAD model. We illustrate our framework by means of an example where we verify aspects of
the design of an assembly crane against the principle solution.

2 A Document-Oriented Process with Background Knowledge

We recall the stages of the engineering design process according to VDI 2221 [?].

S1 Problem: a concise formulation of the purpose of the product to be designed.

S2 Requirements List: a list of explicitly named properties of the envisioned product. It is developed in
cooperation between designer and client and corresponds to the user specification document in the V-model.

S3 Functional Structure: a document that identifies the functional components of the envisioned product
and puts them into relation with each other.

S4 Principle Solution: an abstract sketch capturing the most important aspects of the design.

S5 Embodiment Design: a CAD design that specifies the geometry of the final product.

S6 Documentation: accompanies all steps of the design process.

Towards Ontological Support for Principle Solutions in Mechanical Engineering

54

An approach to vertical semantic integration of this process is outlined in [?]. In this paper we concentrate on
step S4, as it offers the most obvious handles for adding value using semantic services, and also discuss in more
detail the structure of the ontology that drives them.

2.1 Principle Solutions

According to Pahl and Beitz [?], one can develop a principle solution for a product by combining working
principles that correspond to the sub-functions identified in the function structure of the product. The search for
applicable working principles and their ensuing combination in the principle solution is essential for the product
development. For example, the manufacturing costs are determined to a large extent by these decisions. However,
a combination of working principles cannot be fully evaluated until it is turned into a suitable representation. At
this highly creative stage of the design process, the engineer does not want to consider the formalities inherent to
a full-fledged CAD system. For this reason, probably the most common representations of principle solutions in
mechanical engineering are old-fashioned hand-drawn sketches. Developing the principle solution mainly involves
the selection of materials, a rough dimensional layout, and other technological issues. The design engineer can
refer to various support tools in the search for working principles, such as the design catalogues of Roth [?]
and Koller [?]. The degree of detail of a sketch varies between the two main levels of the design: while at the
assembly level, the focus is mainly on the topology of the product, to ensure compatibility of the principles to
be combined, at the level of parts and sub-assemblies more attention is given to the actual shape of the product
to be developed. In the following, we discuss an example of a representation of a principle solution.

2.2 Case Study: An Assembly Crane

Our main case study concerns an assembly crane for lifting heavy machine components in workshops. This
example has been used in a practical design assignment for engineering students at FAU Erlangen-Nürnberg
in the winter term of 2012. In this design exercise, students were given a principle solution (Figures 1 and 2)
along with some requirements (e.g. specified maximum power consumption, maximum torque, and maximum
weight) and were asked to design an embodiment. Thus we have realistic documents for phases S4 and S5 of a
representative and non-trivial design task to study.

Figure 1: Principle Solution: Assembly Crane

The assembly crane to be designed can be divided into mod-
ules performing various functions. The modules are indicated
by numbers in the figure: the main frame with a vertical beam,
a cantilever, and parallel horizontal base profiles (1); and a lift-
ing system, consisting of an electrically powered winch unit (2),
connected via a cable (3), which is guided via deflection rollers,
to a crane hook (4). This allows lifting, lowering and holding
the machine components to be assembled. The requirements
of the crane, which have been defined in a previous step, con-
cern the material to be used (standard steel profiles for high
strength and stiffness), the topology (the legs of the crane must
be parallel, the vertical and the horizontal cantilever are per-
pendicular, the motor (2) must not be attached to the frame
within the crane’s working space), dimensions (maximum total
height, minimum space between base profiles, minimum can-
tilever length) and manufacturing process constraints (weld-
ment of main frame profiles and bolt connection of winch unit
and main frame).

