
Design-Space Exploration
in Model Driven Engineering

–An Initial Pattern Catalogue–

Ken Vanherpen1, Joachim Denil1,2,
Paul De Meulenaere1, and Hans Vangheluwe2,3

1 CoSys-Lab, FTI, University of Antwerp, Belgium
2 AnSyMo, FWET, University of Antwerp, Belgium

3 MSDL, McGill University, Canada
{ken.vanherpen, joachim.denil, paul.demeulenaere}@uantwerpen.be

hv@cs.mcgill.ca

Keywords: Constraint/Rule-Based, Evolutionary Algorithm, DSE, MDE, MILP

Abstract. A designer often has to evaluate alternative designs during
the development of a system. A multitude of Design-Space Exploration
(DSE) techniques exist in the literature. Integration of these techniques
into the modelling paradigm is needed when a model-driven engineering
approach is used for designing systems. To a greater or lesser extent,
the integration of those different DSE techniques share characteristics
with each other. Inspired by software design patterns, we introduce an
initial pattern catalogue to categorise the embedding of different DSE
techniques in an MDE context. We demonstrate their use by a literature
survey and discuss the consequences of each pattern.

1 Introduction

Model-Driven Engineering (MDE) uses abstraction to bridge the cognitive gap
between the problem space and the solution space in complex software system
problems. To bridge this gap, MDE uses models to describe complex systems
at multiple levels of abstraction, using appropriate modelling formalisms. Model
transformations play a key role in MDE to manipulate models. Transformations
are used for code synthesis, mapping between models at the same or multiple
levels of abstraction, etc. Model transformation is even regarded as the “heart
and soul of model-driven software and system development” [1].

While designing a system, the need often arises to explore different design
alternatives for a specific problem. Design Space Exploration (DSE) is an au-
tomatic process where possible alternatives of a particular design problem are
explored. The exploration is guided with imposed constraints and optimality
criteria on the different candidate solutions. In the literature a multitude of
design-space exploration techniques are available, for example (Mixed Integer)
Linear Programming, evolutionary algorithms and constraint satisfaction.

In our experience with embedding DSE in a model-driven engineering context
and a survey of the literature, we observed the use of different models, expressed
using different formalisms, for both design, exploration and the modelling of
goal functions. Combining the different models, using transformations, with the
multitude of techniques available for searching design-spaces revealed similarities
between the models and transformations of the different exploration techniques.
To consolidate this knowledge, we organise these methods into an initial pattern
catalogue, inspired by software design patterns. The goal of this effort is to create
a more complete pattern catalogue for model-driven engineering approaches for
design-space exploration with the support of the community.

The remainder of this paper is structured as follows. Related work is elab-
orated in Section 2. Section 3 introduces the Initial Pattern Catalogue. In Sec-
tion 4, we discuss other useful techniques for DSE in an MDE context. Finally,
Section 5 concludes our contributions and elaborates on future work. Due to
space limitations, we would like to refer to our technical report [2] where we
elaborate our work in more detail and apply our initial pattern catalogue to
some case studies.

2 Related Work

The concept of patterns is widely used in Software Engineering. They provide
generalized solutions to common software problems in the form of templates.
The templates can be used by software developers to tackle the complexity in a
larger software problem. One of the most highly cited contributions to pattern
catalogues in the field of software is the work of the “Gang of Four” [3], which
presents various design patterns with respect to object-oriented programming.
Inspired by the Gang of Four, Amrani et al. [4] presents a model transformation
intent catalogue which identifies and describes the intents and properties that
they may or must possess. Their catalogue can be used for several purposes such
as requirements analysis for transformations, identification of transformation
properties and model transformation language design. Their presented catalogue
is a first attempt to introduce the concept of patterns in MDE.

A more in-depth literature study is integrated in Section 3 such that each
pattern is illustrated by known uses. This motivates one to the application of
the introduced patterns.

3 Initial Pattern Catalogue for DSE

In this section we first discuss the need for a pattern catalogue specific to the
Design Space Exploration domain. Next, our proposed pattern structure is de-
scribed by analogy with the seminal work of the “Gang of Four” [3]. Finally,
Subsections 3.2 and 3.3 will elaborate our initial pattern catalogue.

