
Bad Modelling Teaching Practices

Richard F. Paige, Fiona A. C. Polack, Dimitrios S. Kolovos, Louis M. Rose,
Nicholas Matragkas, and James R. Williams

Department of Computer Science, University of York,
Deramore Lane, York, YO10 5GH, UK.

{richard.paige, fiona.polack, dimitris.kolovos, louis.rose,
nicholas.matragkas, james.r.williams}@york.ac.uk

Abstract. There are numerous excellent textbooks that provide guid-
ance on what and how to teach modelling, founded on sound principles
(e.g., mathematics, domain analysis, object-orientation) and engineering
practice. There is less guidance available on what and how not to teach
modelling - i.e., what principles to avoid conveying either directly or in-
directly, and what engineering practices should be ignored (e.g., because
they misrepresent the practices of modelling). We describe a number of
bad modelling teaching practices that we have identified, as a result of
substantial individual and team teaching experience to both industry
and academia.

1 Introduction

Modelling is now taught widely (and in many cases deeply) in both undergradu-
ate and postgraduate curricula around the world. In some cases, it is taught as a
cross-cutting concern – that is, as a topic within a wider subject, such as systems
or software engineering; in other cases it is taught as a subject in its own right,
e.g., as a course in object-oriented design or Model-Driven Engineering (MDE).
As educators who teach modelling, we recognise that we are fortunate, in that
we have a wealth of resources at our disposal:

– Substantial legacy research and teaching material on data flow modelling,
system modelling, architectural modelling, simulation modelling, object-orie-
nted modelling (including patterns) that forms a principled basis for modern
approaches to engineering with models.

– Modern standards for modelling languages (e.g., SysML, UML), constraint
languages (e.g., OCL) and model management (e.g., QVT, MOF Model-to-
Text), some of which are even used in industrial contexts.

– Powerful, robust and reliable toolsets to support modelling and modelling
tasks (e.g., EMF1, MetaEdit+), as well as model management (e.g., Xtext,
AMMA, Epsilon, Acceleo, VIATRA2).

1 http://www.eclipse.org/emf



– Repositories of examples of models, modelling languages, and operations
thereupon (e.g,. the Atlantic Zoo2, REMODD3, Eclipse).

– Teaching resources, such as Open Model Courseware4, as well as excellent
textbooks (such as [1] and [2]).

– Best practice guides, which exist for particular domains (e.g., automotive
systems, financial systems) and for particular organisations, and which in-
form rigorous engineering use.

There is substantial information and recommendations on the principles, prac-
tices, tools and processes that can be used to successfully teach modelling. Ar-
guably, we have so much positive advice and guidance that it is difficult to know
where to start, and how. The modelling educators’ community would benefit
from negative advice and guidance – on practices and principles that have been
unsuccessful in teaching and educating modellers.

We have substantial negative experience in teaching modelling at all educa-
tional levels: from introductory undergraduate through to experienced profes-
sional postgraduate. This paper attempts to distill some of the negative experi-
ence into a set of teaching anti-patterns or anti-practices – things not to do! –
along with an explanation of why the experience was negative.

2 Bad Teaching Practices

Our teaching anti-practices range from the highly technical, e.g., how tools
should not be used, to the pedagogic. We present them in a fairly arbitrary
order, and then synthesise some lessons learned at the end.

2.1 Teach to the specification

A particularly demotivating way to teach modelling is to teach to the language
specification. A typical instance of this is a course or set of lectures that works
its way through the UML specification (e.g., starting with structural diagrams,
then behavioural diagrams, then deployment). In essence, the lectures and the
exercises that the students may be asked to carry out focus on the language
specification (or metamodel), not how the language is to be used to help solve
problems. This applies to more than just visual modelling languages – the same
issues arise in teaching the use of constraint languages (such as OCL), model
management languages (such as QVT), or metamodelling languages (such as
MOF or Ecore).