Figure 2 details the principle solution of the winch unit: It
consists of a drum (6a), which is welded (generally, the re-
quirement of a weldment is indicated by a folded arrow) between two side plates (6b). In order to ensure
correct reeling of the cable, the drum is thread-structured (6). The main shaft (7) is driven by an electric
worm-geared flange motor (5) that is connected to the winch frame (11) via blind-hole bolts (indicated by crosses
in the sketch). In order to decelerate the winch, to hold the load, and to allow emergency stops, a lamella disk
break (9) is installed; it is connected to the main shaft by a suitable shaft-hub connection (10) that can withstand
sudden increases in torque (e.g. due to emergency stops). An arrangement of locating and non-locating bearings
(8) supports the main shaft. The ball bearings have to be arranged in such a way that axial forces are kept from

Towards Ontological Support for Principle Solutions in Mechanical Engineering

55

the motor. The winch frame is realized as a stiff, yet weight-minimized, welded assembly, made of steel and is
connected to the main frame of the crane with through-hole bolts.

3 Semantic Support for a Document-Oriented Engineering Design Process

Figure 2: Principle Solution for the Winch Unit.

Every step of the engineering design process results in partic-
ular documents, e.g. text documents for S1 to S3 and S6, an
image for S4 (hand-drawn or produced in a simple graphics
program), and a CAD assembly in S5. One of our goals is to
integrate these into a document-oriented engineering design
process, using semantic technologies.

3.1 A Semantic Annotation System

We build on the MASally architecture presented in [?] (un-
der the name FFCad, considerably extended here to embrace
document-oriented design processes), which assumes that the
background knowledge shared by the manufacturer, design
engineer, and the clients is reified into a flexiformal ontology

(the cloud in Figure 3) and that the documents are linked into that ontology via a semantic illustration mapping
(depicted by dashed arrows in Figure 3) from fragments or objects in the documents to concepts in the ontology
(dotted circles), which may themselves be interconnected by ontology relations (solid arrows). The ontology itself
is a federation of ontology modules describing different aspects of the engineering domain that are interconnected
by meaning-preserving interpretations (see Section 4 for details). In the case of principle solutions, for instance,
the semantic illustration mapping is currently generated from manual annotations of parts of the drawing with
ontological concepts; to which degree annotations can be inferred by interpreting graphical jargon is the subject
of further investigation.

Purpose S1

Requirements S2

Functional Structure S3

Principle Solution S4

Embodiment S5
Documentation

S6

·

·
·

STEP

Function

Parts

Phys

Federated Engineering Ontology

Figure 3: An Ontology-Supported Document-Oriented Design Process

In addition to the ontology links, we assume that the documents themselves are semantically linked via relations
(the dotted arrows between the Si) that model the process of goal refinement in the development process.
These two primary relations are augmented with fine-grained annotations about document status, versioning,
authorship, etc. Note that our approach crucially extends metadata-based approaches in that the annotations
and relations point to document fragments – e.g. text fragments down to single symbols in formulae, regions
in sketches, or shapes/sub-assemblies in CAD objects. All of these explicit annotations in the documents are
the basis for semantic services that can be integrated into the documents (and their player applications) via the
MASally framework, which we describe next.

3.2 Semantic Services via the MASally System

The Multi-Application Semantic Alliance Framework (MASally) is a semantic middleware that allows embedding se-
mantic interactions into (semantically preloaded) documents. The aim of the system is to support the ever more
complex workflows of product developers with their knowledge intensive tasks that so far only other humans
have been able to perform without forcing them to leave their accustomed tool chain.

Towards Ontological Support for Principle Solutions in Mechanical Engineering

56

3D model + semlinks

CAD system

Alex

Theo

Text Model + semlinks

Project Docs

Alex

Theo

Desktop

abs. CAD model

abs. text model

Sally

Comet

Comet

Comet

Comet

Project documentation
– semiformal –

Background knowledge
(physics, engineering)

ISO/DIN norms
– semiformal –

...

Planetary

REST

Figure 4: The MASally Architecture

The MASally system is realized as

• a set of semiformal knowledge management web services (comprised together with their knowledge sources
under the heading Planetary on the right of Figure 4);

• a central interaction manager (Sally, the semantic ally) that coordinates the provisioning and choreographing
of semantic services with the user actions in the various applications of her design process;

• and per application involved (we show a CAD system and a document viewer for S4/S5 in Figure 4)

– a thin API handler Alex that invades the application and relates its internal data model to the abstract,
application-independent, content-oriented document model in Sally;

– an instance of the application-independent display manager Theo, which super-imposes interaction and
notification windows from Sally over the application window, creating the impression the semantic
services come from the application itself.

