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Abstract. Graph algorithms that are based on the computation of one
or more paths are often written in an implicitly non-deterministic way,
which suggests that the result of the algorithm does not depend on a par-
ticular path, but any path that satisfies a given property. Such algorithms
provide an additional challenge in typical implementations, because one
needs to replace the non-determinism with an actual implementation.
In this paper we explore the effects of using non-determinism explic-
itly in the functional logic programming language Curry. To that end
we consider three algorithms and implement them in a prototypically
non-deterministic fashion.

1 Introduction

Consider a graph G = (V,E), two vertices s, t ∈ V and the question, whether
there is a cycle in G that contains both vertices (i.e. both are contained in the
same strong connected component). It is easy to come up with a solution for this
task – simply check whether there are paths from s to t and from t to s in G, if
so, the answer is “yes”, otherwise it is “no”. Now all one needs to do is to come
up with how to specify the existence of paths, which is just as straight-forward.
Next, one could ask for an actual cycle in case such a cycle exists. For every
path p from s to t and every path q from t to s, the composition of p and q is
such a cycle, i.e. the existence of a cycle does not depend on a particular choice
of a path and there may be several different cycles.

When the above problems are considered in light of logic programming, one
can use non-determinism to express the independence of choice and to compute
one or more results from the specification alone. Aside from the usual benefit of
the declarative approach of what to compute and not how, one can also observe
that the different intermediate results (cycles or paths) yield the same overall
answer (yes or no). While this is somewhat trivial in the above example, there
are more sophisticated graph algorithms that rely on the computation of some
value with a special property and it may not be obvious at all that different
choices of such values yield the same results in the end. This invariance can be
considered as a certain kind of confluence and the possibility to observe this
invariance is a useful tool, particularly in teaching.



In this paper we consider graph algorithms that are based on the computation
of paths. We begin with a simple observation relating the path search strategy
to the solution search strategies and proceed to provide solutions to two non-
trivial graph problems, namely the maximum matching problem and the maximal
flow problem and provide examples of matchings and flows. Our main focus is
on experimentation and applications in teaching, where theoretical results are
likely to be followed by examples. Observing implicit non-determinism explicitly
is of great assistance in this context since one can witness the invariance of the
solution with respect to different choices that lead to it.

All code in this paper is written in Curry [12] and compiled with KiCS2
[5], which can be obtained at http://www-ps.informatik.uni-kiel.de/kics2/.
Throughout the paper we refer to several functions and modules, all of which
can be found using the search engine Curr(y)gle https://www-ps.informatik.

uni-kiel.de/kics2/currygle/. A polished version of the presented code is avail-
able at GitHub under https://github.com/nikitaDanilenko/ndga.

2 Preliminaries

A graph is a pair G = (V,E), where V is a non-empty finite set and E ⊆ V ×V .
This is to say that we consider all graphs to be directed and realise graphs in
which the direction does not matter as symmetric directed graphs. For any v ∈ V
we set N→(v) := {w ∈ V | (v, w) ∈ E } and N←(v) := {w ∈ V | (w, v) ∈ E };
elements of N→(v) are called successors and those of N←(v) predecessors of v.
A path in a graph is an injective sequence of vertices, i.e. a sequence that does
not contain multiple occurrences of the same vertex. Since V is finite, every path
traverses at most |V | vertices. We represent vertices by integers, edges by pairs of
vertices and paths by lists of distinct vertices, where the distinctness is required
implicitly. We discuss this design decision in Section 3.

type Vertex = Int

type Edge = (Vertex ,Vertex)
type Path = [Vertex ]

Graphs are represented by an adjacency list model, where the adjacency lists
are sorted in ascending natural order of the integers. These adjacency lists are
stored in a finite map, one implementation of which is provided in the standard
KiCS2 library FiniteMap as the data structure FM key value.

data Graph = Graph (FM Vertex [Vertex ])

Additionally, we use sets of vertices explicitly for the maintenance of visited
vertices. We use finite maps provided by KiCS2 for a representation of sets
of vertices, where the functions emptyFM , addToFM , elemFM , delFromFM are
provided, too. The function emptyFM is parametrised over an irreflexive order
predicate which in our case is (<) :: Int → Int → Bool .