There is a subtle difference between how modelling is often taught and how
programming is often taught: the latter very often emphasises use of integrated
development environments, debuggers, and compilers – programming is learned
by programming, using the real tools that professionals apply. Modelling is very

2 http://www.emn.fr/z-info/atlanmod/index.php/Zoos
3 http://www.cs.colostate.edu/remodd/v1/
4 http://www.eclipse.org/gmt/omcw/resources/



often taught by doing modelling, but with reference to a language specification
and with use of paper and pencil, rather than by using the real tools that profes-
sional modellers apply. Possible explanations for this are that many tools reveal
the innate complexity of modelling languages (i.e., the tools expose metamodel
details), and the relative immaturity of modelling tools, at least when compared
with programming tools.

Rather than teach to the language specification (and teach the boring and
exhaustive details of UML, SysML, etc), we should teach to the problem: what
are we trying to solve by modelling, and what support do we need – from our
languages, tools, processes and practices – to make that happen? We can then
more judiciously choose the modelling language features (or, indeed, the entire
modelling language that we require) to fit the problem at hand.

2.2 Teach modelling languages deeply, not broadly

Related to the previous anti-pattern, a traditional and particularly flawed way of
teaching modelling using a large language (like UML or OCL) is to delve deeply
into its features, constructs, syntax and semantics. We often take great joy in
doing this when teaching programming languages – a new API or a new and
complex language feature that interacts in weird and wonderful ways with exist-
ing features is a thing to be dwelled on and investigated. A thorough exploration
of each feature of a large modelling language is the wrong way to proceed.

Such in-depth explorations of modelling language features are suitable and
important exercises for established researchers or practitioners (who want to
understand language design, evolution implementation, etc), but are not what is
needed for novices not yet comfortable with modelling. Students need pathways
through large and multi-featured languages, particularly grounded by feedback
on the usefulness of particular features, and of how those features are to be used
when solving real problems.

The feedback issue is an important one: when learning how to program,
students can get instant feedback on their attempts to use the programming
language from the compiler or interpreter/IDE. Superficial feedback on models
can be obtained from some modelling tools, but this typically only involves con-
cepts or properties that are missing from the model (e.g., types on attributes)
rather than more sophisticated semantic errors or omissions, and interpreting
this feedback typically involves exposing the underlying metamodel of the lan-
guage.

By connecting the language features that are introduced to students to the
problem that is being solved, it may be possible to provide better (and more
concrete) feedback to students as to the efficacy of the language constructs that
are being used, and the quality of the models that are being produced, in terms
of real problems. Of course, a large language can be thoroughly explored over
time, by considering different problems from different domains, but using the
language to drive such teaching is a demotivating way to proceed.



2.3 Provide answers, not solutions

When teaching introductory courses, we often encounter students who expect to
be given answers to problems. The refrain “is this right?” is heard frequently.
Giving in to the temptation to provide an answer to a modelling problem – or a
design problem in general – is a terribly bad practice.

Why is this? Modelling is an art; different developers arrive at different mod-
els from the same starting point. Sometimes the models are of different systems,
but sometimes they are just alternative representations of the same system. This
presents teachers with a dilemma: the students want answers to exercises, but
there are (too) many possible right answers. What is more, the students need to
learn the subtleties of modelling through experience, rather than by imitation
of one style of modelling.

Consider a very simple modelling problem: create a class diagram to specify
the structures needed for a system that records students (university id, name,
email) that create and edit models (title, url, date). Here are some issues that
arise if the students are given an answer, rather than a discussion or a model
answer with explanations.

– A common problem in specification is over- or premature elaboration of
attribute types. A student with a good knowledge of OO programming
starts from concrete classes, and may need to understand the idea of over-
specification. For instance, a specification should not tie down a url or date
to a specific format, and should not need to consider the accessibility or
visibility of classes and attributes. Similarly, a student who understands ab-
stract data types may create too many classes, including type classes to
capture the structure of attribute types. A student with a good theoretical
understanding of relational databases might simply capitalise the attribute
name to represent an abstract type that has yet to be determined. A student
following the commendable maxim of doing no more than is asked would not
put in any attribute types, because there is no information on types in the
scenario. None of these models is wrong, but not all would match a given
answer.

