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Abstract

The Industry Foundation Classes (IFC) is a standard providing an open
vendor-independent file format and data model for data interoperability
and exchange for Architecture/Engineering/Construction and Facility
Management. Some works in the literature addressed the conversion of
the standard to the Web Ontology Language, but there is still need of an
in depth ontological analysis of its constructs. With this work we start
such an analysis focusing on the IFC type/occurrence distinction. The
goal is to increase the correct understanding and use of the standard
while ensuring logical coherence, ontological soundness and conceptual
clarity.

1 Introduction

Information and Communication Technologies (ICT) play a central role in supporting various engineering tasks in
the field of manufacturing, building and construction industry. Nevertheless, the use of heterogeneous application
tools supporting industrial activities, the lack of a common conceptualisation of the terms used by various actors
across different communities, and the lack of formal representations threaten the quality of process and product
modelling as well as the effective sharing of data between the stakeholders [25, 30]. In this paper, we focus on
the Industry Foundation Classes (IFC) [6], an information modelling standard supported by several Computer
Aided Design (CAD) systems. According to the U.S. National Building Information Modeling Standard [17],
IFC is the most mature and widespread schema for the building industry.

In order to overcome some drawbacks related to the native language specification of IFC, namely EXPRESS,
and benefit from the use of Semantic Web based approaches and technologies, different communities have been
working on the conversion of the standard into the Web Ontology Language (OWL) [33]. Nevertheless, the
development of IFC-like ontologies has not yet delved into the ontological grounding of the standard, its as-
sumptions and rules that are not always explicitly formalized (e.g. the distinction and relation between type and
occurrence entities; the inheritance and overriding of property sets). A simple conversion of IFC into OWL is not
enough because ontologies should attempt at making explicit the implicit ontological commitments and concep-
tualisations of the world laying behind information systems terminologies. When concepts used for knowledge
representation and data sharing are not analysed and clearly defined, the different information systems using
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them cannot be rigorously (thus reliably) aligned for automated information sharing and exploitation. Indeed,
a rigorous ontological perspective, as suggested modern theories of Ontology Engineering [9, 10, 34, 5, 23], is
crucial to take full advantage of modern ontological tools.

We focus hereby on the IFC type/occurrence distinction, which plays an important role in the standard, aiming
at exploiting the re-use of data and minimising the replication of information. Thus it is important to correctly
understand to what types and occurrences refer, especially if one aims at developing IFC-driven ontology-based
applications. In the next section we introduce IFC and its general structure; Section 3 presents the state of the
art about the conversion of IFC into OWL; Section 4 analyses the IFC type/occurrence distinction, from both
a terminological and ontological perspective. We conclude with some remarks about future work.

2 Industry Foundation Classes

The Industry Foundation Classes (IFC) is a standard providing an open vendor-independent file format and data
model for data interoperability and exchange for Architecture/Engineering/Construction and Facility Manage-
ment (AEC/FM). It is released by buildingSMART International and its current release (IFC 4) is registered
as ISO 16739. IFC supports interoperability across different applications used to design, construct and op-
erate construction facilities by capturing information about all aspects of a building throughout its lifecycle
[14, 30, 2, 21].

The IFC data model is defined in the EXPRESS modelling language, the dedicated formal language developed
within the ISO 10303 STEP standard [11]. The current IFC release is built on a modular structure that
distinguishes among four conceptual layers, which are tailored in turn in different schemas (aka modules):

• Resource layer: it specifies classes that do not stand in taxonomical relationships with classes defined
in the other layers, but they can be rather recalled by means of specific relationships. For example, it
includes amongst its schemas the IfcGeometryResource, which contains entities needed to define geometric
representations (e.g. IfcCartesianPoint, IfcPlacement, IfcSurface). In this way, a product (as a
physical object) - defined in the Core Layer (see below) as a IfcProduct - can be characterised by a specific
placement by the ObjectPlacement attribute that points to IfcPlacement;

• Core layer: it contains the most general concepts of the IFC data model. Its purpose is to provide the main
backbone concepts and relationships of the IFC data model. It thus supports interoperability among the
IFC layers and compatibility with the various IFC releases. The Core layer comprises two main schemas:

1. IfcKernel, which collects the most general concepts of the standard like IfcRoot,
IfcObjectDefinition, IfcProcess, IfcContext;

