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Abstract. In the last years, Learning by Imitation (LbI) has been in-
creasingly explored in order to easily instruct robots to execute complex
motion tasks. However, most of the approaches do not consider the case
in which multiple and sometimes conflicting demonstrations are given by
different teachers. Nevertheless, it seems advisable that the robot does
not start as a tabula-rasa, but re-using previous knowledge in imitation
learning is still a difficult research problem. In order to be used in real
applications, LbI techniques should be robust and incremental. For this
reason, the challenge of our research is to find alternative methods for
incremental, multi-teacher LbI.

1 Introduction and Relevance of the Problem

Over the last decade, robot Learning by Imitation (LbI) has been increasingly
explored in order to easily and intuitively instruct robots to execute complex
tasks. By providing a human-friendly interface for programming by demonstra-
tion, such methods can support the deployment of robotics in domestic and
industrial environments. Technical intervention of expert users, in fact, would
be not strictly required and, therefore, the costs for (re)programming a robot
are drastically reduced. Despite the advantages in terms of flexibility and cost
reduction, LbI also brings its own set of problems. For example, understanding
the focus of the demonstration (“what to imitate”), adapting the demonstration
to the different embodiment of the robots and obtaining good performances in
task execution (“how to imitate”) are typical challenges of LbI. These problems
have been described and addressed in several ways [1][2][3] and a large literature
exists on the topic. For example, different representations have been proposed
for encoding learned trajectories or goals, and interactive learning techniques
have been developed, as in [4], for improving the acquired skills. The common
assumption behind a large part of work in literature, however, is that demonstra-
tions are provided by a single teacher, in particular a human. This is not always
the case, because not only a robot could learn from other robots [5][6] or animals
(e.g., bio-inspired robots), but also multiple teachers could provide to the robot
conflicting demonstrations or feedback/advice. Moreover, while only some work
focused on the incremental learning problem, it is crucial for achieving robot
autonomy. It seems advisable, in fact, that a robot does not start to learn a
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Fig. 1. Schema of the main challenges in LbI.

single task every time from scratch, since its knowledge can be augmented for
executing more complex tasks or for obtaining increasingly better imitations.
The challenge of our research is to propose a set of solutions for improving LbI
techniques, by considering both multiple teachers and incremental learning. In
contrast to previous work, we will focus our research on learning from multiple
categories of teachers (e.g., humans, robots, animals). Moreover, we will consider
classical solutions like reliability measurements and teacher selection as well as
techniques for strategy co-activation, strategy changing and online refinement
via contrasting feedback/advice. Sub-skill co-activation will be also adopted for
improving incremental learning, with the underlying idea of extending current
non-symbolic approaches to reach higher levels of learning autonomy for hierar-
chical and complex tasks.

2 Related Work

As already stated in the previous Section, Learning by Imitation provides a
high level method for programming a robot which can be easily used by non
expert users. However, while the effort for providing prior knowledge to the
robot is drastically reduced, new and different issues emerge. A frequently used
description of LbI challenges consists of a set of independent problems presented
in the form of questions (see Fig. 1): Who to imitate? When to imitate? What
to imitate? How to imitate?. A huge effort has been done, in previous work, for
understanding what is relevant for the robot and how it should learn a skill,
while who and when to imitate are still open challenges. Indeed, only a small



amount of work has been done in this direction. A detailed overview over the
adopted approaches for solving those problems can be found in [7] and [3].