– The scenario states that students “create and edit” models. Even if we as-
sume agreement on two classes (student and model), there are at least two
obvious and visually very different, ways to model this:
1. an association class with one (Enumeration) or two (Boolean) attributes

to record whether the link is a creation link or an edit link, and a date
attribute to record when the edit or creation occurred;

2. two associations, named respectively create – to link one model to its
one or more student creators; and edit – to link one model to its one or
more student editors. In this case, the date information for models might
be represented as an attribute of model, where it might be the creation
date or the last-update date.

The models are slightly different: in the first, you can generate an edit log,
whereas in the second you can only list the students who have created or
edited each model. However, both are valid answers to the scenario as stated.



One approach that overcomes the tendency to see the answer as the only
possible answer is to get students to create solutions, and then have a seminar-
style presentation and discussion which reveals all the variants that were created
and discusses which are valid, which model something slightly different, and
which are appropriate for different onward uses (modelling does not stand alone).
Another approach is to create models “live”, by getting the class to suggest what
to add next, and engaging in lively discussion of what is and is not acceptable
or conventional. A key skill for the teacher is to be able to explain why different
valid answers are appropriate for different situations, bringing in both real life
and the different phases and activities of software engineering.

2.4 Choose a serious domain

Students both need and benefit from examples when learning how to model.
Examples reinforce the conceptual principles and engineering practice of mod-
elling. These examples must be grounded in reality, otherwise students will not
engage with them. Realistic examples, like modelling a library, or a bank, or a
traffic light system, are serious, pragmatic, understandable to students . . . and
seriously demotivating – don’t use them during the learning process5! A problem
domain should be chosen with student engagement in mind.

During the stages of learning and reinforcement, selecting tightly constrained
or uninteresting domains can limit the number of students who will engage with
the problem. Selecting a more interesting, non-standard, or “fun” domain will al-
low students to become more engaged. For example, choosing a multi-disciplinary
problem from fields outside of typical software engineering, such as archaeology,
history, or art may give the students opportunities to do interesting research
in order to understand the domain and will generate discussion as they begin
to understand how these new concepts can be modelled. Granting students the
freedom of their imagination can lead to interesting modelling decisions, and a
good problem domain can lead to diversity in the solutions offered by students.
Diversity is important and discussing the decisions made and challenges faced
to get to each solution enables a more exploratory approach to learning how
to model systems. A tightly constrained domain doesn’t allow for this solution
diversity or design space exploration. Once a student has had practice at mod-
elling open and diverse problems, they should be more comfortable in tackling
more realistic problems.

One example that we have used in our teaching is computer games. A partic-
ular example of this is the Super Awesome Fighter system [3], wherein models
of players in a fighting game must be created. Such domains are very often im-
mediately understandable and accessible to novices, allow significant modelling
(of structure and behaviours) to be carried out, and lead to discussion.

5 Though they may be suitable for additional exercises or assessment.



2.5 Teach without prerequisites

Some courses have prerequisites; for example, a course in formal methods often
requires a discrete maths prerequisite; a course in compiler design may require an
automata theory prerequisite. It is poor practice to teach modelling to students
who do not have the prerequisites – after all, modelling can be picked up by
anyone, right?

Modelling is an advanced software engineering skill. Developing models that
are fit-for-purpose requires excellent analytical skills, an aptitude for abstraction,
and careful evaluation of trade-offs. To further develop these characteristics,
students need to be able to focus on the domain (e.g., “should we name this
type Grade or Registration?”) and not on notation (e.g., “how do we represent
inheritance?”) or fundamentals (e.g., “what is inheritance?!”). Fundamentally,
there are prerequisites to studying and applying modelling, and these should not
be ignored or deprecated.