2. IfcCoreExtension, which is further subdivided into three modules: IfcControlExtension, IfcProcessEx-
tension and IfcProductExtension. These specialise the IfcKernel with AEC/FM concepts. In partic-
ular, the IfcControlExtension contains entities for control objects like IfcPerformanceHistory and
IfcControl; the IfcProcessExtension specifies entities for the representation of process-like entities,
e.g. IfcEvent, IfcProcedure, IfcTask; the IfcProductExtension contributes to the specialisation of
entities related to product modelling like IfcElement, IfcElementAssembly, IfcGrid;

• Interoperability layer: it contains concepts, defined in the Domain layer (see below), shared by multiple do-
mains and used for inter-domain exchange and sharing of construction information. Amongst its schemas,
it includes the IfcSharedBuildingElements and the IfcSharedFacilitiesElements. The former specialises the
IfcProductExtension (Core) schema by classes used for representing building structures. Amongst its entities,
it includes IfcChimney, IfcDoor, IfcRamp. The latter provides a set of entities concerning facilities manage-
ment. Some of them specialise the IfcProductExtension schema (e.g. IfcFurniture, IfcFurnitureType),
while others are attached directly under the IfcKernel (e.g. IfcInventory, IfcOccupant);

• Domain layer: it contains the most specific concepts of IFC. The Domain layer organises concepts according
to industry disciplines and amongst its schemas it includes the IfcArchitectureDomain and the IfcBuilding-
ControlsDomain. The former defines concepts used in architecture, like IfcDoorStyle, IfcWindowStyle,
IfcWindowPanelProperties, among others. The latter supports the modelling of building automation, con-
trol, instrumentation and alarm. Amongst its entities, it includes IfcActuator, IfcAlarm and IfcSensor.



The modular architecture operates on a so-called gravity principle: at any layer, an entity may refer only
to an entity at the same or lower layer [21]. For instance, entities at the Core layer may refer to other Core
classes, as well as to Resource layer classes, but cannot refer to entities within the Interoperability or Domain
layers. The same principle applies also within the Core layer, in the sense that IfcKernel entities cannot refer to
IfcCoreExtensions, while the reverse is allowed.

The concepts of IFC, modelled in EXPRESS by the ENTITY construct, are organised into taxonomies
via the supertype/subtype partial ordering relation. For instance, IfcProcess is the supertype of IfcEvent,
IfcProcedure and IfcTask. Some concepts (e.g. IfcProcess) are declared to be abstract, in the sense that they
can only be instantiated through their subtypes. Inheritance is allowed along the hierarchy, so that subtypes
inherit those attributes defined at the level of the supertypes. For example, Fig.1 shows the EXPRESS specifi-
cation of IfcProduct. This is modelled by ENTITY and stands for the abstract super-type of different classes,
which are mutually disjoint (the construct ONEOF specifies the disjointness). The relationship SUBTYPE
OF states that IfcProduct is subsumed under IfcObject. ObjectPlacement, Representation and ReferencedBy
are attributes, while WHERE is a rule specifying a certain condition.

Figure 1: IfcProduct in EXPRESS, from [6]

3 Owl-izing IFC

IFC supports data exchange among Building Information Modeling (BIM) applications [30]. Nevertheless, dif-
ferent communities have explored its conversion into the Web Ontology Language (OWL) [33] to overcome draw-
backs due to some limitations of EXPRESS, and to benefit from the exploitation of Semantic Web technologies
for the management of BIM data [18].

Beetz and colleagues [3, 4], as well as Krima et al. [1], draw attention to the EXPRESS lack of formal
semantics, so that a logic-based language as OWL is preferable for the definition of axiomatic theories aimed at
supporting knowledge representation and data sharing. Additionally, Beetz et al. [4] stress that the popularity of
EXPRESS among the engineering community is very limited, apart from the STEP initiative, so that the reuse
of existing ontologies or tools for interoperability is often inhibited, especially those related to the Semantic Web
initiative. In the paper, the authors explore a semiautomatic method for lifting EXPRESS schemas onto OWL
files.

Schevers et al. [24] as well as Zhang et al [35], argue that the conversion of IFC into OWL facilitates the
linkage between different IFC models and databases, apart from enabling the exploitation of Semantic Web
technologies for building information models. Katranuschkov and colleagues [13] develop an ontology framework
aimed at supporting data modelling and data sharing in civil engineering by reusing the IFC data model.
However, differently from other approaches, their library of ontologies is developed as an XML Schema. Pauwels
and colleagues [18, 19] present a conversion service of the XML-based schema into OWL ontologies in order to
represent building information through the enriched RDF graphs, which can be used with reasoning engines [19].
Following the Linked Data approach, the authors stress the advantages of a semantic rule checking environment
for the AEC domain [18].