type VertexSet = FM Vertex ()



empty :: VertexSet

empty = emptyFM (<)

insert :: Vertex → VertexSet → VertexSet

insert i m = addToFM m i ()

inSet :: Vertex → VertexSet → Bool

inSet = elemFM

remove :: Vertex → VertexSet → VertexSet

remove = flip delFromFM

vertexListToSet :: [Vertex ]→ VertexSet

vertexListToSet = foldr insert empty

For the purpose of demonstration we use the two example graphs from the
Figures 1, 2 in the following two sections and assume that they are implemented
in the values graph1 and graph2 respectively.
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Fig. 1. Example graph G1

0 1 2

3 4 5

6 7 8

Fig. 2. Example graph G2

3 Reachability and Paths

One standard example of logic programming in graph theory is the check whether
a vertex set ts is reachable from a given vertex s. This is the case iff s ∈ ts or if
there is a successor i ∈ V of s, such that ts is reachable from i. Since successors
can lead back to already visited vertices, one additionally has to check, if the
successor has been visited or not1. The implementation of the above may be as
follows.

reachable :: Graph → Vertex → VertexSet → Success

reachable g from ts = find empty from where

find vis s | s ‘inSet ‘ ts = success

| isEdge g s i ∧ ¬ (i ‘inSet ‘ vis) = find (insert s vis) i where i free

This implementation contains a high level of abstraction and is very close to the
original specification. Also, instead of defining how to access the successors of

1 Avoiding this check can easily result in non-termination: consider the graph
({ 0, 1, 2 } , { (0, 1), (1, 0), (0, 2) }) with DFS. Then checking whether 2 is reachable
from 0 diverges, because the loop (0, 1, 0) is entered before checking the other suc-
cessors of 0. A similar example shows the non-termination in case of using BFS.



s, this implementation relies only on a test whether a certain edge is contained
in the graph and the use of a free variable to find a fitting edge. The technique
of translating existential quantifications into free variables is common in logic
programming.

Instead of just checking for the existence of a path, one can ask for an actual
path between two vertices. It is easy to implement such a search by modifying
the above function.

path :: Graph → Vertex → VertexSet → Path

path g from ts = find empty from where

find vis s | s ‘inSet ‘ ts = [s ]

| isEdge g s i ∧ ¬ (i ‘inSet ‘ vis) = s : find (insert s vis) i where i free

pathToSingle :: Graph → Vertex → Vertex → Path

pathToSingle g from t = path g from (vertexListToSet [t ])

Again, the function is non-deterministic in its choice of the successor. There
are two interesting consequences of this implementation. First of all, using the
interactive mode of KiCS2 one can find all paths between two given vertices
without any additional work. Alternatively, when all paths are required in a
program, one can use set functions [2] to encapsulate the search and collect all
results. Set functions are provided in the KiCS2 library SetFunctions, which
provides functions setK (for K ∈ { 0, . . . , 7 })

setK :: (a0 → . .→ aK−1 → b)→ a0 → . .→ aK−1 → Values b

which turn a function of a given arity into a set function, where Values b is
the list of all results. Assuming that the graph from Figure 2 is implemented as
graph2 we can test the following results.

kics2> set3 path graph2 0 (vertexListToSet [5, 8])

(Values [ [0, 1, 2, 5], [0, 3, 6, 7, 4, 5], [0, 3, 6, 7, 8]])

kics2> set3 pathToSingle graph2 0 8

(Values [ [0, 1, 2, 5, 4, 7, 8], [0, 1, 2, 5, 8], [0, 3, 6, 7, 4, 5, 8], [0, 3, 6, 7, 8]])

The second consequence is that the path search is based upon the order in
which the free variable i is instantiated, which in turn depends on the search
strategy. The search strategy can be chosen in KiCS2 either interactively (by
using :set STRATEGY ) or directly in the code. The latter can be accomplished
by explicitly representing the search space as a SearchTree from the homonymous
Curry module and using strategy dependent operations on the tree to obtain
actual results. For example, we get:

kics2> someValueWith bfsStrategy (pathToSingle graph1 2 5)

[2, 1, 4, 5]

kics2> someValueWith dfsStrategy (pathToSingle graph1 2 5)

[2, 1, 0, 3, 4, 5]

Note that these two results correspond precisely to what the respective graph-
theoretic strategies yield. In fact, in the above implementation one can decide



between choosing a successor and descending the recursive call (DFS) or checking
other successors first and descending afterwards (BFS). However, both strategies
will find all paths eventually, so that the above observation holds for the first
result, but not necessarily for subsequent results (this can be observed using set
functions, but not with someValueWith, because the latter is deterministic).