Figure 5: Navigating the Refinement Rela-
tion

This software and information architecture is engineered to
share semantic technologies across as many applications as pos-
sible, minimizing the application-specific parts. The latter are
encapsulated in the Alexes, which only have to relate user events
to Sally, highlight fragments of semantic objects, handle the stor-
age of semantic annotations in the documents, and export se-
mantically relevant object properties to Sally. In particular, the
Theos are completely system-independent. In our experience de-
veloping an Alex for an open-API application is a matter of less
than a month for an experienced programmer; see [?] for details on the MASally architecture.

As a use case, let us consider the following situation. The design engineer is working on the principle solution
from Figure 1 – a sketch realized as a vector image, displayed in an (in this case browser-based) image viewer.
The user clicked on a detail of the sketch and received a (Theo-provided) menu that

1. identifies the object as ‘Sheave S13’ (the image is extended with an image map, which allows linking the
region ‘S13’ with the concept of a ‘sheave’ in the ontology); further information about the object can be
obtained by clicking on this menu item;

2. gives access to the project configuration that identifies the other documents in the current design;
3. gives access to the design refinement relation between the project documents: here, the object S13 is

construed as a design refinement of the requirement S3 in the principle solution and has been further refined
into objects S17 and S19 in the CAD assembly and the manufacturing plans generated from it;

4. allows direct interaction with the ontology (e.g. by definition lookup; see Figure 6, here triggered from the
CAD system for variety);

5. gives shortcuts for navigation to the other sheaves in the current project.
Generally, the MASally system supports generic help system functionalities (definition lookup, exploration of the
concept space, or semantic navigation: lookup of concrete CAD objects from explanations) and allows focus-

Towards Ontological Support for Principle Solutions in Mechanical Engineering

57

Figure 6: Definition Lookup

preserving task switching (see [?] for a discussion). All we need for this are annotations of the VDI2221 relations,
ontology links and of course the ontology itself, which we will discuss next.

4 The Federated Engineering Ontology

We proceed to discuss the design of the ontology that acts as the central repository of background knowledge.
It serves as a synchronization point for semantic services, as a store for the properties of and relations between
domain objects, and as a repository of help texts for the MASally system. As it has to cover quite disparate aspects
of the respective engineering domain at different levels of formality, it is unrealistic to expect a homogeneous
ontology in a single representation regime. Instead, we utilize the heterogeneous OMDoc/MMT framework [?, ?]
that allows representing and interrelating ontology modules via meaning-preserving interpretations (i.e. theory
morphisms). In particular, OMDoc/MMT supports the notion of meta-theories so that we can have ontology
modules represented in OWL2 alongside modules written in first-order logic, as well as informal modules given in
natural language. The OMDoc/MMT meta-morphisms relate all of these and moderate a joint frame of reference.
Reasoning support is provided by the verification environment of the Heterogeneous Tool Set Hets [?], a proof
management tool that interfaces state-of-the-art reasoners for logical languages. Hets mirrors the heterogeneity
of the representation framework: new logics, logic translations or concrete syntaxes of languages can be plugged
in without having to modify the heterogeneous and the deductive components of Hets. In our verification of
design constraints, we employ, within OMDoc/MMT/Hets, the Distributed Ontology, Modeling and Specification
Language DOL [?, ?] that provides specific support for heterogeneity in ontologies.

4.1 A Verification Methodology

We propose a general methodology for the verification of qualitative properties of CAD assemblies against
principle solutions. While the checking of explicit quantitative constraints in principle solutions is supported by
a number of research tools (e.g. the ProKon system [?]; in fact, some CAD systems themselves include constraint
languages such as CATIA Knowledge Expert, which however are not typically interrelated with explicit principle
solutions), there is to our knowledge currently no support for checking qualitative requirements given by the
principle solution.