Terkaj et al. [27] propose a modular OWL ontology for virtual factory modelling and data sharing between
heterogeneous and geographically distributed software tools. The main structure of the ontology, called Virtual
Factory Data Model (VFDM), is based on IFC and the conversion of the standard from EXPRESS to OWL
mainly follows the pattern proposed in [3, 4]. The VFDM models the main building blocks of manufacturing



systems and their inter-relations, namely, products to be manufactured, manufacturing processes, manufacturing
resources and the factory building. The ontology is used as a key enabler inside an integration framework [31]
to interoperate different software applications by developing ontology-based plugins for both commercial (e.g.
Arena by Rockwell Automation [28], Plant Simulation by Siemens PLM [12]) and non-commercial (e.g. GIOVE
Virtual Factory [32], OntoGUI [29]) software tools, aiming at realising an integrated software platform that can
support the design and management of a factory along its lifecycle phases [7]. The VFDM shows how an OWL
version of IFC can be more easily extended and integrated with other ontologies to represent specific knowledge
domains (e.g. factory sustainability [26, 8] and ambient assisted living [22]).

4 Types and occurrences in IFC

As it stands today, IFC is a data model that relies on human interpretation, in the sense that the meanings of
its modelling elements are not constrained by means of formal semantics. As discussed in the previous section,
semantic considerations lead to look for a formalization of IFC in some formal language, primarily OWL, which
is frequently used for computational reasons (which we do not discuss in this paper). However, if the change
of language helps to improve some aspects of the standard (e.g. making explicit semantics), it does not per se
lead to the clarification of the ontological coherence laying behind IFC. For this reason, the use of ontological
analysis can help to highlight possible drawbacks in the standard and in the conversion patterns used to build
IFC-driven ontological systems.

There are different ways to analyse a standard from the ontological viewpoint. The aim of this section is to
verify whether the main distinctions on which IFC relies are well defined and understood. In this initial work, we
focus on the distinction between IFC modelling elements named ‘type’ and ‘occurrence’ aiming at clarifying what
they amount to in ontological terms. The IFC conceptual schema applies this distinction to several modelling
constructs, e.g. IfcObject and IfcTypeObject; IfcProduct and IfcTypeProduct. Types and occurrences are
linked through the (objectified) relationship IfcRelDefinesByType, as showed in Fig.2. We want to understand
what kind of entities are involved in the distinction, how they are classified, and what kind of relationships hold
between them. The investigation aims at reducing the risk of an erroneous implementation of the standard in
languages such as OWL by clarifying the notions and how they should be used for modelling purposes.

Figure 2: IfcObject and IfcTypeObject with the subclasses IfcTypeProduct and IfcProduct

Let us consider a paradigmatic case: IfcTypeProduct vs. IfcProduct. As anticipated in Section 2,
IfcProduct is a subclass of IfcObject, while IfcTypeProduct is a subclass of IfcTypeObject (see Figures
1 and 2). According to the IFC documentation: “The IfcProduct is an abstract representation of any object
that relates to a geometric or spatial context. Subtypes of IfcProduct usually hold a shape representation
and an object placement within the project structure. [...] Any instance of IfcProduct defines a particular
occurrence of a product[...]” ([6], section 5.1.3.10). Therefore, from the definition, IfcProduct is a class because
it has (a) subtypes (thus structured in a hierarchy) and (b) instances.

The construct IfcTypeProduct is defined in the following way: “IfcTypeProduct defines a type definition of
a product without being already inserted into a project structure (without having a placement), and not being in-
cluded in the geometric representation context of the project. It is used to define a product specification, that is,
the specific product information that is common to all occurrences of that product type” ([6], sect. 5.1.3.49). Al-
though some terms are left unspecified, e.g. project structure, it seems clear that the IfcTypeProduct construct
represents a class as well. In particular, an instance of IfcTypeProduct refers to a set of product specifications,
i.e., properties that can be common a set of instances of IfcProduct.