kics2> set3With bfsStrategy pathToSingle graph1 2 5
(Values [ [2, 1, 4, 5], [2, 1, 0, 3, 4, 5]])

kics2> set3With dfsStrategy pathToSingle graph1 2 5
(Values [ [2, 1, 0, 3, 4, 5], [2, 1, 4, 5]])

Since we check whether a vertex has been visited before by hand, the condition
that the vertices of every resulting Path are distinct is maintained. Using an
implementation based upon the constrained constructor pattern one can disal-
low the creation of invalid paths. However, the search itself requires access to
previously visited vertices to avoid (infinite) repetition and thus its implementa-
tion would remain essentially the same as above. We omit the smart constructor
approach for the sake of simplicity.

4 Maximum Matchings

A more sophisticated application of non-deterministic path search is the algo-
rithm for finding maximum matchings. A matching in a symmetric graph is a set
M ⊆ E that is symmetric and functional2. In other words a matching consists of
edges that do not share common vertices. A matching is called maximum match-
ing iff there is no matching with a strictly greater cardinality. Clearly, maximum
matchings are not necessarily unique, since they are maximal elements with re-
spect to cardinality. Figure 3 shows some examples of matchings in the example
graph from Figure 2, where the bold lines show matching edges and the dashed
lines are non-matching edges.

0 1 2

3 4 5

6 7 8
A matching.
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6 7 8
A max. matching.
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6 7 8
Another max. matching.

Fig. 3. Examples of matchings.

2 I.e. ∀x, y, z ∈ V : (x, y) ∈M ∧ (x, z) ∈M ⇒ y = z.



There are several natural applications for maximum matchings, like assign-
ing jobs to people, processes to machines or, more classically, spouses to one
another. In all cases one may wish to make as many one-to-one assignments as
possible, which translates directly into the search for a maximum matching. All
of these examples can be modelled with so-called bipartite graphs, which are
graphs that allow a partition of vertices into two sets, such that all edges of the
graph connect only vertices from two different sets. For bipartite graphs there
is a simple imperative algorithm that computes maximum matchings, while the
algorithms for the non-bipartite case is significantly more sophisticated [9].

The Berge theorem [3] characterises maximum matchings and provides an
algorithm for finding such matchings. We state it exactly as in [6].

Theorem 1 (Characterisation of maximum matchings, Berge).
Let M ⊆ E be a matching. Let ⊕ denote the symmetric difference. For a path p
we denote the set of the edges along p by E(p). A path is called M -augmenting
iff it starts and ends in a vertex that is not contained in some edge of M and
alternates between edges of E \M and those of M . Then we have

1. If there are no M -augmenting paths in G, then M is a maximum matching.
2. If there is an M -augmenting path p in G, then M⊕E(p) is a larger matching.

This theorem can be used for an actual computation of a maximum matching.
Starting with the empty matching one searches for an augmenting path and if
such a path exists the current matching is expanded. If on the other hand no
such path exists, the current matching is already a maximum matching.

For the remainder of this section we assume all graphs to be symmetric, in
particular this concerns all graph arguments in functions. This condition can
(and should!) be checked in a proper application, but to avoid additional code
that is not necessary for the presentation, we assume this check to have been
performed beforehand implicitly.

Let us first deal with the matching augmentation. Given a matching M and
an augmenting path p Berge’s theorem states that M ⊕E(p) is a larger match-
ing. Once we have computed this matching, we will check whether there is an
augmenting path, using M⊕E(p) instead of M , which requires the computation
of E \ (M ⊕ E(p)). As we have stated in [6] it is simple to see that

E \ (M ⊕ E(p)) = (E \M)⊕ E(p) ,

so that both M and E \M are updated in the same fashion. Suppose that

xorBiEdges :: Graph → [Edge ]→ Graph

traverses a list of edges and for every edge it adds its undirected version (i.e.
both directions) to the graph if the edge is not already present in the graph
and removes both directions otherwise. Then the augmentation update can be
implemented as follows, where we assume that m is the current matching and
notM is its complement in E (i.e. notM = E \m).



