
Reflections on Courses for
Software Language Engineering

Anya Helene Bagge1, Ralf Lämmel2, and Vadim Zaytsev3

1 Bergen Language Design Laboratory, University of Bergen, Norway
2 Software Languages Team, University of Koblenz-Landau, Germany

3 Institute of Informatics, Universiteit van Amsterdam, The Netherlands

Abstract. Software Language Engineering (SLE) has emerged as a field
in computer science research and software engineering, but it has yet to
become entrenched as part of the standard curriculum at universities.
Many places have a compiler construction (CC) course and a program-
ming languages (PL) course, but these are not aimed at training students
in typical SLE matters such as DSL design and implementation, language
workbenches, generalized parsers, and meta-tools.

We describe our experiences with developing and teaching software
language engineering courses at the Universities of Bergen and Koblenz-
Landau. We reflect on lecture topics, assignments, development of course
material, and other aspects and variation points in course design.

1 Introduction

Software Language Engineering (SLE) is concerned with design, implementation,
composition, evolution, and other aspects of software languages and language-
aware software components. SLE uses language models which break down into
definitions of syntax, well-formedness, semantics, etc. Language implementation
is concerned with parsing, semantic analysis, translation, IDE support, etc.

SLE is yet to become entrenched as part of the standard curriculum at univer-
sities. Many places have a compiler construction (CC) course and a programming
languages theory (PLT) course, but these are not aimed at training students in
typical SLE matters such as DSL design and implementation, language work-
benches, generalized parsers, and meta-tools. In this paper, we describe our
experiences with developing and teaching software language engineering courses
at our universities, reflect on course material, and discuss variations on course
design.

Here is a summary of lessons learned:
• SLE scenarios involve various artifacts (grammars, programs, rewrite systems) and

data flows (parser generation, parser compilation, parser application), which needs
comprehension support. We found megamodeling to be effective in this context.

• SLE shares much of its foundations with model-driven engineering (MDE) and
CC. Further, SLE depends on foundations from PLT. Of course, SLE also assumes
foundations from general software engineering (SE). Managing these dependencies
in actual course designs may require substantial efforts.



2 Anya Helene Bagge, Ralf Lämmel, Vadim Zaytsev

Topic Learning objective [2]
Introduction List principles of SLE; summarize features of a language
Syntax, grammars, parsing Understand syntax; engineer grammars; (re)use parsers
Domain-specific languages Recognize a DSL in a realistic setting; recognize its domain
Scannerless parsing, layout Understand tradeoffs between different technologies
Evaluator-based semantics Apply language engineering; recognize language semantics
Scoping and environments Understand scoping; implement it
Type checking Understand and implement semantic analysis
Tree traversal and rewriting List different approaches to language processing
Term project introduction Design and plan an SLE experiment
Formal semantics Recall basics of formal semantics
Term project presentations Present, discuss and analyse projects

Table 1. Condensed lecture plan for the Bergen course (Autumn semester 2013). Some
of the topics ran over multiple lectures.

• SLE, as a teaching area, is more obviously addressed by ‘presence courses’; it is less
obvious how to apply eLearning or MOOC in this context because the engineering
aspect of SLE and richness of related technologies and methods calls for project
work including student presentations and discussion.

Roadmap. The rest of the paper provides details on our SLE course experiences.
§2 contains facts about two SLE courses in which the authors were involved as
teachers. §3 discusses the use of megamodels in SLE courses. §4 makes explicit
a number of variation points for SLE course designs. §5 synthesizes guidelines
from our experiences. §6 discusses related work in the context of CS education.

2 Data points on SLE courses

2.1 SLE in Bergen

Position in curriculum. The course fills the slot of the old traditionalistic CC
course in Bergen, keeping the same title (Introduction to Program Translation),
but being more of an introduction to software languages and software language
engineering. The course is 10 ECTS credits, being optional but available to stu-
dents at all levels. In terms of dependencies, we recommend that the students
have a basic computer science background, including a course on programming
paradigms. Unfortunately, there is currently no course offered on PLT or seman-
tics, which could given the students useful background for the SLE course. The
course runs every second year (two actual runs so far: 2011 and 2013).

Overall format. The course is centered around lectures and lab exercises,
per week we have two 90 minute lectures and one 90 minute lab; the rest is self-
study. Rascal [11] is used as the main programming language throughout, apart
from the term project where students are free to pick their own technologies.

The course plan is loosely structured, and is adapted to the needs and in-
terests of the students. Given the students’ weak background in programming
languages, we usually spend a fair amount of time filling this gap.