The terms instance and class are commonly used with a variety of meanings in the literature, thus we need
to make their interpretation precise. The main distinction between a class and an instance is that the former
is a collection of entities (its members), whereas the latter is not1: a class is said to have instances, whereas an

1We do not distinguish classes from sets and call instance any member of a class which is not a class itself.



instance itself cannot instantiate. For example, a particular automobile produced by fiat, call it FIAT500#001,
is an instance of the class fiat car, and the distinction between the class and the instance relies on the way
they are related to the expression being fiat car: we say that any instance of the class satisfies the expression
and that the class is characterised by such an expression. More specifically, being fiat car is a property used
to talk about instances: some instances are cars produced by fiat, while others, e.g. a product manufactured by
Microsoft as well as the Everest mountain, are not. Properties help to discriminate entities because they allow
to state which entities are distinct and why. To be an instance of the class fiat car is thus equivalent to satisfy
the property being fiat car, which is a shortcut for a conjunction of several more specific properties regarding
the engine size, the chassis model, the chassis colour, among others. This complex property is known, in logical
and ontological terms, as the intension of the class, while the collection of the entities satisfying the property is
called the extension of the class. The difference between intensionality and extensionality plays a relevant role
in ontological engineering, because it allows understanding whether a class is bound or not to the particulars it
talks about [9].

Following the distinction between extensionality and intensionality, IFC occurrences can be understood as
extensional classes, whose intensional properties can be also defined by the properties associated with the types.
The type-ocurrence dichotomy can be further discussed by referring to Fig. 3. Recall that IFC, being formalized in
EXPRESS, explicitly models the upper side of the schema only (IfcTypeObject, IfcObject and RelDefByType),
while the boxes in the middle and lower side (TypeTruck, IC FIAT 500, id1, OccTruck, Fiat500#001, among
others) are here included to help in the interpretation.

Figure 3: Example of IFC type/occurrence

The relationship of instantiation holding between classes and their corresponding members is labeled
instance of in Fig. 3. RelatingType and IsTypedBy are (non-objectified) relationships holding between
the represented modelling constructs at both the class and the instance levels. The bottom-right elements (e.g.
Fiat500#001) of the figure are instances representing particular objects, e.g. a particular car that someone owns
and drives. This object is characterised by a conjunction of properties (like having chassis model, having chassis
color, having engine size) that provide the identity criterion for belonging to the class OccAutomobile. The ob-
ject FIAT500#001 and the class OccAutomobile are thus connected by the instantiation relationship. Moreover,
the qualifications of these properties (i.e. values and ranges like chassis model #F22, chassis color #red3F
and engine size 1200) are used as the criterion to link an instance (FIAT500#001) with its corresponding type
(IC FIAT 500), belonging to a type class (TypeAutomobile).

The class OccAutomobile is associated to a unique subclass of IfcTypeObject, namely TypeAutomobile. This
relationship is at the intensional level, in the sense that it relies on the properties characterizing OccAutomobile
and does not depend on its instances (whether they exist or else). We have seen some examples of these properties:
having chassis model, having chassis colour and having engine size. TypeAutomobile thus refers to the collection
of some common properties that characterize OccAutomobile but, generally speaking, not on their values. We



call the relationship between the type and occurrence elements, i.e. the classes on the top of Fig. 3, typization
since it allows to associate to each homogeneous collection of instances in the right hand-side of the diagram a
single general description, i.e. a set of properties in terms of which it is meaningful to consider a comparison of
instances2.

Finally, an instance of TypeAutomobile, that is, an element in the bottom-left of Fig. 3, is associated with
a collection of these very properties with specified values and ranges: in our example, having chassis model
#F22, having chassis colour #red3F , having engine size 1200 and the like. We call this object IC FIAT 500. In
ontological terms, IC FIAT 500 is called an information object. Also, we could call the relationship between the
collection of qualified properties IC FIAT 500 and the instance(s) FIAT500#001 that satisfies them a realization
since the object FIAT500#001 manifests all the properties given by the information object IC FIAT 500 with
the requested qualifications. This relationship differs from that between the class TypeAutomobile and the class
OccAutomobile: the first (realization) is between instances and says that an entity satisfies a set of properties
with given values; the latter (typization) is between classes and associates the class corresponding to a set of
properties (a type) to the occurrence class whose members must satisfy those properties for some admissible
value. Note that a realization does not need to be a physical entity; it may very well be a virtual element.

