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Abstract 

Extreme events by definition are rare events that occur in-
frequently but their impacts on both physical and socioec-
onomic resources are very enormous. Extreme climate 
events such as heavy precipitation, drought, tropical cy-
clones, hurricanes and heat waves are known to have tre-
mendous impact on the society. Over the last few decades, 
our understanding of the mean behavior of the climate and 
its normal variability has improved to a large extend but 
the same cannot be said of climate extremes. Climate ex-
tremes represent nonlinear systems that are very hard to 
study and even harder to make predictions on them. The 
objective of this paper is to assess how these extreme 
events relate to modes of climatic variability such as El 
Nino–Southern Oscillation, the Pacific Decadal Oscillation 
and the North Atlantic Oscillation by utilizing the familiar 
distributions that arise out of the extreme value theory such 
as the generalized extreme value distribution and the gen-
eralized Pareto distribution. Nonstationarity is ensured by 
expressing the parameters of the distribution as functions 
of the covariates. 

  

Keywords:  Extreme Events; Covariates; Maximum like-

lihood; Bayesian Information Criterion. 

 Introduction  

Extreme events are rare events that occur infrequently 

but have enormous impact on both physical and socioeco-

nomic resources. Extreme climate events such as heavy 

precipitation, temperature, drought, tropical cyclones, 

hurricanes and heat waves have had tremendous impact 

on the society, costing lives and property. There is there-

fore no surprise that considerable attention has been given 

to climate studies in the past decades. However, in ana-

lyzing precipitation events, the majority of the existing 

methods are based on the assumption that precipitation 

time series are stationary, implying that the distribution of 

precipitation events is not significantly affected by climat-

ic trends, long-term cycles or modes of climate variability 

(Gorji Sefidmazgi, Sayemuzzaman, and Homaifar 2014; 

Gorji Sefidmazgi, Sayemuzzaman, et al. 2014; Agana, 

Sefidmazgi, and Homaifar 2014; Vogel, Yaindl, and 

Walter 2011; AghaKouchak et al. 2013).  

Although relaxing the assumption of stationarity can 

lead to accurate models, the results can be potentially 

misleading. Hence, there is the need to modify the as-

sumption of a series of independently and identically dis-

tributed data with constant properties through time (sta-

tionarity) to reflect the effect of long-term climate change 

on the variable of interest. For instance, the maximum 

time series of climatic variables such as temperature and 

precipitation could show trends over time (Panagoulia, 

Economou, and Caroni 2014). Also, due to natural cli-

mate variability or anthropogenic climate change, there is 

evidence that the hydroclimatic extreme series are not 

stationary (Jain and Lall 2001; Milly et al. 2008). Large-

scale modes of climate variability such as El Nino–

Southern Oscillation (ENSO), the Pacific Decadal Oscil-

lation (PDO), and the North Atlantic Oscillation (NAO) 

are known to have profound impacts on the precipitation 

regimes, especially during the winter season over North 

America. A number of researchers have studied the im-

pact of modes of climate variability on climate extremes 

and have shown that these variables have great influence 

on extreme precipitation and temperature (Zhang et al. 

2010; Griffis and Stedinger 2007).  

ENSO events, in particular have influence on the 

occurrence of precipitation events. It has also been shown 

that there is a well-established connection between the 

two phases of ENSO and the North American precipita-

tion (Cayan, Redmond, and Riddle 1999; Gershunov and 

Barnett 1998; Ropelewski and Halpert 1986; Shabbar, 

Bonsal, and Khandekar 1997). El Nino events influence 

the frequency of occurrence of different daily precipita-

tion magnitudes in Western U.S. winters and tend to be 

associated with an increase in the frequency of high daily 

precipitation over the Southwest but a decrease in the 

Northwest (Cayan, Redmond, and Riddle 1999). In order 

to Model nonstationary extreme events within the frame-

work of the GEV distribution, the GEV distribution re-

quires extended models with covariate-dependent changes 

in at least one of the distribution’s parameters (Coles 

2001). 