Example 4.1. In our case study introduced in Section 2.2, commonly encountered violations (in realizations
produced by engineering students) of qualitative requirements in the principle solution were the following:

• the horizontal base profiles of the frame were not parallel;

• the types of weldments used did not ensure high stiffness and the local weldment area was not designed
properly (e.g. missing ribs or stiffenings);

• the ball bearings were arranged in such a way that the non-locating bearing was closer to the motor, and
thus the axial forces were transmitted into the motor.

Towards Ontological Support for Principle Solutions in Mechanical Engineering

58

We are going to use the requirement that the legs of the frame should be parallel as a running example throughout
the rest of the section. It is clear that the other examples can be treated similarly.

Ontology of geometry Ontology of CAD features

Ontology of rules

TM |=TR

Figure 7: Verification of qualitative properties of CAD designs.

The first step is to provide a formal terminology for expressing the qualitative properties that a CAD design
should fulfill. Since we are at the stage S5 of the engineering design process, we have to collect requirements
from all previous stages, in particular S1 - explicit requirements - and S4 - further restrictions on the acceptable
designs introduced by the principle solution. Here, we concentrate on geometric properties of physical objects
and therefore we tackle this goal by developing an ontology of geometric shapes. We then need to have means
to formally describe the aspects of a CAD design that are relevant for the properties that we want to verify.
Since we want to verify geometric properties, we are going to make use of an ontology of CAD features. We then
need to formulate general rules regarding geometric properties of objects constructed by repeated applications
of CAD features. This gives us a new ontology, of rules relating geometric properties and CAD features.

We now come to the task of verification of a concrete CAD design against the requirements captured by a
given principle solution. In a first step, we generate a representation of the requirements as an ABox TR over
the ontology of rules, in a way that will be explained below. The next step is to generate a representation of the
CAD design as another ABox TM over the same ontology of rules, and then to make use of the rules to formally
verify that TM logically implies TR. This process is illustrated in Figure 7.

4.2 Ontology of Shapes

We begin setting up our verification framework by developing an ontology of abstract geometric objects, with
their shapes and properties. The shape of a geometric object would seem to be a well-understood concept;
however, the task of formalizing the semantics of shapes and reasoning about them is difficult to achieve in a
comprehensive way. For a broader discussion, including some attempts to develop ontologies of geometric shapes,
see, e.g., the proceedings of the Shapes workshop [?].

Our ontology, inspired by CYC [?], concentrates on geometric primitives of interest for CAD design . The
central concept is that of PhysicalObject, which may be of an unspecified shape or can have a 2-dimensional
or 3-dimensional shape. The object and data properties of the ontology are either parameters of the geometric
shapes (e.g. diameter of a circle, or length of the sides of a square) or general geometric properties, like symmetric
2D- and 3D-objects and parallel lines.

Example 4.2. We present the fragment of the ontology1 of shapes that is relevant for asserting that two objects
are parallel, a DOL specification that extends our OWL formalization of geometry with the axiom that two
coplanar lines are parallel if the angles of their intersections with a third line are equal. Since the intersection of
two lines is a three-place relation, the two intersecting lines and the angle between them, we use reification to
represent it as a concept Intersection, together with a role intersectsWith that links to the first constituent line,
a class LineAngle for pairs of lines with angles (with associated projection roles) and a role hasLineAngle that
links to the pair of the second line of an intersection and the angle between the two lines:

1The ontology modules relevant for the running example are available at http://ontohub.org/fois-ontology-competition/

FormalCAD/.

Towards Ontological Support for Principle Solutions in Mechanical Engineering

59

a b

I1 I2(c, α)

isParallelWith

intersectsWith intersectsWith

hasLineAngle hasLineAngle

We denote the inverses of hasLineAngle and intersectsWith with lineAngleOf and hasIntersection, respectively.
Since OWL does not support intersection of roles, the property will be expressed as a SWRL rule, that we write
here informally to save space:

isCoplanar(?a, ?b) ∧ hasIntersection(?a, ?i1) ∧ hasLineAngle(?i1, ?la) ∧ lineAngleOf(?la,

?i2) ∧ intersectsWith(?i2, ?b) ⇒ isParallelWith(?a, ?b)

4.3 Ontology of CAD Features

Inspired by [?], our ontology of features contains information about the geometry and topology of CAD parts.
It describes assemblies and their parts, feature constructors and transformers, 2D sketches and their primitives,
and constraints (cf. Example 4.3).

