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Abstract. Search-based software engineering views software develop-
ment as a process of searching through the design space for an opti-
mal solution according to some quality criteria. It seems natural to try
and build automated implementations of this idea based on concepts
from model-driven engineering—using meta-models as characterisations
of design spaces and model transformations as algorithms / heuristics
for the exploration of the design space. Yet, there is only very limited
research in this area. In this paper, we contribute to the discussion in
two ways: 1) we provide an extension of Crepe, a framework for single-
objective optimisation based on the Epsilon tool set, to support multi-
objective optimisation, and 2) we present an experimental comparison
between a multi-objective optimisation problem implemented in the ex-
tended Crepe and the same problem implemented in native Java using
an optimised internal representation of the search space and of solution
candidates. The experiment highlights key areas of improvement required
in Crepe to enable it to fully compete with bespoke implementations.

1 Introduction

Search-Based Software Engineering (SBSE) [1] views software development as
a process of searching a (potentially large) design space for a design optimally
addressing the given requirements. The goal, then, is to reduce the need for
humans to perform this search, which would be slow and potentially unreliable
or error prone. Instead, SBSE research aims to identify ways of automating the
search, using techniques from meta-heuristic search or operations research. The
field has grown over the past decade; there are a number of fields in software
development where automated search can be applied with good results [1].

Model-driven engineering (MDE) [2] aims to develop software systems using
models; that is, at a higher level of abstraction than offered by currently preva-
lent programming languages. Because of this higher level of abstraction, often
combined with the use of domain-specific modelling languages, a number of pro-
cesses in software development can be automated or semi-automated. Centrally,
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MDE propagates the use of model transformations [3] to automate analysis of
models or generation of fully executable implementations.

It seems obvious that a combination of MDE and SBSE could benefit from
the advantages of each approach: SBSE studies specific techniques for search-
ing specific kinds of design spaces, but lacks a general technique for simply and
systematically implementing such searches for different design spaces. MDE,
on the other hand, provides good techniques for automating processes in soft-
ware development in a generalisable way, but lacks specific support for search-
or optimisation-based techniques. A combination of the two approaches could
provide a framework of model-transformation techniques to enable effective im-
plementation of search algorithms for specific domains.

Two problems need to be solved to combine MDE and SBSE:

1. We need to define general implementations of search algorithms and iden-
tify the parameters required to specialise these for particular domains. At a
minimum, these parameters will need to be in the form of meta-models that
allow the description of the domain (i.e., of the design space to be searched).

2. We need to ensure search is efficient. Search-based algorithms can take a long
time to run, so performance considerations are important in their design.

Note that the two issues are potentially in conflict: realising a generic imple-
mentation may induce an additional performance hit. Performance in optimi-
sation algorithms is substantially influenced by the representation of candidate
solutions and the efficiency with which these can be manipulated. A generic,
model-based implementation may cause problems in this regard.

In this paper, we address the two above problems in the following ways:

1. We present a set of meta-models and generic model-driven framework im-
plementing meta-heuristic, multi-objective optimisation. This is based on
Crepe [4], which supports single-objective optimisation already.

2. We compare the performance of this framework with the performance of
a hand-crafted implementation for a specific SBSE problem and provide a
first discussion of the trade off between ease of implementation (aided by the
generality of the framework) and loss of efficiency.

2 Related Work

While there is some work on applying search-based or optimisation-based tech-
niques with MDE (see [4, 5] for some examples), work on generic support for
search-based or optimisation-based exploration of models is still rare. To the
best of our knowledge, only two other works exist:

QVTR2 [6] propose an extension of QVTR where different alternatives are
encoded as non-deterministic relations. These are incrementally rewritten into
deterministic relations by 1) making a non-deterministic choice, 2) asking a de-
veloper to compare the outcome of that choice to results produced by another
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Fig. 1. The workflow of the example composite application

choice, and 3) fixing the preferred choice by rewriting the original transforma-
tion specification. While this enables the implementation of optimisation-based
approaches, it requires a substantial amount of manual intervention.

The approach recently proposed by Denil et al. [7] also encodes the design
space partially as transformation rules. Search strategies are encoded in the rule-
scheduling, which can be freely defined in the underlying transformation system
FTG+PM. The design space is further constrained by providing a fixed set of
model elements that can be recombined by the transformation rules. Beyond this,
however, the proposed approach seems to require a complete reimplementation
of both the rules and the search strategy for every new problem.