The objective of this research is to assess how these 

extreme events relate to modes of climatic variability such 

as the ENSO, NAO and PDO. Similar work has been car-

ried out on non-stationary extreme events where they con-

sidered only trend in their analysis (AghaKouchak et al. 

2013; Katz, Parlange, and Naveau 2002; Feng, Nadarajah, 

and Hu 2007). Instead of analyzing only trend, we have 

also analyzed the effect of ENSO on extreme precipitation 

and sea level rising. We achieved these by utilizing the 

familiar generalized extreme value (GEV) distribution 

that arises out of the extreme value theory (EVT) (Coles 

2001). Non-stationarity is ensured by expressing the pa-

rameters of the GEV distribution as functions of time and 

ENSO. The maximum likelihood estimation (MLE) 

method is employed to estimate the distribution parame-

ters (Coles 2001; Katz, Parlange, and Naveau 2002; 

Vogel, Yaindl, and Walter 2011). We applied the model 

to precipitation data in Pasquotank, North Carolina and 

also to the sea level data at Pensacola, Florida. Further-

more, we have compared the different fitted models and 

selected the best model based on the Bayesian Infor-

mation Criterion (BIC). This paper demonstrates that co-

variate-dependent models are necessary for analyzing 

extreme events, especially precipitation extremes. Also 

based on the results obtained from this work, it is ob-

served that linear parameter-covariate dependence might 

not be able to relate the dependence of the parameters on 

the covariates well and therefore nonlinear dependent 

models might be appropriate. 

Methodology 

The foundation of Extreme Value Theory (EVT) is 

the Generalized Extreme Value (GEV) distribution 

(AghaKouchak et al. 2013; Coles 2001). The GEV distri-

bution classically models block maxima (or minima) of 

data over a certain period of time such as daily, monthly 

or annual maxima. The block maxima refers to the num-

ber of years (for annual maxima) from which the maxima 

is taken. The justification of the GEV arises from an as-

ymptotic argument that postulates that as the sample size 

increases, the distribution of the sample maxima, for ex-

ample X, follow a Frechet, Weibull or Gumbel distribu-

tion. The EVT characterize rare events by describing the 

tail behavior of the underlying distribution. Let the time 

series denoted by {X1, X2…Xn} be independent random 

variables having a distribution function G.  

Let Mn=max{X1, X2,…, Xn} suppose there exist nor-

malizing constants an>0 and bn>0 such that 
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cumulative distribution function for the GEV distribution 

is defined as shown in Equation (1) (Coles 2001; Katz, 

Parlange, and Naveau 2002). If n is the number of obser-

vations in a year, then Mn is the annual maximum. 
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Where µ, σ>0, ξ are the location, scale and shape parame-

ters respectively. The expression in Equation (1) can be 

made non-stationary by expressing the parameters of the 

distribution as linear functions of covariates which have 

influence on the occurrence of extreme events. In our 

case, we only expressed the location parameter as a func-

tion of time and the El Nino Southern Oscillation (Nino 

3.4), which are shown in Equations (3) to (5). 

 Model 1:       o   (2) 

Model 2 :       tt o 1)(    (3) 

Model 3:       yy o 1)(    (4) 

Model 4 :     ytyt o 21),(    (5) 

The combined effect of both time and the El Nino 

Southern Oscillation is shown in Equation (5) where t 

(time) is the year in which the maxima is taken and y the 

covariate representing the Nino 3.4. The above GEV dis-

tribution models are fitted to both the annual monthly 

maxima of precipitation data at Pasquotank, North Caro-

lina and the mean sea level data at Pensacola, Florida.  

 

Parameter Estimation 

        All the model parameters are obtained using the 

maximum likelihood estimation (MLE) procedure. Alt-

hough other methods such as the Method of Moments 

(MOM), Probability Weighted Moments (PWM) can be 

used, we exclusively used the MLE because of its easy 

adaptability to non-stationary conditions (Katz, Parlange, 

and Naveau 2002; El Adlouni et al. 2007). Also, the ad-

vantage of maximum-likelihood estimators is that they 

can employ censored information without difficulty 

(Martins and Stedinger 2000).  