Example 4.3. We present a fragment of the ontology of features that is relevant for verifying that two objects
are parallel. We have a concept of 3DPart of an assembly and each part has been constructed in a 3D space which
has 3 axes of reference. We record this by an object property hasAxis, with the inverse isAxisOf. Furthermore,
3D parts can be constrained at the assembly level. The constraint of interest for us is an angle constraint that
specifies the angle formed between two axes, two edges or two faces of two chosen parts. Since this is again a
relation with three arguments, we use reification, in a similar way as in Example 4.2, that is, we have a class
AngleConstraint and three roles, firstConstrainedLine and secondConstrainedLine giving the two lines that are
constrained and constrainedAngle giving the specified angle.

In a similar way, a Mate constraint determines that the two axes are in the same plane.

4.4 Ontology of rules

The next step is to relate via rules the concrete designs using feature transformers and constructors, given as
elements of the ontology of features, to the abstract shapes in the ontology of geometry. It is worth mentioning
that the rules can be themselves subject to verification (a proof of concept was given in [?]). The advantage of
our approach is that the task of verifying the rules, which can be quite complex, is separated from the task of
checking correctness of individual CAD designs, which makes use of the rules.

Example 4.4. The DOL alignment below states that each part is a physical object and that lines and angles
in the same ontologies are equivalent (we elide namespaces).

alignment Base : Features to Shapes =
Line = Line, Angle = Angle, 3DPart < PhysicalObject

The outcome is that we can use DOL combinations to put together the two ontologies while taking into account
the semantic relations given by the alignment. We further state that an angle constraint in an assembly gives
rise to an intersection between the constrained lines and that two parts of an assembly are parallel if their axes
are parallel. We use Manchester syntax for OWL, with o denoting role composition.

ontology Rules = combine Base then
ObjectProperty: intersOfAngleConstraint
Domain: AngleConstraint Range: Intersection
ObjectProperty: isParallelWith
SubPropertyChain: hasAxis o isParallelWith o isAxisOf
ObjectProperty: firstConstrainedLine
SubPropertyChain: intersOfAngleConstraint o intersectsWith
ObjectProperty: secondConstrainedLine
SubPropertyChain: intersOfAngleConstraint o hasLineAngle o lineOfLineAngle
ObjectProperty: constrainedAngle
SubPropertyChain: intersOfAngleConstraint o hasLineAngle o angleOfLineAngle

Towards Ontological Support for Principle Solutions in Mechanical Engineering

60

Similarly, we have a rule saying that two objects that are in planes constrained using Mate are coplanar.

4.5 Generating the ABoxes and proving correctness

The principle solution is available as an image file, together with a text document that records additional
requirements introduced in the principle solution, thus further restricting the acceptable realizations of the
design. Each part of the sketch has been identified as a functional part of the principle solution and given a
name; this yields the required individual names for our ABox. The assertions regarding the individuals thus
obtained are added as semantic annotations to the text that accompanies the image (Figure 8).

Figure 8: Making assertions regarding individuals explicit using AKTiveMedia [?]

Example 4.5. The following ABox expresses that the parts identified as leg1 and leg2 of the principle solution
should be parallel:

ontology PrincipleSolution = Rules then
Individual: Leg2 Individual: Leg1 Facts: isParallelWith Leg2

. . .