One of the first problems when dealing with imitation is to understand how
to encode a learned skill. While spline representations cannot be easily used for
encoding a skill, because of their explicit time dependency, many alternatives
exist. In detail, Hidden Markov models (HMMs) have often been successfully
applied in this context [8]. Billard et al. [9], for example, use two HMMs, one
to eliminate signals with high variability and the other one, fully connected, to
obtain a probabilistic encoding of the task. In the work by Asfour et al. [10], a
humanoid robot is instructed by using continuous HMMs, trained with a set of
key points common to almost all the demonstrations. By detecting also temporal
dependencies between the two arms, dual-arm tasks are successfully executed.
Calinon et al. [11], instead, use HMMs for representing a joint distribution of
position and velocity, while generalizing the motion during the reproduction
through the use of Gaussian Mixture Regression. The approach is validated
on several robotics platforms. Additional improvements in the generalization of
movements have been achieved thanks to the use of Gaussian mixture models
(GMMs). For example, in [12], the authors propose a LbI framework, based on a
mixture of Gaussian/Bernoulli distributions, for extracting relevant features of a
task and generalizing the acquired knowledge to multiple contexts. Chernova and
Veloso [13], instead, use a representation of the policy based on GMMs in order
to address the uncertainty of human demonstration. In particular, they propose
an approach which enables the agent to request demonstrations for specific parts
of the state space, achieving increasing autonomy in the execution based on the
analysis of the learned Gaussian mixture set.

In order to reduce the typically high-dimensional state-action space of those
problems, a different category of work focus on the representation of tasks as
a composition of motion primitives. Dynamic Movement Primitives (DMPs), in
particular, have been proposed by Ijspeert et al. [14][15][16] in order to encode
the properties of the motion by means of differential equations. These primi-
tives, which can take into account perturbations and feedback terms, have been
successfully applied by Schaal et al. [17], in the context of learning by demon-
stration, on several examples. Ude et al. [18] present a method for generalizing
periodic DMPs and synthesizing new actions in situations that a robot has never
encountered before. As an additional example, Stulp and Schaal [19] use DMPs
for hierarchical learning via Reinforcement Learning (RL) and apply their ap-
proach on a 11-DOF arm plus hand for a pick-and-place task. More recently, an
alternative representation such as Probabilistic Movement Primitives has been
proposed by Paraschos et al. [20], which can be used in several applications and
allows for blending between motions, adapting to altered task variables, and
co-activating multiple motion primitives in parallel.

In several work, traditional imitation learning techniques have been associ-
ated with methods for refining the learned policy, as in the case of Nicolescu and
Mataric [21]. More specific approaches based on Reinforcement Learning enable
the reduction of the time needed for finding good control policies, while improv-



ing the performance of the robot (when possible) beyond that of the teacher.
Guenter and Billard [22], for example, use RL in order to relearn goal-oriented
tasks even with unexpected perturbations. More in detail, a GMM is used as
a first trial to reproduce the task and, then, RL is used to adapt the encoded
speed to perturbations. A limitation of the approach is that the system requires
to completely relearn the trajectory every time a new perturbation is added.
Kober and Peters [23] use episodic RL in order to improve motor primitives
learned by imitation for a Ball-in-a-Cup task. Kormushev et al. [24], instead,
encode movements with and extension of DMPs initialized from imitation. RL
is then used for learning the optimal parameters of the policy, thus improving
the learned capability. A different approach in the same direction, instead, has
been proposed by Argall et al. [4]. Rather than using traditional Reinforcement
Learning, in fact, the authors consider the advice of the teacher in order to
improve the learned policy, by directly applying a correction on the executed
state-action mapping.

Such solutions are well suited whenever a robot needs to learn a task from a
single teacher. However, issues emerge if conflicting demonstrations, or rewards
in the case of RL, are provided by different teachers (“who to imitate”) by means
of different sensors and modalities. For non-linear system, in fact, simply averag-
ing the learned trajectories usually results in a new trajectory that is not feasible,
since it does not obey the constraints of the dynamic model. Preliminary work in
the direction of addressing this problem has been done by Nicolescu and Mataric
[21], who propose a topology based method for generalization among multiple
demonstrations represented as behavior networks. Argall et al. [25] consider the
incorporation of demonstrations from multiple teachers by selecting among them
on the basis of their observed reliability. More specifically, reliability is measured
and represented through a weighted scheme. Babes et al. [26] apply Inverse Re-
inforcement Learning (IRL) [27] to learning from demonstration, by adopting
a clustering procedure on the observed trajectory for inferring the expert’s in-
tention. This is particularly useful to discriminate among different demonstra-
tions whose underlying goal (and reward function) is not previously or clearly
specified. Tawani and Billard [28], instead, propose a method based on IRL for
learning to mimic a variety of experts with different strategies. While provid-
ing a high adaptability, such an approach enables to bootstrap optimal policy
learning by transferring knowledge from the set of learned policies. Most of this
approaches, however, neither enable to smoothly switch among different policies,
when needed, nor consider the opportunity to prioritize among different strate-
gies which are not incompatible. Moreover, teachers are usually considered to
be human beings, while in real applications demonstrations could be provided
by arbitrary expert agents, such as other robots [5][6] or even animals. Addi-
tional work should be focused on the online version of this problem, in which
contrasting feedback is given to the robot by multiple teachers and refinements
over different learned policies are required.