The issues that arise when students are unfamiliar with modelling notations
and fundamentals are exacerbated when a curriculum also includes metamod-
elling (i.e., teaching students to define and use their own modelling languages).
To construct valid, expressive and succinct metamodels additionally requires stu-
dents to rapidly switch between at least two levels of abstraction: the modelling
language, and example models. An extremely strong understanding of object
instantiation is required to be able to teach students the skills necessary to con-
struct metamodels.

Arguably, all of the fundamental theory necessary for understanding mod-
elling and metamodelling can be taught via object-oriented programming. UML
class diagrams are a useful precursor to construct metamodels, which are nor-
mally expressed in the closely related MOF standard. A good grasp of object-
oriented programming teaches the fundamentals and limitations of object in-
stantiation. Even some best practices are transferable: structural design patterns
(e.g., composite) and refactorings (e.g., extract class) apply to metamodelling.

An understanding of modelling is of course essential for learning about MDE,
model management, and the typical engineering operations that are applied to
models. The necessary prerequisites for studying, for example, model transfor-
mation are a little less clear to us. Certainly students should have programming
experience, though it is not clear whether one paradigm or language is partic-
ularly beneficial, given the variety of model transformation languages available
today. Some exposure to a template-based language (such as PHP) is helpful
for understanding model-to-text transformation languages, as is exposure to a
language that supports closures or lambda expressions as many model-to-model
transformation language provide the first-order logic methods defined in OCL.

2.6 Teach metamodelling using UML as an example

Once students have a basic grasp of modelling, there is an opportunity to in-
troduce them to metamodelling; this is usually done in order to explain how



modelling languages are formally defined. Many approaches to teaching meta-
modelling start with UML. If students are familiar with UML by the time they
are exposed to metamodelling, the UML metamodel may be used as a running
example to explain metamodelling concepts and techniques. This is a bad way
to introduce metamodelling.

In practice, teaching metamodelling using UML can create substantial con-
fusion, given the structural/naming similarities between UML with MOF/Ecore
(consider statements such as “UML classes are instances of the Class UML meta-
class which in turn is an instance of MOF Class”). Entity-relationship diagrams
are not as confusing, however they are still, both structurally and visually, very
similar to class diagrams and as such should be avoided for similar reasons.

So what is an alternative to introducing metamodelling via UML. It would
be beneficial to find a domain with little structural and lexical overlap with
metamodel-level concepts, and also one in which example-based approaches can
be used – viz., small example models that can be used to motivate the de-
velopment of small metamodels. We are currently using flowcharts to introduce
students to metamodelling, as a typical flowchart metamodel consists of concepts
such as actions, decisions, transitions and labels.

2.7 Learning to use the tools is trivial

To teach modelling and engineering practice, we benefit from using tools (just
as we benefit from using tools to teach programming). Assuming that modelling
tools are trivial to learn and employ is our next bad teaching practice.

We often assume that students will be able to pick up, understand and use
modelling tools without much difficulty. We often infer from student experience
with programming tools (like IDEs and debuggers) that they will have few prob-
lems learning, for example, Eclipse-based modelling tools or EMF. But the way
users must think about modelling tools differs from programming tools: the for-
mer expose students to many different views of a model or modelling problem
(as opposed to code, which very often has a single view – the source – possi-
bly extended with debugging views). Also, generic tools such as Eclipse have
complexity that is not technically relevant or important to students learning
modelling, but cannot easily be hidden from them. This means that it can be
dangerous to assume that modelling tools will be straightforward for students
to pick up and use. We should acknowledge this in the early exercises we give
to students, in the amount of hands-on help we give them in the early stages
of courses, and in terms of our expectations – how much progress do we expect
students to make early on?