The use of meta-model–like structures to represent candidate solutions in
evolutionary optimisation has first been explored by Christopher Simons in [8].
Canfora et al. [9] were the first to use genetic algorithms for discovering QoS-
optimal service compositions. An extensive survey of various optimisation tech-
niques applied to the service composition search problem can be found in [10].

3 Motivating Example

Consider a system for improving the decision making of firefighters in emergency
situations. Firefighters are equipped with mobile devices with various networking
capabilities. These devices form an infrastructure-less mobile ad hoc network
enabling them to offer their resources—such as application data and network—
as software services. Service composition enables devices to combine multiple
services into composite applications in order to satisfy complex functional goals.

For example, consider a forest fire where a commanding firefighter uses a
composite application to identify endangered firefighters and react appropriately.
The commander aggregates information about the condition of his subordinates
(position, heart rate, oxygen level). This data needs to be fed to a processing
service which assesses if something is going wrong. In the case of an emergency
event (e.g., a firefighter has stopped moving and high levels of carbon dioxide in
the blood are observed), another team in the close proximity must be notified to
intervene along with an external medical team which must be ready to approach.
Figure 1 depicts the underlying composite application as a work flow.

Availability of resources (e.g., network bandwidth, battery power) strongly
affects the quality of the services offered. Different choices of concrete services
(and hosting nodes) for each of the abstract services in Fig. 1 lead to different
overall quality of service (QoS). Finding service compositions with optimal QoS
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Fig. 2. The metamodel for defining distributed service composition configurations

trade-offs is challenging. The size of the search space makes meta-heuristic search
techniques [11] interesting candidates for addressing this problem [12].

Figure 2 describes the search space of the firefighter problem using a meta-
model. Each instance of the meta-model represents a candidate solution, whose
QoS can be analysed—for example, using a simulation. The parts of the meta-
model shaded in grey represent the problem description; that is, the abstract
work flow as well as the available nodes and concrete services. Any candidate
solution for the same problem will share the same instances of this part. In
contrast, the elements shaded in orange represent a specific candidate solution
by specifying the specific concrete services and orchestrators selected.

4 Crepe – Search-Based Algorithms for MDE

Meta-heuristic search-based optimisation algorithms are commonly implemented
with respect to an encoding of the problem domain (traditionally binary or in-
teger vectors). This encoding (the genotype) is translated into the native format
(the phenotype) of the solution to be evaluated by a fitness function. Genetic
operators (mutation and crossover) act upon the encoded form of solutions,
modifying and combining different solutions, with the intention of producing
new solutions with higher fitness. Crepe [4] provides such an encoding, and as-
sociated genetic operators, for MDE models. Crepe can encode the space of
models that conform to any given meta-model, enabling metaheuristic optimi-
sation techniques to be applied to any problem whose solution can be repre-
sented by a meta-model instance. Crepe is implemented in the Epsilon Object
Language (EOL) [13] and processes models based on the Ecore meta-modelling
language [14]. In this section, we briefly overview the key features and limitations
of Crepe. A full description of Crepe can be found in [4].

4.1 Crepe Components

There are three main components of Crepe: the structure of the genotype, the
finitisation information, and the mappings between genotype and phenotype. In
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Fig. 3. The metamodel that defines the structure of individuals in Crepe

the spirit of MDE, all components in Crepe are either models or model trans-
formations. Fig. 3 shows the meta-model that describes a single execution of
a search algorithm. Genotypic individuals are grouped into populations. The
genotype of candidate solutions is a structured sequence of integers: individuals
are composed of segments, which are composed of feature pairs. Each segment
represents a single object in the model being encoded. Feature pairs are used
to assign values to the different features (attributes, references) of that object.
Generic model transformations translate individuals into models that conform
to a user-provided meta-model (and vice versa).

To make these transformations possible, the user needs to define a finitisation
model – a model containing information that constrains the model space. For
instance, when generating model objects that have string-valued attributes, the
finitisation model can be used to restrict the set of strings that can be assigned
to objects with that attribute. Finitisation models can also restrict structures as
well as data; for instance, enforcing an upper bound on a reference, or stating
that certain meta-classes should not be instantiated.

Each transformed individual is passed to a user-defined fitness function for
evaluation. This function returns a double which Crepe assigns to the individual’s
fitness attribute, for search algorithms to consume.