Another limitation of the work in the literature is in the assumption that
robots need to learn a single task from scratch, without previous knowledge.



Real world applications, instead, are highly demanding for robots which can
incrementally acquire new task execution capabilities based on already learned
skills. A huge effort for dealing with this problem has been done in the direction
of using symbolic representations of tasks, as in [21]. Pardowitz et al. [29][30],
who follow the general approach described in [31], use a hierarchical represen-
tation of complex tasks, generated as a sequence of elementary operators (i.e.,
basic actions, primitives). The method is applied on a robot servant which has
to learn an everyday household task by combining reasoning and learning. A
similar approach is used in the work by Ekvall and Kragic [32], who decompose
each task in sub-tasks which are then used, together with a set of constraints
and the identified goal, for obtaining generalization. Symbolic representations
offer, of course, many advantages when dealing with complex tasks, but they
require a big effort to provide prior knowledge to the robot, resulting in a loss of
flexibility. Conversely, other work is oriented to the achievement of incremental
learning from scratch, without the intervention of experts in providing knowl-
edge. Friesen and Rao [33] propose a solution for achieving hierarchical task
control, by means of an extended Bellman equation. Starting from the equation
used in [34] for “implicit imitation”, the authors consider both temporally ex-
tended action (called options) and primitives. Such options can execute other
options. An interesting evolution towards incremental learning can be noticed
in the work by the research group of Jan Peters [35][36][37][38][39][40][41]. In
particular, in [39] a general overview of the adopted modular approach is given.
The authors describe a method for generalizing and learning several motor prim-
itives (building blocks), as well as learning to select and to sequence the building
blocks for executing complex tasks. Even though this technique represents a huge
advancement towards incremental learning, the gap between the pure symbolic
approach and the “numerical” one is still significant.

3 Methodology and Proposed Solution

The challenge of this research idea consists in addressing both the problems of
multi-teaching (robustness) and incremental learning, by starting from the work
previously presented. With this purpose, state-of-the-art sensing techniques and
off-the-shelf perception modules will be considered to acquire task demonstra-
tions, since they are not directly related to the considered challenges.

The general idea of the proposed approach is based on a mixture of techniques
from Artificial Intelligence and Control Theory. In fact, on the one hand Rein-
forcement Learning has been often explored in combination with traditional LbI
for efficient and accurate task reproduction; on the other hand, it has been shown
that RL is also effective for obtaining bio-inspired and adaptive controllers able
to find optimal policies, in terms of control cost, on-line [42]. Assume that, for
each task, n different or contrasting demonstrations are provided to the robot,
by k different teachers. Each teacher may have his own strategy or may change
his behavior on the basis of the context. Starting from these, a basic step would
be the generation of a smaller number n̄ of clusters, in order to reduce the dimen-
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Fig. 2. Graphical presentation of the learning approach.

sionality of the problem. After dividing the obtained clusters into m sub-parts,
through a segmentation process, each demonstrated sub-policy (n̄ ·m) should be
learned by applying Inverse Reinforcement Learning techniques. Contextually,
in order to produce a more goal-oriented solution, m general DMPs (one for
each sub-part) will be continuously refined on the basis of the set of all the n
demonstrations. A graphical description of the approach is available in Fig. 2.
At task execution time (on-line), for each sub-part, the robot should be able to
choose among the different policies and the refined DMPs, on the basis of the
context or constraints. The choice will strictly depend on the state of the robot
and on the priority (if available) of the tasks to be executed. Interaction with
users characterized by different policies will enable a further refinement of the
adopted policies, as well as a weighting process among the produced solutions,
based on their given reward. Eventually, in case of non contrasting demonstra-
tions, a priority based execution of co-activated policies will be implemented.