Reflections on Courses for Software Language Engineering 3

Topic Technologies
Small imperative/OO language with interpreter Handwritten Visual C++
C−− with ARM backend Handwritten C
Language operational semantics and prototyping Prolog
Language implementation for LLVM OCaml
Forth-like language Haskell
Code formatting Java and PGF [3]
Code formatting C
Code arena game Xtext, Java, libGDX
Natural-like language for car navigation F# + homemade parser combinators

Table 2. Some of the students’ self-selected term projects for the Fall 2013 course.

Lectures. The lectures contain a mix of theory and practice, with theory
explained on the blackboard and in discussions, and then illustrated by example
in live coding sessions. The code is then made available to the students, as a
basis for or complement to exercises.

The 2013 lecture plan (sketched in Table 1) includes 22 lectures, of which
six are dedicated to recap and term project presentations and discussions. In
addition to covering fundamental topics, the first few lectures also showcase
language-based modeling and engineering using invited speakers.

The blackboard is used for theory and smaller examples, and for giving big
picture overviews of concepts and relationships (megamodels). Live coding is
semi-interactive, with feedback and suggestions from the students. Seeing a the-
oretic concept immediately implemented in practice seems helpful to students’
understanding — though perhaps an even better approach would be to do this
in a lab setting where the students could experiment on their own rather than
watching the lecturer.

Assignments. Lab work consists of a mix of non-compulsory weekly exer-
cises, designed to help understand and retain the topics discussed in the lectures,
and a compulsory term project towards the end of the semester, where the stu-
dents typically end up with a full small-scale software language implementation.

The weekly exercises include topics such as regular expressions, grammars
and parsing, and language implementation — usually fitting together with what-
ever is covered in the lectures.

The term project is completely open-ended (in the 2013 edition), with a free
choice of topic and technology. Table 2 sketches some of the projects the 2013
students chose. Roughly a third of the course was spent on the project.

Grading. We have a 45–60 minute oral exam, beginning with a presentation
and discussion of the term project, and concluding with theoretical questions.
With the open-ended term project, assessing and comparing the students’ work
proved quite difficult, so rather than grading the end result, we focused more on
the students’ insight into their language engineering efforts and their ability to
reflect on design choices.

Material. For the 2011 edition of the course, we used Scott’s Programming
Language Pragmatics [18] as well as lecture notes. Scott’s book was not a perfect
fit for the course, particularly with regard to technology choices, so the 2013



4 Anya Helene Bagge, Ralf Lämmel, Vadim Zaytsev

Topic Learning objective [2]
Introduction Recognize SLE in the computer science context
An SLE bibliography Summarize landmark SLE literature
A DSL primer Carry out modeling of DSLs
Grammars and parsing Implement parsers / frontends of language processors
Megamodeling Recognize and navigate the linguistic view on technologies
Attribute grammars Implement semantic analysis for languages
Rewriting & strategies Implement software transformations in language processors
Automated refactoring Recall challenges of refactoring across languages
Grammar-based testing Understand grammar-aware testing of language processors
Code generation Summarize an architecture of a compiler backend

Table 3. Lectures of the SLE course in Koblenz (Winter semester 2013/14)

edition was based entirely on the lectures and associated notes. Additionally,
we have developed a glossary of SLE terms, which was also made into flash
cards for exam preparation. All course resources are available online: http:
//bitbucket.org/anyahelene/inf225public/wiki.

2.2 SLE at Koblenz

The course — http://softlang.wikidot.com/course:sle — has been held 4
times by now, but in its current, now stabilized form it has been held only twice.

Position in curriculum. The SLE course is a 6 ECTS optional module for
CS students. In Koblenz, optional modules are open to BSc and MSc students,
but MSc students are better prepared for this course, as they would have com-
pleted a compulsory BSc module on PLT, which is typically taken only towards
the end of the BSc. The SLE course was designed to replace a conservative CC
course. A modern CC course would still be a good complement, but there are
currently no additional resources available for it.

Overall format. The 6 ECTS of the course are evenly distributed over lec-
tures and labs. Thus, there is one lecture and one lab per week over the duration
of a semester with 60–90 minutes for each meeting. There are three to four assign-
ments over the duration of the course; two involve software development, one or
two are reading assignments. The results of all assignments are presented by the
students and discussed in depth at the lab meetings. The development-oriented
assignments use a Scrum-like format (again scheduled for the lab meetings) to
discuss plans, intermediate results, and open issues. There is no exam; instead
the assignment results are used for grading. The interactive format works best
for smaller numbers of students: 10-15. If we were taking more students, the
amount of student presentations would be hard to handle and the necessary
number of variations on a given assignment would be hard to design.