3.1 The need for patterns

By definition design patterns are used to formalise a problem which recur repeat-
edly. They help a designer to evaluate alternatives for a given design problem
in order to choose the most appropriate design. The usefulness of such patterns
has already been proven in the Software Engineering domain where the “Gang
of Four” [3] gave impetus to the creation of a widely accepted software design
patterns catalogue. The successful impact of its widespread use is undoubtedly
the well defined structure of each pattern. More specifically, each pattern is
typed by: (1) Pattern Name and Classification, (2) Intent, (3) Also Known as,
(4) Motivation, (5) Applicability, (6) Structure, (7) Participants, (8) Collabora-
tions, (9) Consequences, (10) Implementation, (11) Sample Code, (12) Known
Uses and (13) Related Patterns. Each of these sections is textually described and
where necessary graphically supported using Class Diagrams, describing struc-
ture, and/or Activity Diagrams, describing the workflow of the pattern. At least
one case study demonstrates how the patterns can be applied in practice.

In accordance to software design patterns, we define the format of each pro-
posed pattern as follows. Intent: Gives a short explanation of the intention of
the pattern. Structure: Describes the general structure of the pattern. Con-
sequences: Describes the trade-offs in using the pattern. Known Uses: Lists
the applications of the pattern in the literature. While this is not meant to be an
exhaustive literature review of all the applications of the pattern, one can draw
inspiration from these examples to apply the pattern. Application: Gives a
short description in which cases this pattern can be useful and how it can be
implemented.

The Structure is graphically supported by the Formalism Transformation
Graph and Process Model (FTG+PM). The left side of the FTG+PM clearly
shows all involved formalisms (boxes) and their relations using model transfor-
mations (circles). The right side shows the process with the involved models
(boxes), transformed by a model transformation (roundtangle). Complex data-
flow (dashed line) and control-flow (full line) relations can exist in the process
part of the FTG+PM. This can be summarized as a legend, which is shown
in Figure 1. The reason behind this latter supported formalism is threefold:
(1) It clearly represents the structure of the approach by connecting the dif-
ferent formalisms with transformations on the left side of the FTG+PM. The
FTG+PM also shows the workflow of combining the different models and trans-
formations in a process on the right side. (2) The FTG+PM can be used to (semi-
)automatically execute the defined transformation chains (yellow coloured). Man-
ual operations are also possible that allow for experience based optimisation and
design (grey coloured). (3) Different patterns described in this formalisms are
easily connected to each other. This enables the embedding of DSE within the
MDE design of systems.

As mentioned in section 1, we would like to refer to our technical report [2]
where we apply our initial pattern catalogue to some case studies.

FTG

Consume / Produce formalism

Formalism Manual
Transformation

(Semi-)automatic
Transformation

PM

Data flow Control flow

Model
Artifact

Manual
Activity

Automatic
Activity

Fig. 1: FTG+PM Legend

3.2 Exploring Design Spaces

Performing design-space exploration in a model-driven engineering context can
be abstracted in some steps: (1) A meta-model defines the structural constraints
of a valid solution. (2) A DSE-tool generates valid candidate solutions conforming
to the meta-model. An initial model adds other structural constraints to the set
of candidate solutions. (3) A transformation transforms the set of candidate
solutions to an analysis formalism to check the feasibility of the solution with
respect to a set of constraints. (4) If necessary, a second transformation generates
a model in a performance formalism to check the optimality of the solution
with respect to certain optimisation goals. (5) Depending on the optimisation
technique, the process is iterated multiple times. Information from feasibility
and performance models is used to guide the exploration.

Depending on the exploration technique, we classify different model-driven
engineering approaches to solve this generic design-space exploration strategy.

Model Generation Pattern

Constraint Formalism

Exploration Formalism

Analysis Formalism

Trace Formalism

To Exploration Representation

To Analysis

Execute Analysis

From Trace Representation

:Model Formalism

:Exploration Formalism

:Analysis Formalism

:Trace Formalism

:Solution Formalism

:To Exploration Representation

:To Analysis

:Execute Analysis

:From Trace Representation

Create Candidate Solution(s) :Create Candidate Solution(s)