Currently, it is a matter of ambiguity whether an occurrence instance represents in IFC a physical entity (e.g.
the car owned by someone), or a virtual representation in an information system. In our experience we note
that IFC practitioners adopt both readings depending on their application tasks. Note however that physical
and virtual entities have different ontological properties: on the one side, the former has e.g. a spatiotemporal
location according to which it can be classified as a physical object in a formal ontology framework like the one
proposed by the dolce foundational ontology [15]; on the other side, the latter lacks spatial location in the
former sense and is classified in dolce as an abstract object when it also lacks temporal location (in a common
sense perspective that is usually associated with physical objects); or as a concept when existing in time, for
example in the form of a description. Since physical, abstract and conceptual elements are distinguished by
distinct properties, an ontology artefact requires to clearly separate them. Note also that the identification of
classes at the virtual (abstract) and the physical levels plays a relevant role in data sharing, communication and
verification since it determines which data are affected by time and in which way. Consider a scenario in which
a practitioner develops an ontology-based instance model (A-Box) with an occurrence instance o1, which is a
virtual entity. When a user accesses the ontology, s/he would not be able to properly interpret o1 as a virtual
entity unless this is somehow modelled in the system by specific formal constraints. An explicit specification
of the ontological kind of entity that is represented (virtual or physical) could enhance the reliability of the
information sources that use the standard.

5 Conclusion and further discussion

Current attempts towards the OWL formalization of IFC have not been systematically supported by the on-
tological analysis of its terminology and modelling constructs. While bringing the benefits of formal semantics
into IFC, OWL-ized IFC ontologies do not clarify the meanings of its modelling elements. Indeed, choosing how
to interpret IFC notions relies on the users’ knowledge of the standard and their application needs, issues that
threaten automated interoperability between IFC models developed by different communities. Our approach
differs from the state of the art (Section 3), because it proposes a reading of the standard aimed at increasing its
ontological soundness and conceptual clarity. The performed ontological analysis explains the type/occurrence
modelling pattern in terms of the difference between descriptions (i.e., information entities) within the type
hierarchy, and their realizations within the occurrence hierarchy, where realizations might be both physical and
virtual elements in the system.

The distinction between IFC types and occurrence classes should not be confused with the distinction between
meta-classes and classes [16]. Briefly said, meta-classes and classes differ on the abstraction level: the meta-class
has the class as an instance. Yet, if a class instantiates a meta-class, then the meta-class should be associated
with a collection of the properties that are necessary for a class to be classified as an instance. According
to our analysis, TypeAutomobile is related to OccAutomobile via properties like having chassis model, having
chassis colour and having engine size. However, these properties do not necessarily have to be linked to the
properties of the class OccAutomobile for two reasons. First, IFC allows that some properties associated with
types can be overridden [6], thus they are not treated as necessary properties. Second, analogous to the example

2Ontologically speaking, we could say that IFC is a contextual modelling framework since the notion of ‘homogeneous instances’
depends on the user or the application task. This observation is crucial for a suitable choice of the classes to consider in the diagram.



of IfcBuilding [6], which does not need to have specified IfcBuildingType, it is possible to have an instance of
class OccAutomobile and directly characterize it with as many properties as possible (i.e. chassis et al.) without
linking it to any instance of class TypeAutomobile. This example, together with the possibility to override some
properties associated with the types, demonstrate that the standard currently does not treat the IFC types as
meta-classes of the occurrence classes. Accordingly, the Instance of relationship does not apply to types and
classes of occurrences in IFC.

The difference between IFC type and occurrence classes may remind the materialization modelling pattern [20].
Materialization is a binary relationship holding between abstract and concrete entities, e.g. between the abstract
CarModel and the concrete Car, where the former is a class of properties, and the latter is a class of particular
automobiles defined by the class of properties. Concrete classes are said to materialise abstract ones; e.g. one
could say that John’s and Mary’s Fiat500s materialize the same Fiat500 model, although they are two different
particular cars. However, the abstract-concrete pairs, and thus the materialization relationships, are ambiguously
defined: firstly, materialization holds that one and the same thing can be both concrete and abstract [20] while
ontological theories force to distinguish them as different kinds [15]. Secondly, the semantics of the materialization
relationship is defined through the instantiation and generalization/specialization relationships (together with a
metaclass/class correspondence), but generalization and abstraction are quite different operators, similarly for
specialization and concretization. It remains unclear how abstract and concrete entities are related by these
operators. The study of materialization might enlighten the IFC type/occurrence dichotomy; nevertheless, this
can be assessed only once the semantics of materialization has become conceptually transparent and (possibly)
formally represented.
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