augmentBy :: Path → Graph → Graph → (Graph,Graph)

augmentBy path m notM = (m ‘xorBiEdges‘ es,notM ‘xorBiEdges‘ es) where

es = zip path (tail path)

Without logic means checking the existence of an augmenting path and find-
ing such a path in the positive case is quite technical3. Using logic means how-
ever, we can specify an augmenting path by first dealing with alternating paths
and then adding the conditions for the first and last vertex. Suppose we have
a target set of vertices ts :: VertexSet , a starting vertex s and a list of graphs
(g :gs) :: [Graph ] that we want to traverse in sequence. Then an alternating path
from s to ts through g : gs exists iff s ∈ ts holds or there is a successor i of s in g
and there exists an alternating path from i to ts through gs ++[g ]. The intention
is that we will use the list [notM ,m ] in our application, where m is the current
matching and notM is its complement in E. Except for the traversal of multiple
graphs in a cyclic order4, the above specification is very similar to the one that
specified the existence of a path. Similarly, the corresponding function is easy to
modify to return an alternating path as well.

alternatingPath :: [Graph ]→ Vertex → VertexSet → Path

alternatingPath grs from ts = find empty from grs where

find vis s (g : gs)

| s ‘inSet ‘ ts = [s ]
| isEdge g s i ∧ ¬ (i ‘inSet ‘ vis) = s : find (insert s vis) i (gs ++ [g ]) where i free

With this function we can find augmenting paths, too. Let us assume that
we have a function at hand that computes those vertices of a symmetric graph
which do not have any neighbours (i.e. successors, due to symmetry).

noSuccessors :: Graph → VertexSet

By definition an augmenting path starts and ends in a vertex that is not covered
by the matching and since it is a path the start vertex should also be different
from the end vertex, which is not guaranteed by the alternatingPath function
from above. Fortunately, this is easily corrected by simply excluding the start
vertex from the target vertex set. Again, we assume that m is a matching and
notM is its complement in E.

augmentingPath :: Graph → Graph → Path

augmentingPath m notM | s ‘inSet ‘ unc = alternatingPath [notM ,m ] s (s ‘remove‘ unc)
where unc = noSuccessors m

s free

This function is prototypical by design – guessing a possible start vertex and
trying to find a path is obviously not the most efficient way of finding an aug-
menting path. Instead, one could either modify the search function in a fashion

3 The usual procedure is to implement a modified breadth-first search, which explicitly
alternates between two graphs.

4 We have implemented the cyclic list traversal inefficiently by adding the first element
to the end of the list for demonstration purposes only. It is simple to replace this
implementation by either functional lists or queues, both of which allow adding an
element to the end in constant time.



that searches from a set of vertices instead of a single one or to use an ex-
plicitly parallel search strategy. These improvements lead to a less declarative
look-and-feel, which is why we use the above version.

If there is no augmenting path in the graph then this function does not return
any value. We use negation as failure with set functions to obtain a function that
repeats the search for an augmenting path until there is no such path left.

maximumMatching :: Graph → Graph
maximumMatching g = go (emptyGraph (graphSize g), g) where

go (m,notM ) | isEmpty ps = m
| otherwise = go (augmentBy (chooseValue ps) m notM )

where ps = set2 augmentingPath m notM

The function graphSize returns the number of vertices in the graph, emptyGraph
creates an empty graph of a given size, isEmpty :: Values a → Bool checks
whether the list of values is empty or not and chooseValue :: Values a → a non-
deterministically chooses a value from the list of all values. Additionally, we can
parametrise the maximumMatching function by a search strategy that is passed
to set2With which is a version of set2 that is parametrised by a search strategy.

We test the above function in the interactive mode of KiCS2 on the example
graph G2 from Figure 2. The function graphEdges :: Graph → [Edge ] computes
the edges of a graph and we use it for an uncluttered output.

kics2> graphEdges (maximumMatching graph2 )

[(0, 1), (1, 0), (2, 5), (3, 6), (4, 7), (5, 2), (6, 3), (7, 4)]

More values? [Y(es)/n(o)/a(ll)] Y
<< four more times the same result >>

More values? [Y(es)/n(o)/a(ll)] Y

[(0, 1), (1, 0), (2, 5), (3, 6), (5, 2), (6, 3), (7, 8), (8, 7)]
More values? [Y(es)/n(o)/a(ll)] n