We must also consider how students learn about tools. Increasingly, students
rely on resources such as e-books and online video tutorials (e.g., YouTube)
to explore new tools, and on developer forums (e.g. StackExchange) for trou-
bleshooting. Due to the somewhat limited use of modelling tools (and especially
MDE tools) by mainstream developers, there is a lack of resources for modelling
technology, which can hinder the learning process, and even undermine the cred-
ibility of tools in the eyes of the students. To address this challenge, tutors need



to invest a significant amount of effort to produce or collect documentation and
examples that can enable and support the students to learn the tools at their
own pace.

2.8 Teach in a vacuum

Modelling can be taught as a pure and self-contained subject – as a theory with
laws and rules, with little or no relation with the outside world. This is bad
practice, as it ignores engineering context and practices – that is, it ignores the
purpose of creating models.

In real-life scenarios, modelling principles and tools are used in conjunction
with other software engineering approaches to solve complex problems [4]. On
the other hand, modelling is typically taught with a strong focus on the tech-
nologies comprising this space, without providing adequate references to the
“big picture”, i.e., the software engineering activities, processes and manage-
ment practices used simultaneously with modelling (and possibly MDE), as well
as the exact problems it tries to solve.

The “big picture” constitutes the context of modelling and MDE. Following
[5], context is “the circumstances in which something exists or occurs”. There-
fore, a modelling course should include explanations on the application scenarios,
the related software engineering tasks, and any existing alternatives to modelling.
According to [6] context is very important to the human learning process, since
it provides meaning and motivation to learners. Moreover, [7] further argues that
context and the particulars of that context can provide a powerful motivation
for learning.

In addition to providing the real-life context of modelling, educators should
position modelling and MDE in the computer science curriculum. More partic-
ularly, areas of modelling are conceptually very close to other computer science
domains. For example metamodelling has many similarities to database schemata
or ontologies. During a modelling module, such correspondences should be high-
lighted, so that students can gain deeper understanding of the concepts by re-
lating them to already known concepts.

2.9 Code generation is the entry-level drug

A typical question we are asked by students is: once you have models, what
should you use them for? Besides talking about communication, evaluation, val-
idating different design options, etc., we often motivate use of modelling to stu-
dents by talking about code generation as a ‘primary use case’. Modelling and
MDE are often sold to industrial users with the sole purpose of automatic code
generation. This perspective implies that MDE in particular is only applicable
to software engineering. Not only is this a needlessly narrow view, conveying
it is bad teaching practice. In theory and practice, models and MDE tools and
techniques are applied to many more use cases, such as scientific simulation,
business intelligence and decision support.



Furthermore, code generation is an arguably over-used tool in the modelling
toolbox. After seeing its benefits, many students new to modelling and MDE
reach for model-to-text transformation to solve the majority of their implemen-
tation problems, without considering alternatives.

A common issue that we see in the classroom (and in the wild) is the use of
code generators to bridge large semantic gaps. When the input model and the
target code are at substantially different levels of abstraction, large and com-
plex code generators are typically required. Model-to-text (M2T) languages are
typically not well suited to complex transformations (reasons for this are mini-
mal support for modularity and incrementality), and as a consequence complex
code generators are difficult to develop and even more difficult to test and main-
tain. As a community, we must be careful to teach techniques that work well
in practice: code generators that span large semantic gaps do not work well in
practice.

Notwithstanding the downsides of code generation, we note that it does pro-
vide a tangible motivation for modelling for some students, particularly those
who have industrial experience of developing software for legacy or proprietary
systems.

In short, we feel that presenting code generation as a secondary scenario for
exploiting models is helpful and sensible, and can help to prevent students from
falsely assuming that modelling necessitates code generation, or that MDE is
limited to the domain of software engineering.

2.10 Reinforce the concept of silos

We have to compartmentalise when teaching modelling: we have to teach syntax,
semantics, tools, best practices, domain modelling etc, and have to break this
up in some way. Doing so in a way that reinforces siloed thinking in our teaching
is poor practice.