4.2 Limitations: Single Objective Only and Meta-Model Constraints

To date, Crepe has only supported problems that have a single fitness value.
Many real-world problems, however, are multi-objective and currently these dif-
ferent objectives would need to be aggregated to be used in Crepe. Moreover,
meta-models are only able to define certain structural characteristics of conform-
ing models; in order to define more complex constraints, such as class invariants
or relationships between features, languages such as the Object Constraint Lan-
guage [15] are used. Crepe does not support these extra constraints, meaning
that the model space encoded can contain models that are structurally correct,
but semantically invalid, thereby requiring an additional filtering step.

4.3 Extending Crepe

We have extended Crepe to address these limitations:
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Support for Multi-Objective Optimisation In order to support multi-
objective optimisation algorithms in Crepe, we have specialised the search meta-
model. As shown in Fig. 3, individuals only have a single fitness attribute. We
therefore specialise the Individual class to enable individuals to have multiple
fitness values, as shown in Fig. 4. Objectives are represented by their own meta-
class and have both a fitness score and a flag that specifies whether the objective
should be minimised or maximised.

Whereas in the single objective version of Crepe, the user-defined fitness
function returns a double representing the fitness, for multi-objective problems
it needs to return a sequence of Objective objects—one for each of the problem’s
objectives. Crepe assigns the collection to the individual’s objectives reference
(Fig. 4), and multi-objective optimisation algorithms can use these, and Crepe’s
existing genetic operators [4], to guide the search.

Support for Model Constraints To support constraints, and therefore ensure
Crepe produces semantically valid models, we provide a means for the user to
programmatically define finitisations for specific features. Whilst transforming a
segment into a model object, Crepe now delegates the job of selecting appropriate
values for that object’s features to a user-defined function. This means that the
user can select the appropriate finitisation values based on the current state of
the object. If the user-defined function returns a null value for that feature,
Crepe will compute the feature’s standard set of finitisations. Otherwise, the
values returned by the user-defined function are used.

For example, a constraint in the fire-fighting case study is that orchestrators
must be deployed on separate nodes (the deployedOn reference). By default,
Crepe will indiscriminately select nodes to be assigned to that reference. Using
the new finitisation-constraint method, the user can specify to only select nodes
that haven’t previously been assigned to an orchestrator.

5 Experimental Evaluation

To evaluate how Crepe compares to a problem-specific optimisation tool, we
apply it to the fire-fighting scenario. Both Crepe and the bespoke technique
presented in [12] use the NSGA-II [16] optimisation algorithm, but differ in
their implementation: Crepe uses the generic methods presented in the preceding
sections, while [12] uses a bespoke implementation and encoding.

In this section, we first briefly discuss the Crepe implementation of the fire-
fighting scenario, before giving some more details on our experimental setup and
reporting the results of our experiment.
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5.1 Implementing the Firefighter Scenario in Crepe

The solution to the scenario is a model that conforms to the meta-model in
Fig. 2. Crepe does not need to find the entire model, however, as the set of ab-
stract and concrete services is predetermined. The goal is to discover the optimal
configuration of nodes that orchestrate appropriate services. An input to Crepe
therefore is an existing service composition model containing the available ser-
vices. For each solution, Crepe creates a copy of this model with the appropriate
orchestrators. In the finitisation model we specify that we don’t want Crepe to
produce abstract or concrete services, only allowing Crepe to create Orchestra-
tor objects. We also use the input model to finitise the solutions’ orchestrators
with the predefined set of abstract and concrete services.

Ensuring the constraints of the service-composition model required the in-
troduction of a new meta-class. In its existing form (Fig. 2), there is no explicit
relation between the abstract and concrete services provided by an Orchestrator
meaning that arbitrary selections of services are structurally valid but seman-
tically incorrect: for each orchestrated abstract service, one of its associated
concrete services must also be orchestrated. To address this, we have introduced
a new meta-class tying together abstract and concrete services, as shown in
Fig. 5. The user-defined finitisation operation (cf. Sect. 4.3) finitises the cService
reference only with valid concrete services with respect to the selected abstract
service. Implementing the context-specific finitisation operation took 38 lines of
EOL and covered constraints for six different meta-model features. The full set
of constraints and code to run the case study is available on-line.3

The bespoke solution [12] uses surrogate functions to approximate fitness
of candidate solutions and make the optimisation feasible. We first collected
a dataset of solutions evaluated on a detailed but computationally expensive
simulation tool. Based on this dataset, we built surrogate functions using the
lightweight multivariate adaptive regression splines technique [17]. The Crepe-
based implementation reuses the developed surrogate functions. Specifically, we
considered response time, energy consumption, and service availability for a
candidate service composition.