Observe that the first results are the first maximum matching from Figure 3.
As we have mentioned before, one typically distinguishes the cases of bipartite

and non-bipartite graphs, because the search for an augmenting path is simpler
in the former case. The above implementation does not rely on the graph being
bipartite and will in fact work for non-bipartite graphs too, even those where
usual algorithms will fail. The essence of this failure is known to be that every
search is guided by some vertex ordering and in the non-bipartite case one can
always create examples where a vertex is marked as visited prematurely, thus
excluding this vertex from possible further searches. This problem cannot occur
in the bipartite case – if there is an augmenting path, it can be found with every
vertex ordering. The above implementation however, uses all possible vertex
orderings and thus always finds a path if it exists. Clearly, this comes at the
price of not being efficient (polynomial), but it is still interesting to observe that
the function itself still yields the correct results, but only its complexity changes.

Another interesting observation is that such an implementation is very well
suited for presentation, particularly in teaching. We have stated before that
maximum matchings are not necessarily unique and the above function can be



used interactively in KiCS2 to find different maximum matchings. Similarly, for
any given matching there might be several augmenting paths and one can again
check that the choice of a particular path does not matter for the maximality
of the result. In graphs with unique maximum matchings the confluence of the
algorithm is observable by considering all solutions and removing duplicates. In
the graph from Figure 1 there is exactly one maximum matching, but it can be
found with the above function in 184 ways5. This demonstration of confluence in
again interesting in teaching to indicate that even a possibly non-deterministic
algorithm can yield a deterministic result.

Finally, we point out that there are more efficient algorithms that compute
maximum matchings, namely the Hopcroft-Karp algorithm [13] and the Mucha-
Sankowski [15] algorithm. The latter is based upon Gaussian elimination and not
directly related to a search for paths. The former algorithm, however, computes
in every augmentation step not just a single augmenting path, but a set of short-
est, pairwise disjoint augmenting paths that is maximal with respect to inclusion.
A function that computes such a set can be implemented as a combination of two
searches (first a breadth-first search, followed by a modified depth-first search,
cf. [7]). Interestingly, the algorithm still contains a very similar non-deterministic
component as above, since there can be several sets that are all maximal and
again, the correctness of the output (and sometimes even the output itself) does
not depend on a particular choice of such a set. The actual implementation is not
particularly difficult, but it explicitly relies on the fact that the BFS returns a
graph that is the union of all shortest paths from the source set to the target set,
rather than the property that some path has been found using BFS implicitly.

5 Maximal Flows in Networks

A problem that is conceptually related to maximum matchings is that of a
maximal flow through a network. A network is a quadruple N = ((V,E), s, t, c)
that consists of an asymmetric graph6 (V,E), two designated vertices s, t ∈ V
(where s is called source and t is called sink) such that s 6= t and a capacity
function7 c : E → N. To avoid unnecessary brackets whenever X is a set and
h : E → X, we write h(x, y) instead of h((x, y)). For any function g : E → N let

∂g : V → Z, v 7→

 ∑
w∈N→(v)

g(v, w)

−
 ∑

w∈N←(v)

g(w, v)

 .

The function ∂g measures for every vertex the difference between the amount of
all outgoing values and the incoming values. A flow is a function f : E → N that

5 Using liftIO length ◦ values2list ◦ set1 maximumMatching instead of just the
maximumMatching function yields the number of successfully found matchings.

6 That is that for all v, w ∈ V such that (v, w) ∈ E, we have (w, v) /∈ E.
7 Typically, one chooses c : E → Q≥0, but since only finite graphs are considered, it

is possible to multiply c by the least common multiple of its image values and, if
necessary, to divide them later.



satisfies f ≤ c (pointwise) and for all v ∈ V \ { s, t } we have ∂f(v) = 0. This is
known as the Kirchhoff’s law “what goes is, must come out”. The value of a flow
f is defined as |f | := ∂f(s) and a maximal flow is a flow that has a maximal flow
value. In typical applications there are no edges leading into the source, which
then allows the intuition that the flow value is the amount of goods that is sent
through the network from the source.

0 2

1

3

4

5

6

7

c = 7

c = 8

c = 9

c = 3

c = 4

c = 6

c = 2

c = 5

c = 8
c = 10

c = 4

c = 7 c = 10

A network.