:Exploration Formalism

Solution Formalism

Model Formalism :Constraint Formalism

Goal Function

Fig. 2: Model Generation Pattern

Intent: This pattern transforms the meta-model of a problem space together
with constraints to a constraint-satisfaction problem. The exploration of the
design consists of the generation of a set of models that satisfy the structural
constraints imposed by the meta-model and the other constraints provided using
a constraint formalism.
Structure: The pattern, shown in Figure 2, starts with a meta-model and
some constraints. A transformation transforms these models into a constraint
satisfaction problem. By invoking a solver, an exploration of the design space
generates candidate solutions. Each candidate solution is transformed into an
analysis representation. The analysis produces traces of each candidate solution.
Based on the goal function model, the optimal trace is transformed to a solution
model. This solution model can either be expressed in the exploration formalism,
the original model formalism or a specific solution formalism.
Consequences: Depending on the used solver, this method might be com-
putationally and memory intensive because an exhaustive search of the design
space is executed. A transformation is needed to translate the meta-model with
constraints to a model that is usable by the DSE-tool. Domain knowledge can
be introduced by adding constraints to the meta-model. Note that adding extra
constraints helps the search for a solution. An initial model, where some choices
are predetermined, adds extra constraints. A less generic alternative is to add
the initial model when evaluating candidate solutions.
Known Uses: Neema et al. [5] present the DESERT framework used for Model-
Driven constraint-based DSE. It implements an automated tool which abstracts
the Simulink design space to generate candidate solutions. In [6] the FORMULA
tool is presented, where candidate solutions are generated from a meta-model.
A similar tool called Alloy is used by Sen et al. [7] to automatically generate
test models. Saxena and Karsai [8] present an MDE framework for generalized
design-space exploration. A DSE problem is constructed out of a generalized
constraint meta-model combined with a domain specific meta-model.
Application: The pattern is not recommended when one searches for an opti-
mal solution out of a large search space without a lot of constraints. On the other
hand, this pattern is very useful to rapidly obtain candidate solutions conforming
to the meta-model.

Model Adaptation Pattern

Intent: This pattern transforms the model or a population of models to a
generic search model used in (meta-) heuristic searches. Depending on the prob-
lem and search algorithm, different search representations can be used.
Structure: A model or population of models expressed in a certain formalism is
transformed to a specific exploration formalism. Based on the guidance of a goal
function, an algorithm creates new candidate solutions. A (set of) candidate
solutions are transformed to an analysis model in order to evaluate. Finally,
the result is transformed to a solution model. This solution model can either
be expressed in the exploration formalism, the original model formalism or a
specific solution formalism.

Model Formalism

Exploration Formalism

Analysis Formalism

Trace Formalism

To Exploration Representation

To Analysis

Execute Analysis

From Trace Representation

:Model Formalism

:Exploration Formalism

:Analysis Formalism

:Trace Formalism

:Solution Formalism

:To Exploration Representation

:To Analysis

:Execute Analysis

:From Trace Representation

Create Candidate Solution(s) :Create Candidate Solution(s)

:Exploration Formalism

Solution Formalism

Goal Formalism
:Goal Formalism

Fig. 3: Model Adaptation Pattern

Consequences: A dedicated search representation has to be created as well as
manipulation functions to create alternative designs. This requires an adequate
understanding of the problem and domain knowledge. A translation from the
problem domain to the search representation and vice-versa is required. An initial
model, as a constraint, can be added by fixing the generated solution or by
rewriting the functions to create new solutions (cross-over, mutation, etc.).
Known Uses: Williams et al. searched for game character behaviour using a
mapping to a genetic algorithm [9]. Burton et al. solve acquisition problems using
MDE [10]. Genetic algorithms are used to create a Pareto front of solutions. A
stochastic model transformation creates an initial population. Finally, Kessentini
and Wimmer propose a generic approach to searching models using Genetic
Algorithms [11]. The proposed method is very similar to the described pattern.
Application: This pattern is recommended when a design problem can easily
be transformed to an optimal search representation, e.g. a list or tree repre-
sentation. Different operations on this new representation are implemented in
the solution space (usually a generic programming language). Well-known algo-
rithms, like genetic algorithms and hill-climbing, implement the search.

Model Transformation Pattern

Intent: This pattern uses the original model to explore a design-space. Model
transformations encode the knowledge to create alternative models. Guidance to
the search can be given by selecting the most appropriate next transformation
or by adding meta-heuristics to the model transformation scheduling language.
Structure: A model combined with a goal function is used to create a set of
candidate solutions that are expressed in the original model formalism. These

Model Formalism

Analysis Formalism

Trace Formalism

Create Candidate Solutions

To Analysis

Execute Analysis

From Trace Representation

:Model Formalism

:Model Formalism

:Analysis Formalism

:Trace Formalism

:Solution Formalism

Create Candidate Solutions

To Analysis

Execute Analysis

From Trace Representation

Goal Formalism

Solution Formalism

:Goal Formalism

Fig. 4: Model Transformation Pattern

are transformed to an analysis representation to gather some metrics that are
expressed by a trace. Using (meta-)heuristics, a new set of candidate solutions
can be generated according to a goal function. Finally, if required, the most
optimal solution or set of solutions can be transformed into a solution model.