Lectures. In Table 3, the topics of the lectures and a short indication of
the associated learning objectives are shown for the most recent edition of the
course. A few things are worth pointing out. The lecture titled An SLE bibliog-
raphy surveys SLE literature briefly to introduce the students to the SLE area
in a literature-based manner. The lecture is based on annotated SLE bibliogra-

http://bitbucket.org/anyahelene/inf225public/wiki
http://bitbucket.org/anyahelene/inf225public/wiki
http://softlang.wikidot.com/course:sle


Reflections on Courses for Software Language Engineering 5

Classifier Topic Duration
Reading Seminal literature on SLE 2 week
Development DSL implementation 3 weeks
Reading Grammar-based testing 1 week
Development Grammar-based testing 3 weeks

Table 4. Assignments of the SLE course in Koblenz (Winter semester 2013/14)

phy [13]. Students drill into the literature on the grounds of a reading assign-
ment. The lecture titled Megamodeling has a rich function in the SLE course:
i) Megamodels help understanding language definitions and language processors
in terms of constituents, dependencies, data flows, and other relationships. ii)
Megamodeling notation gives rise to an advanced example of a domain-specific
modeling language, which can then also be studied in itself in the course.

Assignments. In Table 4, the assignments are briefly characterized for the
most recent edition of the course. Students work individually or they team up
with one partner. The idea is that the assignments do not just help with technical
skills in SLE, but they also contribute to soft and research skills more generally.
Thus, reading, presentation, and discussion are important elements of the course.
The feedback by the students regarding this format has been consistently posi-
tive. An assignment solution for a test generator of the recent course edition was
eventually refined and could be published at the SLE 2014 conference [10].

Grading. As mentioned before, there is no exam. The assignment results
are used for grading. In our experience, the students highly appreciate this form
of course completion because it motivates them to invest into the assignments
and they do not face another exam at the end of semester. Given the breadth of
topics in the course, a conservative exam would be a design challenge anyhow.

Material. The course does not leverage any specific textbook or small set
thereof. Instead, the course leverages a small annotated bibliography [13], as
mentioned before. The corresponding papers are also available online. Further,
the course leverages course material (mainly slides), as collected from colleagues
who run and ran courses with SLE relevance. These resources have been organized
online so that others can take advantage of them as well at http://slecourse.
github.io/slecourse. Contributions are highly welcome.

3 Megamodels in SLE courses

We have found that the architecture of language processors and the underly-
ing technologies as well as some SLE processes can be described at a high level
of abstraction by means of megamodels [4]. This finding is partially based on
our own investigations into megamodeling [8,20] in the context of SLE and the
broader context of software technologies. Informally, we use megamodels to im-
pose structure on SLE matters in a broad sense in a manner similar to the use
of tombstone diagrams in CC courses.

In Figure 1 and Figure 2, we show two megamodels as they play a role in the
SLE courses. The model at the top appears in the parsing lecture of the Koblenz
course. It is used to explain the basic data flow around parser generation and

http://slecourse.github.io/slecourse
http://slecourse.github.io/slecourse


6 Anya Helene Bagge, Ralf Lämmel, Vadim Zaytsev

aSource Parser
inputOf

implements

G

hasOutput

L(G)
defines

T(G)*
⊇

∈

Type-2

∈

Parse 
forest

Fig. 1. A megamodel used in an SLE course: basic notion of a grammar-derived parser

invocation. It also adds a few conceptual characteristics such as the expectations
that we start from a context-free (type 2) grammar. We also expresss that the
input does at least agree with the terminal set of the grammar. Practically, this
assumption may not hold, but the megamodel provides a good abstraction for
discussing such issues. Likewise, the indication of a parse forest is merely meant
to allow for the discussion of ambigious grammars and the different possible
strategies of parsing technologies.

The megamodel at the bottom provides a highly conceptualized view on pars-
ing, unparsing, and related operations or parts thereof. Various representation
levels (such as strings, tokens, ASTs) and various phases of parsing are called
out. In a given language implementations, several nodes and edges in the model
are irrelevant, but the megamodel allows for a systematic discussion of options
in language implementation and associated properties such as bidirectionality.

4 Variation points for SLE courses

Over the timeline and over the different courses, we experienced some variation
points for SLE courses that we discuss here.