 If G(x(t);µ(t),σ(t),ξ(t)) is the probability density func-

tion of a random variable x with µ(t),σ(t) and ξ(t) as pa-

rameters, the log likelihood of the GEV distribution is 

simply given by (Coles 2001): 
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         Both the stationary and nonstationary models of the 

GEV distribution can be fitted to the time series of the 

random variable x by maximizing the  log-likelihood  of 

the function (Coles 2001): 

 



 


















 









 




n

i

t

i

i
n

i

t

tx
t

t

tx
tttn

l

1

)(/1

1

)(

)(
)(1

)(

)(
)(1log))(/11()(log

,,















      (7) 

 

                                                                                   

which is obtained by taking the log of Equation (6).The 

maximum likelihood estimates are the values of the pa-

rameters µ, σ and ξ that maximize the log likelihood func-

tion in (7). Time is used as an explanatory variable (co-

variate). The parameters µ, σ and ξ can also be expressed 

as functions of other explanatory variables and similar 

procedure is followed to estimate them. Instead of max-

imizing the log likelihood, we can rather minimize the 

negative log likelihood of Equation (7). Numerical meth-

ods such as the Newton-Raphson iteration algorithm can 

be used to solve Equation (7) (Martins and Stedinger 

2000; Hosking 1985).  

 
Model Selection 

Model choice is usually necessary when you have 

more than one model to choose from. For instance, to 

compare two nested models (usually between a simpler 

model and a complex model), we can easily apply the 

Likelihood Ratio Test (LRT) to select the best model by 

computing the test statistic and determining whether it is 

significant or not. However, the use of the likelihood ra-

tio test becomes cumbersome when there are more than 

two models to choose from. Model selection techniques 

such as the Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC) can be used to se-

lect the best model among a collection of nested models. 

The BIC selection criterion is applied here to select the 

best model among a collection of nested models 

(AghaKouchak et al. 2013; Gorji Sefidmazgi, Moradi 

Kordmahalleh, et al. 2014). The BIC selects the model 

that minimizes the quantity: 

nkklkBIC ln)(2)(   (8) 

where l is the log-likelihood which is obtained from 

Equation (6). Also, k and n are the number of parameters 

and number of block maxima respectively (number of 

years in this case). 

Data Sets 

Monthly precipitation data in North Carolina for the 

time period 1950-2008 was obtained from the National 

Climatic Data Center (NCDC). We selected the station 

near the Atlantic Ocean. Figure 1 shows a time series plot 

of the annual maxima of monthly precipitation data at 

Pasquotank as well as a scatter plot showing how the pre-

cipitation vary with the El Nino Southern Oscillation In-

dex (Nino3.4).  

Also, we have analyzed the annual mean sea level at 

Pensacola, Florida during the same time period of 1950-

2008. The sea level data was obtained from the University 

of Hawaii Sea Level Center. Figure 2 shows a time series 

plot of the mean sea level data as well as a scatter plot of 

the sea level versus the El Nino Southern Oscillation Index 

(Nino3.4). Most climate indices such as ENSO, NAO and 

PDO do not contain values beyond 1950. Hence, in order 

to analyze the effects of these indices on climate ex-

tremes, we chose a time period 1950-2008 so as to have 

the same data length. 

 

 

 
(a) 

 
(b) 

Figure. 1.  (a) Time series plot of annual maxima of precipi-

tation and (b) Scatter plot of precipitation and El Nino 3.4 at 

Pasquotank, North Carolina. Trend is indicated by the solid 

line. 
 

 

Simulation Results 

We investigated the use of the GEV distribution to 

model both extreme precipitation and sea level in North 

Carolina and Florida respectively. We modeled these 

events using both stationary and non-stationary models 

for the time period 1950-2008. 

 



 
(a) 

 
(b) 

Figure. 2.  (a) Time series plot of mean Sea level and (b) Scatter 

plot of Sea level and Nino 3.4 at Pensacola, Florida. Trend indicat-

ed by the solid line. 

 

The effects of both time and El Nino Southern Oscillation 

index (Nino 3.4) were taken into account. The results are 

summarized in Tables 1 and 2. The values in parenthesis 

are the standard errors of the estimates for the parameters. 