3 https://github.com/efstathiou/crepe/tree/dev/crepe.examples/service-
composition-de
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Fig. 6. Hypervolume indicator results (left) and 3D Pareto fronts (rights) achieved by
the two implementations

5.2 Experimental Setup

We created a network of 84 nodes (4 group, 16 engine, and 64 team members
and leaders) which offer the software services mentioned in Sect. 3 and cooper-
atively form an infrastructure-less mobile ad hoc network. The initial state of
the network was determined through a simulation run and was then made avail-
able to both implementations. We ran both techniques for 30 generations with a
population size of 96. For statistical significance each run was repeated 30 times
and used the Mann-Whitney test [18]. We used Cohen’s d [18] to estimate the
effect size of the difference between the results achieved.

5.3 Results

We were interested in comparing both the performance and the quality of the
optimisation in both implementations.

First, we compared the execution time of the two implementations. A single
run of the NSGA-II for 30 generations lasts on average ∼ 43 minutes for Crepe
and ∼ 1 minute for the bespoke implementation using a machine with Intel Core
i7 vPro with 12GB DDR3 RAM, running the Linux 3.2.0-40 kernel.

Next, we compared the quality of the results produced after 30 generations.
Figure 6 shows the hypervolume indicator achieved by the NSGA-II algorithm for
both the Crepe and the bespoke Java-based implementation. The Mann-Whitney
test results show that the results achieved by the bespoke implementation were
significantly better (p− value = 2.4876 · 10−11) than those of Crepe with a large
Cohen effect size.

6 Discussion

Our experiment shows that, while Crepe produces solutions of acceptable quality,
they are less good than the solutions produced by a bespoke implementation
and it takes substantially longer for Crepe to compute them. In this section, we
discuss these results in some more detail.

We expected Crepe to be somewhat slower than the bespoke implementation
because of a) its generic nature and b) its use of models (i.e., explicit object struc-
tures) rather than vectors to represent the genotype of candidate solutions. We



have been somewhat surprised by the substantial performance hit incurred and
are currently investigating the reasons in detail. However, two things should be
kept in mind when looking at Crepe’s performance: 1) the time taken would still
be acceptable in the context of a wider software-development activity (though
not for on-line use) and 2) the optimisation performance should be weighed
against the time saved in building the optimisation algorithm. One potential
solution to the performance problem is to replace the slowest parts of Crepe
with highly optimised Java-based implementations which can be invoked from
the interpreted EOL.

Even after tuning its parameters, Crepe favoured solutions with fewer or-
chestrators and therefore the discovered Pareto front was on average less opti-
mal than the bespoke implementation’s front (Fig. 6). In our initial experiments,
we found that Crepe was biased towards solutions with between one and three
orchestrators, essentially optimising more centralised solutions and producing
Pareto fronts with a low hypervolume. We have previously shown [12] that cen-
tralised orchestrations are not optimal for distributed networks. To address this,
we tuned the parameters that determine the sizes of individuals produced by
Crepe to optimise for a size that produces solutions without such a strong bias.
Crepe does not guarantee that all features are assigned values. For instance, if
there are fewer feature pairs in a segment than features in the encoded model
object, some features will be left empty. We configured the number of segments
and features to allow space for all data required. Even so, we found that there
were occasional solutions (< 5%) with missing features that made them invalid.
This could be down to the custom finitisations forcing the search algorithm to be
too restrictive. To address this, the fitness function deterministically selects ap-
propriate values for any missing features. However, this may introduce bias as it
essentially ignores the heuristics and fitness evaluations for these features. Note,
however, that the results indicate (Fig. 6) that, in some iterations, Crepe does
explore near-optimal solutions with various orchestrations and achieves results
similar to the bespoke approach.

7 Conclusions and Outlook

This paper has explored the challenge of general-purpose model-based optimisa-
tion frameworks, and presented Crepe’s first foray into the multi-objective opti-
misation domain. We have described the required extensions to Crepe: support
for multiple objectives, and a new approach to finitisation which allows users
to have more control over the encoded models. By comparing Crepe against a
highly optimised problem-specific representation, we found that Crepe was able
to discover equally optimal solutions, but on average performed worse on this
specific problem. As expected, the execution time of Crepe was much longer,
however still within a range that would be acceptable during development. We
believe that a generic model-based framework like Crepe can be a good starting
point for combining MDE and SBSE. However, research is still needed to im-
prove the quality of the solutions as well as the performance of the optimisation.



In particular, we plan to extend the scalability analysis of Crepe performed in [4]
by applying it to real-world problems defined using different size metamodels.
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