Overlapping with MDE and CC. Conceptually, SLE is close to CC and
MDE. For instance, the concepts of parsing, semantic analysis, intermediate rep-
resentations, and code generation are integral parts of a typical CC course, which
should also play a role in an SLE course. Likewise, the concepts of metamodeling,
model transformation, and traceability are integral parts of the MDE body of
knowledge, which should also be covered in an SLE course.

However, it is practically impossible that an SLE course would cover both CC
and MDE. Historically, CC courses cover grammar classes and associated parsing
algorithms in much detail. They also cover non-trivial foundations of optimiza-
tion (e.g., flow analysis) and code generation (e.g., BURS). In contrast, an SLE
course should favor one or two state-of-the-art practical parsing approaches (such
as LL(*) and generalized LL/LR parsing) without in-depth coverage of the in-
volved algorithms. Likewise, an SLE course should only have cursory coverage,
if any, of compiler optimization and code generation. Also, an SLE course can-



Reflections on Courses for Software Language Engineering 7

Str
(string)

Tok
(tokens)

TTk
(typed tokens)

Lex
(lexical model)

For
(parse forest)

Ptr
(parse tree)

Cst
(concrete syntax tree)

Ast
(abstract syntax tree)

Pic
(rasterised picture)

Dra
(vector drawing)

Gra
(graph model)

Dia
(diagram)

to
ke

n
is
e

co
n
ca

t

st
ri
p

fo
rm

at
parse

unparse

parse

unparse

st
ri
p

fo
rm

at

im
p
lo

d
e

ex
p
lo

d
e

d
is
am

b
ig

u
at

e

re
co

g
n
is
e

re
n
d
er

st
ri
p

fo
rm

at

ex
tr

ac
t

fl
at

te
n

scannerless parse

unparse

visualise

serialise

m
2
m

text editing

structural editing

m
2m

transform
ation

re
fa

ct
or

in
g

co
d
e

tr
an

sf
or

m
at

io
n

fi
lt
er

in
g

d
ra

w
in

g
vi

su
al

ed
it
in

g

R
aw

L
ay

ou
t

L
ay

ou
tl

es
s

A
bs

tr
ac

t

Textual Structured Graphical

Fig. 1. Bidirectional megamodel of parsing. Dotted lines denote mappings that rely on
either lexical or syntactic definitions; solid lines denote universally defined mappings.
The loops are examples of transformations.

4 Artefacts and Mappings

Let us first introduce the kinds of artefacts we will use for the remainder of the
paper:

• Str — a string.
• Tok — a finite sequence of strings (called tokens) which, when concatenated,

yields Str. Includes spaces, line breaks, comments, etc — collectively, layout.
• TTk — a finite sequence of typed tokens, with layout removed, some classified

as numbers of strings, etc.
• Lex — a lexical source model [28,29] that addes grouping to typing; in fact a

possibly incomplete tree connecting most tokens together in one structure.
• For — a forest of parse trees, a parse graph or an ambiguous parse tree

with sharing; a tree-like structure that models Str according to a syntactic
definition.

5

Fig. 2. A megamodel used in an SLE course: parsing, unparsing and friends [20]

not include an introduction to MDE, but MDE technologies could be leveraged
in an SLE course, if students have some prior understanding of metamodeling.
For instance, MDE-based technologies for language implementation, e.g., Xtext,
could be used in addition to technologies from the CC and PLT communities.

Less versus more technologies. The Koblenz course has used multiple
technologies. In particular, for the development assignments, students were given
technology options and they could even suggest alternative routes. The Bergen
course uses now Rascal [11] as the main technology in lectures.

Staying with a single or a small set of technologies has a number of advan-
tages: (1) the technologies are (hopefully) well-known by the teaching staff, who
can then guide the students in their use; (2) the students have a chance to gain
a deep enough understanding to actually use the selected technologies properly;
(3) lab setup and exercise design becomes somewhat easier.

Covering a wider range of technologies also has its appeal. Firstly, students
become aware of the broad offering of SLE tools and technologies. Secondly, if
the students use different tools, they can exchange experiences and insights —
perhaps broadening the horizon of the lecturer as well.

Less versus more theory prerequisites. A typical Koblenz student has
taken a course on PLT and is familiar with functional programming (FP). A
typical Bergen student has taken a programming paradigms course which in-
cludes a brief introduction to functional and logic programming, but there is no
counterpart for syntax, semantics, and type systems of programming languages.