Consequences: A high degree of domain knowledge about the problem is re-
quired to design the transformation rules. On the other hand, the rules encode
domain knowledge to guide the exploration. Model-to-model or model-to-text
transformations are required to evaluate a candidate solution. An initial model
as a constraint can be added by adjusting the meta-model with variation tags.
Similarly to the Model Adaptation Pattern, the initial conditions can also be
implemented as fix operations using model transformations. Model transforma-
tions to create new candidate solutions are computationally expensive because
of the subgraph isomorphism problem.

Known Uses: In [12] a model-driven framework is presented for guided design
space exploration using graph transformations. The exploration is characterised
by a so called exploration strategy which uses hints to identify dead-end states
and to order exploration rules. This way the number of invalid alternatives is
reduced. Denil et al. [13] demonstrates how search-based optimization (SBO)
techniques can be included in rule-based model transformations.

Application: The pattern is used when it is hard to obtain a generic search
representation. Model transformation rules, expressed in the natural language of
the engineer, are implemented using current model transformation tools. Guid-
ance is implemented through the scheduling of the model transformation rules.

3.3 Exploration Chaining Pattern

In order to prune the design space more efficiently, multiple of the proposed pat-
terns can be chained. This technique is called “Divide and Conquer” and may as
well be described by a pattern. To represent the chaining of multiple FTG+PMs,
this pattern is graphically supported by means of a principle representation.

Pruned

Refinem
ent

 m
ore intensive evaluation

ok

Full Solution Space

Fig. 5: Exploration Chaining
Pattern

Intent: This pattern adds multiple abstrac-
tion layers in the exploration problem where
candidate solutions can be pruned. High-level
estimators are used to evaluate the candidate
solutions and prune out non-feasible solutions
and solutions that can never become optimal
with respect to the evaluated properties. Fig-
ure 5 shows the overall approach of this pat-
tern.
Structure: At each of the abstraction layers
an exploration pattern is used to create and evaluate candidate solutions. Non-
pruned solutions are explored further in the next exploration step.
Consequences: Domain knowledge about the problem is required to add levels
of abstraction. High-level estimators are needed at each of the abstraction layers
to evaluate a candidate solution. Because more information is introduced at each
of the abstraction layers, the evaluation of a single candidate solution becomes
more complex and usually more computationally intensive. Finally, a pruning
strategy is required to decide what solutions have to be pruned at each of the
abstraction layers.
Known Uses: Sen and Vangheluwe add different levels of abstraction in the
design of a multi-domain physical model [14]. This numerically constraints the
modeller to create only valid models. Kerzhener and Paredis introduce multiple
levels of fidelity in [15]. Finally, multiple levels of abstractions for an automotive
allocation and scheduling problem are introduced in [16].
Application: This pattern provides a solution when memory and time com-
plexity are an issue during the exploration of the design space. It tackles the
complexity by its layered pruning approach. Therefore, this pattern is preferred
when searching for (an) optimal solution(s) in a large search space. Different
exploration patterns are chained to create solutions.

4 Discussion

In this section we describe some other techniques that are useful for design-
space exploration in a model-driven engineering context. Some techniques could
potentially become a pattern in a new version of the catalogue.

Dealing with Multiple Objectives : Multi-objective optimisation deals with the
decision making process in the presence of trade-offs between multiple goal func-
tions. Certain DSE and search algorithms can deal with multi-objective functions

by construction. However, some techniques do not have this features. Here we
give two ways of dealing with the problem.

Scalarize the Objective-Function: When scalarizing a multi-objective
optimisation problem, the problem is reformulated as a single-objective func-
tion. The goal function model becomes a combination of individual objective
functions. A model defines how the combination of the different individual goal
function models is done, for example in a linear fashion, or other more complex
functions.

Create Variants: In certain cases the designer would like to compare
the different trade-offs using a Pareto curve. We use the scalarizing pattern to
create multiple variants of the combined objective function. Intermediate results
of the exploration are used to select an appropriate recombination that could
potentially add a new Pareto solution.

Meta-model reduction: By using sensitivity analysis of the involved modelling
elements and parameters, the meta-model can be reduced with the elements and
parameters that have a small influence on the result of the goal function. An
example of this technique can be found in [17].

5 Conclusions and Future Work

Resulting from our own experiences with DSE and a literature survey, we pre-
sented an initial pattern catalogue which categorizes different approaches of
Model-Driven Design Space Exploration. We described the patterns by the use
of the FTG+PM to visualise the involved formalisms and their relations using
model transformations.