When we teach in software engineering or computer science, we have to draw
the boundary somewhere: only some topics are within scope (and feasible to dis-
cuss) in a course. But there is substantial potential for harm if we silo modelling
too much, by minimising reference to related topics. In particular:

– Teaching modelling as a separate subject, e.g., focusing on the languages,
rather than as a concept that pervades and underpins engineering.

– Ignoring socio-technical issues when teaching modelling, e.g., the processes
– both business and technical – in which modelling are carried out.

– Ignoring team issues: modelling in the wild is a team sport, and receiving
feedback from team members on the quality, understandability and useful-
ness of models is critical. At the same time, learning how to work in a team,
and appreciating the communication issues that pervade modelling, is an
important skill.

– Teaching modelling as an individual: many people learn by doing and by
observing how more experienced practitioners behave. This is very much the
case for modelling. So, rather than having one person teach modelling to



students, have a team of people teach modelling – the students can then
see how the team of teachers resolve conflicts, deal with understandability
issues, and communicate effectively and constructively to solve problems.

– Teaching modelling without reference to other disciplines: modelling existed
well before MDE and software modelling. Reference to other disciplines or
domains helps to reinforce both that modelling is an accepted engineering
practice, and that software modelling should not be thought of as being in
a silo by itself.

2.11 Modelling is for university students

Modelling as a subject is often taught late – perhaps in the second year of
a university Computer Science or Software Engineering course. Education (in
university as well as at pre-university level) sometimes has a tendency to teach
skills, not problem solving. Students are taught to program, solve equations
and proofs, do unit testing, etc. There is sometimes a principle stated that a
student cannot design or engineer anything until they have the skills to create
the product itself. Thus, modelling is either taught as a stand-alone skill, or
ignored completely. This is bad practice all around.

In software (and hardware) engineering, modelling can be used to think about
and explore a domain, as information for planning and resourcing, and as doc-
umentation for any stage of development – as well as the conventional model-
driven engineering activities. Encouraging students to draw ideas is helpful, and
stimulates creativity. Encouraging students to then make their sketches more
formal, or conformant to established notations, seems such an obvious next step
that it is surprising that it is not included in all core areas of computer education.
Modelling then becomes the basis from which to apply other engineering-related
skills – not just programming, but also testing, simulation and visualisation. The
meta-issue here is that we should avoid giving the impression that modelling is
an academic exercise unrelated to engineering in practice.

2.12 Physical decomposition is all

Very often we model a system: software, a car, an enterprise, a business process.
The system of interest may be complicated or complex, involving many different
parts that interact in different ways. Decomposition is one of the fundamental
techniques that we teach our students for managing complexity and controlling
the engineering process. It is a bad practice to teach decomposition superficially:
to not provide guidelines to students in terms of identifying purposeful decom-
positions. We pay lip-service to various poorly understood metrics (like coupling
and cohesion), or important architectural styles (like layering). We also refer
very often to analogies, particularly where physical and cyber-physical systems
are concerned.

In such situations we might teach that physical decomposition is the most
important way in which a problem can be sensibly broken up, but this is bad
practice. Do we teach the consequences? That cross-cutting concerns, such as



safety or end-to-end performance can be neglected or treated as afterthoughts?
In enterprise architecture, there is consideration of system-level properties and
how such properties cut across ‘layers’ in an architecture, but in many traditional
modelling disciplines that use standard languages like UML or SysML, cross-
cutting concerns are rarely a consideration. Physical decomposition is easy to
grasp and can lead to a sensible solution, as long as cross-cutting properties
either don’t matter, or can be treated later, when modelling is conveniently out
of the way.

2.13 Ignore semantics

Teaching modelling as a purely syntactic effort, focusing on language constructs
in detail whilst ignoring semantics, is our final bad practice. Such efforts produce
practitioners and researchers who do not use the full power of modelling and
modelling languages.