SLE relies on concepts such as context-free grammars, scoping, types, stores,
and interpreters. Thus, if students lack such background, then an SLE course



8 Anya Helene Bagge, Ralf Lämmel, Vadim Zaytsev

must definitely spend some time on these concepts. However, an applied and
selective approach is applicable here. For instance, a pragmatic approach to type
checking and operational semantics-inspired interpretation is possibly sufficient.

Exercises versus projects. By exercises we mean weekly assignments
complementing one another and expanding on the topics covered in the lectures.
By projects we mean substantially bigger assignments that may run over several
weeks and involve extra milestones such as intermediate and final presentation.

Both in Bergen and Koblenz, we mainly use projects. In fact, exercises are
not used at all in Koblenz, but reading assignments provide another category.
The reasoning is here that an SLE course is similar to a practical SE class,
where actual designs and implementations must be developed, the underlying
technologies selected, and students must familiarize themselves with the tech-
nologies. This scope typically implies projects, except for the more basic notions
such as interpretation, which could be covered with the exercise format.

Less versus more constrained assignments. Should assignments spec-
ify a specific SLE problem? An example of a more constrained situation is the
first development-oriented assignment of the Koblenz course (§2.2): students had
to implement a given DSL FSML—a language for finite state machines [12]. A
detailed specification including a well-defined list of language processing compo-
nents was used as a requirement specification. An example of a largely uncon-
strained situation is an open term project that was used in the latest edition
of the Bergen class. Students could suggest an SLE-related project that they
wanted to work on.

According to the evaluation, Bergen students were happy with the freedom
given, and felt that they learned a lot. In particular, several of the students
learned hard lessons about the value of using specialized tools and languages
rather than implementing things by hand. We know that open assignments are
harder to complete and to grade, since they pose greater strain on the evalu-
ative skills [17] and do not always map teacher’s tasks to students’ goals and
tactics [15]. It also seems that open assignments come with a higher probability
of failure — a student may have picked an over-ambitious project or an ill-suited
technology. This aspect can be somewhat addressed through supervision and it
has not been a serious issue in the end for all the course editions we have run.

Less versus more conservative exams. We take a hands-on approach
to SLE in our courses. The lectures do provide conceptual knowledge, but we
consider it most important that students can design and implement language
processors. Thus, a conservative exam which would be focusing on definitions,
syntax, type systems, semantics, programming in the small, and engineering
methods or process would be ill-suited for the hands-on orientation. Thus, project
assignments are to be part of the grading scheme. In Koblenz, the course has
evolved to the point that projects are the sole input for the final grade. To this
end, we place high priority on the presentations per assignment, where students
need to make an effort to connect to general concepts from the lecture and
discuss their approach at a high level of abstraction.



Reflections on Courses for Software Language Engineering 9

5 SLE course design guidelines

• The content of a modern SLE course spans over a range of technologies and
approaches. This places higher demands on both teaching staff and students.
We are beginning to cope with this complexity by leveraging students’ cu-
riosity and letting them choose, prepare, and present study units.

• Special techniques are needed for explaining the state of the art in SLE,
without overwhelming students with the complexity of modern technologies,
languages, and frameworks. We found megamodeling and megamodel renar-
ration to be useful tools for comprehension and comparison.

• SLE is an advanced course, and thus its design should be context-aware. For
example, in a curriculum which covers model-driven or model-based topics, a
modelware-centric instantiation of SLE is appropriate. In another curriculum
which covers compiler construction, a grammarware-centric instantiation is
appropriate.

• As typical for software engineering, certain SLE problems manifest easier
on a large scale and may require significant investments by the students to
master the involved methods and technologies. Hence, an SLE course should
favor bigger and open-ended projects over strict-portioned exercises.

• Grading in an SLE course should not focus on the deliverables developed in
project work, especially when the students may explore different tasks and
technologies, as assessment would be hard and possibly unfair. Instead, the
focus should be on assessing the gained insights and acquired skills.

• An SLE course should not be seen or designed as replacing or subsuming PLT,
CC, and MDE courses. Instead, these different courses may complement each
other, while the SLE course may even function as a meeting point where
those domains can be connected in a broader sense.

• The most basic SLE methods are parsing, analysis, interpretation, transla-
tion, and generation. Curricula are ideally tuned so that some elements of
these methods can be effectively prepared by courses on formal languages
and programming language theory or paradigms, if not introduction to com-
puter science, so that an SLE course can focus on engineering aspects, e.g.,
conflict or ambiguity resolution in parsing.