The ABox of the CAD design is generated from its history of construction, using the Alex for CAD. The following
part of this ABox expresses that the two legs of the crane have been explicitly constrained to be perpendicular
to the main frame and coplanar in the CAD model:

ontology CADModel = Rules then
Individual: a1 Types: Line Individual: a2 Types: Line Individual: a3 Types: Line
Individual: craneLeg1 Types: 3DPart Facts: hasAxis a1
Individual: craneLeg2 Types: 3DPart Facts: hasAxis a2
Individual: frameBase Types: 3DPart Facts: hasAxis a3
Individual: alpha Types: Angle Facts: valueOf 90
Individual: ac1 Types: AngleConstraint
Facts: firstConstrainedLine a1, secondConstrainedLine a3,constrainedAngle alpha
Individual: ac2 Types: AngleConstraint
Facts: firstConstrainedLine a2, secondConstrainedLine a3, constrainedAngle alpha
. . .

Following Figure 7, we have to show that all models of the ABox generated from the CAD design are models
of the ABox generated from the principle solution. DOL uses interpretations to express this; e.g., checking that
the two legs of the crane are parallel amounts to checking correctness of the DOL interpretation

interpretation VERIF :PrincipleSolution to CADModel =
Leg1 7→ craneLeg1, Leg2 7→ craneLeg2

using one of the provers interfaced by Hets, e.g. the Pellet reasoner for OWL [?]; as expected, the reasoner
makes short work of this.

5 Related Work

In previous work [?], we have developed an export function from SolidWorks that generates from the internal
representation of a CAD design a description of its construction in a variant of higher-order logic. One can

Towards Ontological Support for Principle Solutions in Mechanical Engineering

61

then relate this construction to abstract geometric shapes and prove this relation to be correct using a higher-
order proof assistant. In the context of the methodology introduced in Section 4.1, each such relation between
the construction and its abstract geometric counterpart gives rise to a formally verified rule in the ontology.
At the informal level, we have moreover developed a semantic help system for CAD objects based on the
Semantic Alliance Framework [?], and have illustrated the use of this information for semantically supported
task switching [?]. Our methods should be seen as distinct from the use of ontologies in workflow management
and web service composition, as, e.g., in the Taverna system [?], in that we aim to semanticize the actual content
of documents.

Several ontologies of features have been developed, with the typical application scenario being interoperability
and data interchange between CAD systems, rather than verification of qualitative properties of CAD assemblies.
E.g., OntoSTEP [?] enriches the semantics of CAD objects represented in the system-independent ISO-standard
interchange format STEP. Our heterogeneous approach allows integrating OntoSTEP (or any other ontology of
features) into our federated engineering ontology and relating it to our ontology of features, without having to
modify our verification methodology.

Various approaches have been explored to integrate semantics into the engineering design process. E.g.,
features as used in feature technology [?] aggregate geometric objects and semantics. Different types of features
are defined (eg. form features, semantic features, application features, compound features), depending strongly
on the technical domain and the product life-cycle phase in which features are used. We expect features to play
a role in further semanticizing step S5 (embodiment, Section 2) in future work.

As mentioned in Section 2.1, the most common representations of principle solutions in mechanical engineering
are probably hand-drawn sketches. One alternative approach is the Contact-and-Channel Model (CCM) [?]. The
basic idea is that every technical system can be represented as a system of working surface pairs and channel and
support structures. In our case study, an example of a working surface pair would be the shaft-hub connection
between the winch main shaft and the lamella disk break, and the main shaft, where the break torque of the
disk break is channeled to the winch drum in order to stop the cable, would be a channel and support structure.
Approaches of this kind, in combination with ontological models of function (e.g. [?]; see also the survey by
Erden et al. [?]), are candidates for integration with our ontological process model in future extensions covering
the step from the function structure to the principle solution.

6 Conclusions

We have described a framework for semantic support in engineering design processes, focusing on the step
from the principle solution to the embodiment, i.e. the CAD model. We base our framework on a flexiformal
background ontology that combines informal and semiformal parts serving informational purposes with formalized
qualitative engineering knowledge and formal semantic annotation of principle sketches. The latter serve to
separate contingencies of the sketch from its intended information content, and enable automated verification of
the CAD model against aspects of the principle solution. We combine this approach with a document-oriented
process that relies on the background ontology for tracking the identity of parts through the design process and
across different applications, which are accessed in a unified manner within the MASally framework.