0 2

1

3

4

5

6

7

f = 0

f = 6

f = 0

f = 0

f = 0

f = 6

f = 0

f = 0

f = 0

f = 4
f = 4

f = 2 f = 2

A flow.

0 2

1

3

4

5

6

7

f = 7

f = 5

f = 5

f = 3

f = 4

f = 5

f = 0

f = 5

f = 0

f = 7
f = 4

f = 5 f = 10

A maximal flow.

Fig. 4. Examples of a network and flows.

Flow problems are related (among many others) to routing problems, where
one wishes to send a certain amount of goods through different distribution lines
that have a limited capacity only (e.g. traffic or electrical current). The Kirchhoff
law then simply states that there is no loss of goods along the way. There has
been extensive research on finding maximal flows (cf. [11, 10, 7] for overviews and
results) and efficient algorithms are known. We consider the original algorithm
and variations thereof. The original algorithm for finding maximal flows is due
to a theorem by Ford and Fulkerson, which is based upon [14].

Theorem 2 (Characterisation of maximal flows, Ford & Fulkerson).
Let N = ((V,E), s, t, c) be a network and f : E → N a flow. Let

cf : E ∪ E−1 → N, (v, w) 7→

{
c(v, w)− f(v, w) : (v, w) ∈ E
f(w, v) : otherwise

and Ef := { e ∈ E ∪ E−1 | cf (e) > 0 }. We call cf the residual capacity w.r.t. f .
Then the following hold:

(1) If there is no path from s to t in (V,Ef ), then f is a maximal flow.

(2) If p is a path from s to t in (V,Ef ), let ε := min { cf (e) | e ∈ E(p) } and

fp : E → N, (v, w) 7→


f(v, w) + ε : (v, w) ∈ E(p) ∩ E
f(v, w)− ε : (w, v) ∈ E(p) ∩ E
f(v, w) : otherwise.

Then fp is a flow and |fp| = |f |+ ε (p is called a flow-augmenting path).



This theorem is very similar to the Berge theorem from the previous section. In
fact, it is known that the problem of finding maximum matchings in bipartite
graphs can be solved using a particular instance of the flow problem. However,
this technique works only for bipartite graphs in which an explicit bipartition is
known, while the presented strategy does not require an explicit bipartition.

The theorem of Ford and Fulkerson provides an algorithm for finding maxi-
mum flows, which checks for the existence of a path and improves the flow in the
positive case. When searching for any path, the algorithm is known as the Ford-
Fulkerson algorithm, which is not necessarily polynomial in the graph size. When
searching for shortest paths, this algorithm is known as the Edmonds-Karp al-
gorithm [8] and has a complexity that is polynomial in graph size. Assuming a
deterministic choice of the first element of a list of non-deterministically found
augmenting paths, this fact can be reflected in Curry by specifying an explicit
strategy for the path search8. An additional variation of the algorithm is find-
ing a set of paths from s to t that are disjoint up to s and t, such that the
set is maximal with respect to inclusion and use all paths from this set for an
improvement. This is a version of the Dinitz [7] algorithm and is more efficient
than the Edmonds-Karp algorithm, since it is possible to implement the search
for such a set in a fashion that is just as complex as finding a single path.

For an implementation we consider capacities and flows to be functions from
V × V to N, which yield zeroes on (V × V ) \ E. For any g, h : V × V → Z set

swap(g) : V × V → Z, (x, y) 7→ g(y, x)

g u h : V × V → Z, e 7→

{
h(e) : g(e) 6= 0

0 : otherwise.

Then “swap” is an uncurried version of the function flip and u is the left-forgetful
intersection of functions. Let ⊕, 	 be the pointwise addition and subtraction of
functions respectively and • the multiplication of a function with a constant.

From now on we assume that c is a capacity and f is a flow. The residual
capacity cf as in the Ford-Fulkerson theorem can be computed as

cf := c	 f ⊕ swap(f) .

Indeed, for every v, w ∈ V we find that due to the asymmetry at most one of
the two values f(v, w) and f(w, v) can be non-zero, which yields

(c	 f ⊕ swap(f)) (v, w) = c(v, w)− f(v, w) + f(w, v)

=


c(v, w)− f(v, w) : (v, w) ∈ E
f(w, v) : (v, w) ∈ E−1

0 : otherwise

= cf (v, w) ,

8 However, we use a non-deterministic choice of an augmenting path to be able to
observe the different choices.



where the last step is only true up to the extension of cf to V × V . Now let p
be a path from s to t in (V,Ef ) and let ε := min { cf (e) | e ∈ E(p) }. Then set

σp : V × V → Z, e 7→

{
1 : e ∈ E(p)

0 : otherwise,

i.e. σp is the characteristic function of E(p) in V × V , and

up := ε • (c u (σp 	 swap(σp)) .