The semantics of modelling languages is an advanced topic in MDE [8].
There are misconceptions and disagreements on semantics even between MDE
researchers. Despite the topic’s complexity, semantics should eventually be part
of a modeller’s education, since it is an indispensable part of language engi-
neering. By having an understanding of semantics, students can avoid common
misconceptions, for example, that the semantics of a modelling language is its
abstract syntax or that a model cannot have more than one interpretation; this
in turn reinforces engineering practice, such as that models are a critical tool for
communication and discussion. Moreover, an understanding of language seman-
tics can lead to the realisation that ill-defined semantics are the root of ambigu-
ity. Admittedly, studying semantics can be daunting for the mathematics-averse
students. Depending on the level of the module, semantics can be taught in a
formal or informal way. In any case though, semantics should not be ignored.

3 Observations and Conclusions

What are some of the lessons that we can synthesise from these teaching anti-
practices? Are there specific good ideas that we should consider in teaching
modelling? We think there are five key points:

– Integrate modelling in the curriculum. Modelling pervades engineering and
science and it should be taught as such. Using a standard vocabulary for
talking about modelling to students (whether at high school, undergraduate
level or beyond), demonstrating different types of modelling (e.g., mathemat-
ical, data, behavioural), and focusing on its use in problem solving conveys to
students that modelling is not a siloed subject. Let’s get rid of the standard
UML modelling course, and teach modelling as a cross-cutting concern.

– Problem-based learning. Modelling for modelling’s sake is the remit of the
researcher and tool builder. But when learning how and why to model, the
subject needs to be grounded in real (but not boring and dull!) problems



that have many possible solutions. This can convey both the engineering
importance of modelling, but also the value of feedback in modelling.

– Preparedness. In software engineering, modelling is founded on some basic
concepts: encapsulation, identity, types, instantiation, properties, references,
constraints. Students should have a basic familiarity and some practice with
these concepts – for instance, through introductory programming courses –
before they are taught to use modelling in anger.

– Tools get in the way. We should anticipate that the modelling tools that
experts and professionals use on a daily basis – like EMF – get in the way
of the novice modeller, and our exercises, laboratory work and assessments
should accommodate for this.

– ‘Fun’ problems. We should use modelling problems and exercises to support
creativity in our students. Fun modelling problems that require students to
investigate a topic new to them help convey the joy of research, the flexibility
of modelling, the importance of explanations, and the value of models in
supporting communication between different groups of stakeholders.

These lessons, and others, form the basis of how we now teach modelling at
York to both undergraduates and Masters-level students.

Acknowledgements

This research was part supported by the EU, through the OSSMETER FP7
STREP project (#318736) and the MONDO FP7 STREP project (#611125).

References

1. Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software En-
gineering in Practice. Morgan & Claypool Publishers, 1st edition, 2012.

2. Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven Software
Development: Technology, Engineering, Management. John Wiley & Sons, 2006.

3. James R. Williams, Simon M. Poulding, Louis M. Rose, Richard F. Paige, and
Fiona A. C. Polack. Identifying desirable game character behaviours through the
application of evolutionary algorithms to model-driven engineering metamodels. In
SSBSE, pages 112–126, 2011.

4. John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen. Em-
pirical assessment of mde in industry. In Proceedings of the 33rd International Con-
ference on Software Engineering, ICSE ’11, pages 471–480, New York, NY, USA,
2011. ACM.

5. Steve Cooper and Steve Cunningham. Teaching computer science in context. ACM
Inroads, 1(1):5–8, March 2010.

6. Tim DeClue. A theory of attrition in computer science education which explores the
effect of learning theory, gender, and context. J. Comput. Sci. Coll., 24(5):115–121,
May 2009.

7. D.H. Jonassen and S.M. Land. Theoretical Foundations of Learning Environments.
L. Erlbaum Associates, 2000.

8. David Harel and Bernhard Rumpe. Meaningful modeling: What’s the semantics of
”semantics”? Computer, 37(10):64–72, October 2004.