As a proof of concept, we have illustrated our approach on the partial verification of a CAD model of an
assembly crane against the principle solution, showing in particular that the ability to draw logical inferences is
important when verifying qualitative constraints. This allowed the system to, e.g., accept two parts as satisfying
a parallelism constraint formulated in the principle solution although the CAD model did not mention such a
constraint, which instead had to be inferred from other constraints in the model.

We currently use OWL as the logical core of our verification framework, representing the requisite background
knowledge in a TBox and generating ABoxes from the principle sketch and the CAD model. Our approach
is based on heterogeneous principles, through use of the Heterogeneous Tool Set Hets and the Distributed
Ontology, Modeling and Specification Language DOL [?, ?]. It is thus easily possible to go beyond the expressivity
boundaries of OWL where necessary, e.g. by moving some parts of (!) the ontology into first-order logic or, more
conservatively, by using rule-based extensions of OWL such as SWRL [?] — this will increase the complexity
of reasoning but the Hets system will localize this effect to those parts of the ontology that actually need the
higher expressive power. Use of SWRL will in particular increase the capabilities of the system w.r.t. arithmetic
reasoning.

Towards Ontological Support for Principle Solutions in Mechanical Engineering

62

References

[1] Albert Albers and Christian Zingel. Extending SysML for engineering designers by integration of the contact
and channel–approach (CCM) for function-based modeling of technical systems. In Systems Engineering
Research, CSER 2013, volume 16 of Proc. Comput. Sci., pages 353 – 362. Elsevier, 2013.

[2] Raphael Barbau, Sylvere Krima, Rachuri Sudarsan, Anantha Narayanan, Xenia Fiorentini, Sebti Foufou,
and Ram D. Sriram. OntoSTEP: Enriching product model data using ontologies. Computer-Aided Design,
44:575–590, 2012.

[3] Stefano Borgo, Massimiliano Carrara, Pawel Garbacz, and Pieter Vermaas. A formal ontological perspective
on the behaviors and functions of technical artifacts. AI EDAM, 23:3–21, 2009.

[4] Thilo Breitsprecher, Mihai Codescu, Constantin Jucovschi, Michael Kohlhase, Lutz Schröder, and Sandro
Wartzack. Semantic support for engineering design processes. In Int. Design Conf., DESIGN 2014, pages
1723–1732. Design Society, 2014.

[5] Gino Brunetti and Stephan Grimm. Feature ontologies for the explicit representation of shape semantics.
J. Comput. Appl. Technology, 23:192–202, 2005.

[6] Ajay Chakravarthy, Vitaveska Lanfranchi, and Fabio Ciravegna. Requirements for multimedia document
enrichment. In World Wide Web, WWW 2006, pages 903–904. ACM, 2006.

[7] Catalin David, Constantin Jucovschi, Andrea Kohlhase, and Michael Kohlhase. Semantic Alliance: A
framework for semantic allies. In Johan Jeuring, John A. Campbell, Jacques Carette, Gabriel Dos Reis,
Petr Sojka, Makarius Wenzel, and Volker Sorge, editors, Intelligent Computer Mathematics, CICM 2012,
volume 7362 of LNAI, pages 49–64. Springer, 2012.

[8] M. Erden, Hitoshi Komoto, Thom van Beek, Valentina D’Amelio, E. Echavarria, and Tetsuo Tomiyama. A
review of function modeling: Approaches and applications. AI EDAM, 22:147–169, 2008.

[9] Ian Horrocks, Peter Patel-Schneider, Sean Bechhofer, and Dmitry Tsarkov. OWL rules: A proposal and
prototype implementation. J. Web Sem., 3:23–40, 2005.

[10] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF to OWL: the
making of a web ontology language. J. Web Semantics, 1:7–26, 2003.

[11] Sahib Jan, Angela Schwering, Malumbo Chipofya, and Jia Wang. Qualitative representations of schematized
and distorted street segments in sketch maps. In Spatial Cognition 2014, LNCS. Springer, 2014. To appear.