The value up is a “point-free” version of the flow update indicated by the Ford-
Fulkerson theorem: the term σp 	 swap(σp) produces a function that yields 1
along the edges on p and −1 along all the reversed edges along p. The intersection
produces a function that is 1 along the edges along p which are contained in E
and −1 on those that are contained in E−1. One easily verifies that fp = f ⊕up.
With this we can compute as follows, where all of the arithmetic rules below
follow immediately from their pointwise counterparts.

cfp = c	 fp ⊕ swap(fp) = c	 (f ⊕ up)⊕ swap(f ⊕ up)

= c	 f 	 up ⊕ swap(f)⊕ swap(up) = (c	 f ⊕ swap(f))	 up ⊕ swap(up)

= cf 	 up ⊕ swap(up) .

Thus we can update the flow and the residual capacity using only the changes
provided by the path, which reduces the number of necessary computations. To
implement paths with values along traversed edges, we use the data type

data Path a = Final Vertex | From Vertex a (Path a)

and assume a function toEdges :: Path a → [(Edge, a)] to be at hand that
collects all edges along the path with their corresponding values. We then model
capacities and flows using finite maps FM with (Vertex ,Vertex ) keys and Int
values9.

type EdgeMap = FM (Vertex ,Vertex) Int

The functions (⊕), (	), (u) :: EdgeMap → EdgeMap → EdgeMap, (•) :: Int →
EdgeMap → EdgeMap and swap :: EdgeMap → EdgeMap are rather simple to
define using standard operations on FiniteMaps (e.g. (⊕) = plusFM C (+)). We
can then implement the flow augmentation as follows, where the first argument
is an augmenting path, the second one denotes the original capacity, the third
one is the current residual capacity and the fourth one is the current flow.

augmentBy :: Path Int → EdgeMap → EdgeMap → EdgeMap → (EdgeMap,EdgeMap)
augmentBy p c cf f = ((cf 	 up)⊕ swap up , f ⊕ up) where

9 We could define a data type for natural numbers as well, but then manual con-
version between naturals and integers requires some additional overhead; since this
implementation is for demonstration, only, we assume the correct usage.



up = eps • (c u (σp 	 swap σp)) -- the update

eps = minlist (map snd edges) -- the minimum along the path

σp = fromList (map (λ(e, )→ (e, 1)) edges) -- the characteristic function
edges = toEdges p

Note that the actual result is an exact copy of the computations from above.
The maximisation function can then be realised in a fashion very similar to the
one we used for matchings, but explicitly parametrised over a search strategy.
This implementation adds an additional non-deterministic component, namely
the choice of the actual augmenting path. The strategy for this choice is given
by the top-level search strategy.

data Network = Network Graph Vertex Vertex EdgeMap

maximalFlowWith :: Strategy (Path Int)→ Network → EdgeMap

maximalFlowWith str (Network s t c) = go (c, empty) where

go (cf , f ) | isEmpty ps = f

| otherwise = go (augmentBy (chooseValue ps) c cf f )

where ps = set1With str findAugmenting cf

findAugmenting = augmenting s t

All that remains is the augmenting function. In essence, it is another path search,
but this time we use the capacity map to check for existing edges, because edges
in the residual graph exist iff their capacity is positive.

augmenting :: Vertex → Vertex → EdgeMap → Path Int

augmenting s t capacity = go (emptyFM (<)) s where

go vis from | from ≡ t = Final from

| cfi > 0 ∧ ¬ (from ‘inSet ‘ vis) = From from cfi (go (insert from vis) i)

where i free
cfi = capacity ! (from, i)

(!) :: FiniteMap a Int → a → Int
m ! key = lookupFMWithDefault m 0 key

The non-determinism is again enclosed in the path search. Just as was the case
with matchings, maximal flows are usually not unique and the presented imple-
mentation can be used to find all possibilities. Still, every maximal flow has the
same flow value and this fact can be observed by defining the ∂ function.