Intuitively, such a “motion library” will be useful to address two typical issues
of the incremental learning problem: recognizing in the demonstrations the set
of already available sub-skills, and reducing the redundancy of task information.
Based on this, the approach adopted in [39] for combining the building blocks
in the execution of complex tasks, will be extended to consider co-activated non
interfering sub-skills, on a priority basis. Moreover, a simple approach, based
on the extraction of the most relevant features of each sub-task, will be used in
order to try to partially reduce the gap between the numerical and symbolic rep-
resentations used in LbI. Contextually, higher level planning will be eventually
executed by means of Hierarchical Task Networks.



Fig. 3. KUKA Youbot robotic platform at the RoCKIn Camp 2014.

The proposed solutions will be extensively validated on simulated and real
robots, as well as both in domestic and industrial domains. In particular, the
whole system will be developed on the Robot Operating System (ROS)1 frame-
work, since it is very popular. This will enable not only an easy integration
with realistic simulators like V-REP2 and Webots3, but also a simply transfer-
able implementation for a real robot, like the KUKA Youbot (Fig. 3). Such a
robotic platform consists of a omnidirectional mobile base and a 5-DOF arm,
plus the gripper, and it can be considered a good solution for preliminary ex-
periments in this research. Using the Youbot, in fact, allows to experiment LbI
in industrial-like scenarios, as in the case of the RoCKIn4@Work competitions.
Due to the robot structure, LbI implementations on this platform will have to
take into account the correspondence problem [1]. Note, however, that this is a
classical issue in the LbI implementation pipeline, since the embodiment of the
demonstrator and the one of the robot are usually different, with the exception
of humanoid robots. Additional tests will be executed on specific simple tasks
(e.g., door opening and ball throwing), as well as in the context of benchmarking
activities (e.g., RoCKIn).

4 Conclusions and Potential Impact

Producing a robot which can be easily instructed to perform difficult tasks will
open many business opportunities. In the next years, in fact, industrial and
general purpose domestic robots will be available to wider communities of non
expert users. The use of incremental human inspired learning approaches could

1 http://www.ros.org/
2 http://www.coppeliarobotics.com/
3 http://www.cyberbotics.com/
4 http://rockinrobotchallenge.eu/



enable next generation robots to learn from others as well as from their own
experience. For this reason, we strongly believe that an intuitive multi-teaching
“interface” for robots could improve not only the overall quality of the user
experience and the robot usability, but also the acceptance of robots in our
society. We also think that exploring robust and incremental LbI methods could
have a long-term positive impact from an economical point of view. Consider, for
example, the effort in terms of money spent by big companies for programming
robots: industries could save a lot of money, having the possibility to easily
reprogram, or improve with the advice of different teachers, a single part of
the task that a robot has to execute. For this reason, developed algorithms
could be included in ROS Industrial5, whose goal is to transfer the advances in
robotics research to concrete applications, with economical potential. From an
academic point of view, the interest towards human movement understanding is
increasing6, and improvements in LbI could have a strong impact in this area,
since it is strictly related to natural movement and specific motion dynamics.
In conclusion, we believe that research in this area can be further extended
towards practical applications and real world scenarios, but we are aware that
this document represents only the starting point for a detailed analysis and
investigation of the possible techniques for approaching robust and incremental
LbI.
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40. Bócsi, B., Csató, L., Peters, J.: Indirect robot model learning for tracking control.
Advanced Robotics 28(9) (2014) 589–599

41. Muelling, K., Boularias, A., Mohler, B., Schölkopf, B., Peters, J.: Learning strate-
gies in table tennis using inverse reinforcement learning. Biological cybernetics
(2014)

42. Khan, S.G., Herrmann, G., Lewis, F.L., Pipe, T., Melhuish, C.: Reinforcement
learning and optimal adaptive control: An overview and implementation examples.
Annual Reviews in Control 36(1) (2012) 42–59