[12] Andrea Kohlhase, Michael Kohlhase, Constantin Jucovschi, and Alexandru Toader. Full semantic trans-
parency: Overcoming boundaries of applications. In Paula Kotzé, Gary Marsden, Gitte Lindgaard, Janet
Wesson, and Marco Winckler, editors, Human-Computer Interaction, INTERACT 2013, volume 8119 of
LNCS, pages 406–423. Springer, 2013.

[13] Michael Kohlhase. OMDoc – An open markup format for mathematical documents [Version 1.2], volume
4180 of LNAI. Springer, 2006.

[14] Michael Kohlhase. Knowledge management for systematic engineering design in CAD systems. In Franz
Lehner, Nadine Amende, and Nora Fteimi, editors, Professionelles Wissenmanagement, ProWM 2013, pages
202–217. GITO, 2013.

[15] Michael Kohlhase, Johannes Lemburg, Lutz Schröder, and Ewaryst Schulz. Formal management of CAD/-
CAM processes. In Ana Cavalcanti and Dennis Dams, editors, Formal Methods, FM 2009, volume 5850 of
LNCS, pages 223–238. Springer, 2009.

[16] Rudolf Koller and Norbert Kastrup. Prinziplösungen zur Konstruktion technischer Produkte. Springer, 1994.

[17] Martin Kratzer, Michael Rauscher, H Binz, and P Göhner. Konzept eines Wissensintegrationssystems
zur benutzerfreundlichen, benutzerspezifischen und selbständigen Integration von Konstruktionswissen. In
Design for X, DFX 2011. TuTech Innovation, 2011.

Towards Ontological Support for Principle Solutions in Mechanical Engineering

63

[18] Oliver Kutz, Mehul Bhatt, Stefano Borgo, and Paulo Santos, editors. The Shape of Things, SHAPES 2013,
volume 1007 of CEUR Workshop Proc., 2013.

[19] D. Lenat. Cyc: A Large-Scale Investment in Knowledge Infrastructure. CACM, 38:33–38, 1995.

[20] Till Mossakowski, Oliver Kutz, Mihai Codescu, and Christoph Lange. The distributed ontology, modeling
and specification language. In Modular Ontologies, WoMo 2013, volume 1081 of CEUR Workshop Proc.,
2013.

[21] Till Mossakowski, Christoph Lange, and Oliver Kutz. Three semantics for the core of the distributed ontology
language (extended abstract). In Francesca Rossi, editor, International Joint Conference on Artificial
Intelligence, IJCAI 2013. IJCAI/AAAI, 2013.

[22] Till Mossakowski, Christian Maeder, and Klaus Lüttich. The Heterogeneous Tool Set, Hets. In Tools Alg.
Constr. Anal. Systems, TACAS 2007, volume 4424 of LNCS, pages 519–522. Springer, 2007.

[23] G Pahl, W Beitz, J Feldhusen, and K.-H. Grote. Engineering Design. Springer, 3rd edition, 2007.

[24] Florian Rabe and Michael Kohlhase. A scalable module system. Inf. Comput., 230:1–54, 2013.

[25] Karlheinz Roth. Konstruieren mit Konstruktionskatalogen. Springer, 1994.

[26] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz. Pellet: A practical
OWL-DL reasoner. J. Web Semantics, 5:51–53, 2007.

[27] VDI. Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte (Systematic approach
to the development and design of technical systems and products) – VDI 2221, 1993.

[28] VDI. Informationsverarbeitung in der Produktentwicklung – Feature-Technologie (Information technology in
product development – Feature Technology) – VDI 2218, 2003.

[29] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David Withers, Stuart Owen, Stian
Soiland-Reyes, Ian Dunlop, Aleksandra Nenadic, Paul Fisher, Jiten Bhagat, Khalid Belhajjame, Finn Bacall,
Alex Hardisty, Abraham Nieva de la Hidalga, Maria Balcazar Vargas, Shoaib Sufi, and Carole Goble. The
Taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the
cloud. Nucl. Acids Res., 2013.

Towards Ontological Support for Principle Solutions in Mechanical Engineering

64