With the support of the community, it is our ambition to extend this towards
a more complete this initial pattern catalogue, similar to the widely available
software design patterns used in software engineering. Finally, we would like to
investigate the parts of patterns that can be fully or partially automated.

Acknowledgements

This work has been carried out within the framework of the MBSE4Mechatronics
project (grant nr. 130013) of the agency for Innovation by Science and Technol-
ogy in Flanders (IWT-Vlaanderen).

References

1. S. Sendall and W. Kozaczynski, “Model transformation: the heart and soul of
model-driven software development,” IEEE Software, vol. 20, pp. 42–45, Sept. 2003.

2. K. Vanherpen, J. Denil, P. De Meulenaere, and H. Vangheluwe, “Design-Space
Exploration in Model Driven Engineering,” SOCS-TR-2014.4, McGill University,
2014.

3. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995.

4. M. Amrani, J. Dingel, L. Lambers, L. Lúcio, R. Salay, G. Selim, E. Syriani, and
M. Wimmer, “Towards a Model Transformation Intent Catalog,” in Proceedings
of the First Workshop on the Analysis of Model Transformations, AMT ’12, (New
York, NY, USA), pp. 3–8, ACM, 2012.

5. S. Neema, J. Sztipanovits, and G. Karsai, “Constraint-Based Design-Space Explo-
ration and Model Synthesis,” pp. 290–305, 2003.

6. E. K. Jackson, M. Dahlweid, D. Seifert, and E. Kang, “Components, Platforms
and Possibilities : Towards Generic Automation for MDA,” 2010.

7. S. Sen, B. Baudry, and J.-m. Mottu, “On Combining Multi-formalism Knowledge
to Select Models for Model Transformation Testing,” in 2008 International Con-
ference on Software Testing, Verification, and Validation, pp. 328–337, IEEE, Apr.
2008.

8. T. Saxena and G. Karsai, “MDE-Based Approach for Generalizing Design,” in
Model Driven Engineering Languages and Systems, pp. 46–60, Springer, Sax-
ena2010.

9. J. R. Williams, S. Poulding, L. M. Rose, R. F. Paige, and F. A. C. Polack, “Identi-
fying Desirable Game Character Behaviours through the Application of Evolution-
ary Algorithms to Model-Driven Engineering Metamodels,” in Proceedings of the
Third International Symposium on Search Based Software Engineering, pp. 112–
126, 2011.

10. F. R. Burton and S. Poulding, “Complementing Metaheuristic Search with Higher
Abstraction Techniques,” 2013 1st International Workshop on Combining Mod-
elling and Search-Based Software Engineering (CMSBSE), pp. 45–48, May 2013.

11. M. Kessentini, P. Langer, and M. Wimmer, “Searching Models, Modeling Search,”
in Proceedings of the 1st Workshop on Combining Modelling with Search-Based
Software Engineering, pp. 51–54, 2013.

12. A. Hegedûs, A. Horvath, I. Rath, and D. Varro, “A Model-driven Framework for
Guided Design Space Exploration,” in Automated Software Engineering (ASE),
2011, no. ii, pp. 173–182, 2011.

13. J. Denil, M. Jukss, C. Verbrugge, and H. Vangheluwe, “Search-Based Model Op-
timization using Model Transformations,” SOCS-TR-2014.2, School of Computer
Science, McGill University, 2014.

14. S. Sen and H. Vangheluwe, “Multi-Domain Physical System Modeling and Con-
trol Based on Meta-Modeling and Graph Rewriting,” in IEEE Conference on
Computer-Aided Control Systems Design, pp. 69–75, Ieee, Oct. 2006.

15. A. A. Kerzhener and C. J. Paredis, “Combining SysML and Model Transforma-
tions to Support Systems Engineering Analysis,” Electronic Communications of the
EASST 4th International Workshop on Multi-Paradigm Modeling (MPM 2010),
vol. 42, 2011.

16. J. Denil, A. Cicchetti, M. Biehl, P. D. Meulenaere, R. Eramo, S. Demeyer, and
H. Vangheluwe, “Automatic Deployment Space Exploration Using Refinement
Transformations,” Electronic Communications of the EASST Recent Advances in
Multi-paradigm Modeling, vol. 50, 2011.

17. B. Eisenhower, Z. O’Neill, S. Narayanan, V. a. Fonoberov, and I. Mezić, “A
methodology for meta-model based optimization in building energy models,” En-
ergy and Buildings, vol. 47, pp. 292–301, Apr. 2012.