Again, we test our implementation with the example network from Figure
4 and wrap the call in the function showEdgeMap :: EdgeMap → String that
pretty-prints key-value pairs as key → value.

kics2> showEdgeMap (maximalFlowWith bfsStrategy) network1

(2, 5)→ 5, (0, 2)→ 5, (0, 1)→ 7, (1, 4)→ 3, (0, 3)→ 5, (1, 5)→ 4, (5, 6)→ 5,
(4, 7)→ 7, (3, 6)→ 5, (5, 4)→ 4, (6, 7)→ 10
More values? [Y(es)/n(o)/a(ll)] y

(2, 5)→ 3, (0, 2)→ 3, (0, 1)→ 7, (1, 4)→ 3, (0, 3)→ 7, (1, 5)→ 4, (5, 6)→ 5,

(4, 7)→ 7, (3, 6)→ 5, (3, 5)→ 2, (5, 4)→ 4, (6, 7)→ 10
More values? [Y(es)/n(o)/a(ll)] n

The first flow is exactly the maximal flow from Figure 4 and the second one
demonstrates that maximal flows can variate in their edges as well as the flow
values along the edges. Clearly, both flows have a flow value of 17.



6 Discussion

We have demonstrated how to apply non-deterministic path computations to
compute the solution to some selected graph problems. The presented func-
tions are not the most efficient ones by design, but intended as prototypes for
demonstration. This prototypical approach has the additional advantage of be-
ing simple and declarative. Clearly, several parts of our implementations can be
improved or described in a more declarative or more efficient fashion, but our
focus is on the non-deterministic path computations, which are the essence of
all the described algorithms.

The overall strategy of all computations in this paper can be considered as the
computation of the preimages of a given function which needs to be maximised.
For instance in case of flows this function is |·| : F → N, f 7→ |f |, where F
is the set of all flows in a given network. Similarly, every improvement step is
a preimage computation for the function improve : P → F, p 7→ fp where
P is the set of all flow-augmenting paths with respect to a given flow f . It is
interesting to note that every preimage choice is a branching point in the overall
computation and that every new choice can allow different branches that will still
lead to the same final result. In the case of maximum matchings two different
maximum matchings are distinct only in one or more edges, for flows we can
observe significantly more variation, since not only the edges that have non-zero
flow can be different, but even different non-zero flow values for the same edge
are possible.

Being able to observe such differences is interesting in its own right, but
can be of particular interest in teaching. In case of the maximum matching
function there is no difference between the search strategies. The maximal flow
function on the other hand behaves differently, as we have stated above, and
the choice of a depth-first strategy combined with an “unlucky” vertex ordering
yields a non-polynomial complexity, while the very same concrete program with
a breadth-first search strategy is in a completely different complexity class.

In our applications, results may be computed repeatedly through different
branches. Since set functions are implemented using lists, removing duplicates
is possible but costly, since a straight-forward graph comparison takes O(|E|)
operations. For matchings this is slightly better, since every matching has only
O(|V |) edges, which makes the näıve duplicate removal less inefficient. Still, with
focus on experimentation and teaching, an inefficient duplicate removal is still
rather simple, because the Curry function nub :: [α ] → [α ] removes duplicates
from a given list (of ground terms).

The presented implementation and the ideas behind it are not exclusive to
Curry, but passing search strategies to a set function is already a built-in feature
of Curry and particularly KiCS2. However, KiCS2 translates Curry programs to
Haskell and using non-deteminism monads (see [4]) and replacing logic variables
by overlapping rules (as in [1]) one can obtain a purely functional implementa-
tion. Such an implementation should be portable to every other language that
supports higher-order functions. It should not be too difficult to translate the
above functions into a relational setting, e.g. in Prolog, after removing the en-



capsulated non-determinism. Additionally, negations need to be handled with
care in general, but in our case we used negations only to check for “being not
contained in the visited vertices”, which can be inlined and implemented by
hand without explicit negation. However, Prolog uses a built-in DFS, which dis-
allows the parametrisation over the search strategy. It is difficult to estimate how
declarative and structurally complex the resulting program will be in another
language. While we omitted some auxiliary functions, we still consider our code
to be rather simple and straight-forward.
Acknowledgements: I thank Rudolf Berghammer for encouraging this work,
Frank Huch for sparking its idea and the highly appreciated feedback of the
reviewers.
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