6 Concluding remarks

Some modern CC courses successfully persist in following the “let’s make a com-
piler” paradigm [1], but most are structured around learning progression [14,16]
(performing the same educational tasks several times on increasingly difficult
languages) or project-based education [7,9] (students participate in a project
spanning over multiple courses providing scopes to complete its components).
In these projects, the notion of a compiler may be generalized: it is used as an
incidental well-studied software system [6]; diverse and broad examples of trans-
lators may be offered [5]; students may also pick a compiler/translator problem
themselves [19].



10 Anya Helene Bagge, Ralf Lämmel, Vadim Zaytsev

There are currently no textbooks that can form a sole basis for an SLE
course. We have made an attempt to systematically explore the methods and
technologies of SLE in order to create a designated SLE course that could replace
or complement courses for CC, PLT, and MDE in a CS/SE curriculum. Course
designs elsewhere show the blurring boundaries between the subjects [14], but
none so far have explicitly converged to SLE as a meeting point for these domains.

References

1. A. V. Aho. Teaching the Compilers Course. SIGCSE Bulletin, 40:6–8, Nov. 2008.
2. L. W. Anderson, D. R. Krathwohl, P. W. Airasian, K. A. Cruikshank, R. E. Mayer,

P. R. Pintrich, J. Raths, and M. C. Wittrock. A Taxonomy for Learning, Teach-
ing, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives.
Longman, 2000.

3. A. H. Bagge and T. Hasu. A Pretty Good Formatting Pipeline. In SLE, volume
8225 of LNCS, pages 177–196. Springer, October 2013.

4. J. Bézivin, F. Jouault, and P. Valduriez. On the Need for Megamodels. In OOP-
SLA/GPCE: Best Practices for MDSD, 2004.

5. R. Bodik. Small Languages in an Undergraduate PL/Compiler Course. SIGPLAN
Notices, 43(11):39–44, Nov. 2008.

6. S. Debray. Making Compiler Design Relevant for Students Who Will (Most Likely)
Never Design a Compiler. SIGCSE Bulletin, 34(1):341–345, Feb. 2002.

7. A. Demaille. Making Compiler Construction Projects Relevant to Core Curricu-
lums. In ITiCSE, pages 266–270. ACM, 2005.

8. J.-M. Favre, R. Lämmel, and A. Varanovich. Modeling the Linguistic Architecture
of Software Products. In MoDELS 2012, pages 151–167. Springer, 2012.

9. W. G. Griswold. Teaching Software Engineering in a Compiler Project Course.
Journal on Educational Resources in Computing, 2, Dec. 2002.

10. J. Härtel, L. Härtel, and R. Lämmel. Test-data Generation for Xtext. In SLE
2014, volume 8706 of LNCS, pages 342–351. Springer, 2014.

11. P. Klint, T. van der Storm, and J. Vinju. EASY Meta-programming with Rascal.
In GTTSE 2009, volume 6491 of LNCS, pages 222–289. Springer, Jan. 2011.

12. R. Lämmel. Another DSL primer. Technical Documentation. Version 0.00003 as
of 25 December 2013. Available online at http://git.io/fsml, 2013.

13. R. Lämmel. Yet another annotated SLEBOK bibliography. Available online https:
//github.com/slebok/yabib, 2013.

14. J. Mead. A Compiler Tutorial Scaled for the Programming Languages Course. In
SIGCSE’06, pages 32–36. ACM, 2006.

15. D. J. Nicol and D. Macfarlane-Dick. Formative Assessment and Self-regulated
Learning: a Model and Seven principles of Good Feedback Practice. Studies in
Higher Education, 31(2):199–218, Apr. 2006.

16. D. Rayside. A Compiler Project with Learning Progressions. In ICSE Companion,
pages 392–399. ACM, 2014.

17. D. R. Sadler. Formative Assessment and the Design of Instructional Systems.
Instructional Science, 18(2):119–144, 1989.

18. M. L. Scott. Programming Language Pragmatics. Morgan Kaufmann, 2009.
19. W. M. Waite, A. Jarrahian, M. H. Jackson, and A. Diwan. Design and Implemen-

tation of a Modern Compiler Course. SIGCSE Bulletin, 38(3):18–22, 2006.
20. V. Zaytsev and A. Bagge. Parsing in a Broad Sense. In MoDELS, 2014.

http://git.io/fsml
https://github.com/slebok/yabib
https://github.com/slebok/yabib