The minimized negative log-likelihood as well as the BIC 

values is shown in the tables. From the results, it can be 

seen from Table 1 that when the ENSO was used as a 

covariate, the negative log-likelihood was minimum as 

observed in model 3. However, there was an increase in 

the BIC value. This increase in the BIC value implies that 

though its introduction has an effect, the change is not 

significant as compared to the computation complexity 

involved. In Table 2, model 2 for the Florida sea level has 

the most minimized negative log likelihood as well the 

least BIC value, and hence is selected by the BIC as the 

best model. This means that the model with the linear 

trend in time is the most appropriate model to be consid-

ered for the sea level data at Pensacola. 

 

Conclusion 

The effects of both time and ENSO have been analyzed in 

this research unlike previous work where only linear trend 

in time was analyzed. From the results, it is realized from 

the log likelihood values that the sea level at Pensacola is 

affected by both time and the ENSO as seen in Model 4. 

Model 4, which is a combination of both time and the 

ENSO, has the lowest negative log likelihood as com-

pared to the stationary model in Model 1. Comparing the 

results of models 2 and 4, it is observed that the combined 

effect of both time and the ENSO is greater than that of 

time alone but due to computational complexity the BIC 

results favor the time dependent model in Model 2. Simi-

lar observations can be made of from the precipitation 

data at Pasquotank. However, for this station, the impact 

of ENSO seems to be greater than that of time as can be 

seen from both the negative log likelihood and BIC val-

ues. This is also evident from the time series plots shown 

in Fig.1. Again, due to computational complexity, the BIC 

results favors the stationary model. This suggests that the 

effect is not significant enough as compared to the com-

putation complexity involved. Hence, the stationary mod-

el may be suitable for the precipitation data according to 

the BIC values. The work presented here only considered 

simple forms of nonstationarity, where we only relied on 

linear models of the covariates. The linear models used 

might have influenced the less significance of the effects 

of the covariates. As such, as future work, we will consid-

er nonlinear forms of nonstationarity such as vector gen-

eralized additive models (VGAM) or generalized additive 

models for location, scale and shape (GAMLSS) parame-

ters of the distribution.  

 
Table 1 Parameter estimates and standard errors for the GEV 

distribution fitted to the annual maxima of precipitation (inches) 

at Pasquotank, North Carolina (values in brackets are standard 

errors) 

 Model 1 Model 2 Model 3 Model 4 

σ 2.7326  

(0.310) 
2.7200 

(0.315) 
2.7013 

(0.3065) 
2.7272 

(0.318) 

ξ 0.0743 

(0.112) 
0.0817 

(0.1195) 
0.0636  

(0.1128 ) 
0.0769 

(0.121) 

µ0 10.8150 

(0.409) 
10.9124 

(0.6479) 
-9.7803 

(14.2051) 
9.7730 

(14.092) 

µ1 - -0.0036 

(0.0190) 
0.7654 

(0.5281) 
-0.0048 

(0.019) 

µ2 - - - 0.5232 

-log l 155.062 155.043 153.9863 153.956 
BIC 322.3567 326.397 324.2828 328.300 

 

 

 

 



Table 2 Parameter estimates and model selection for the GEV 

distribution fitted to the time series of mean sea level (mm) at 

Pensacola Florida (values in brackets are standard errors) 

 Model 1 Model 2 Model 3 Model 4 

σ 52.3875 
(6.576) 

50.8995 
(5.631) 

52.799 
(6.552) 

49.2521 
(5.394) 

ξ 0.0658 
(0.152) 

-0.1265 
(0.116) 

0.0474   
(0.148) 

-0.1251     
(0.114) 

µ0 2840.55 
(8.389) 

2793.74 
(15.217) 

2840.57 
(8.324) 

2787.8965 
(14.806) 

µ1 - 1.8946 
(0.506) 

4.3535 
(7.181) 

2.0330  
(0.475 ) 

µ2 - - - 13.3157 

-log l 329.1631 320.8547 328.9922 319.0587 

BIC 670.5588 658.0195 674.6331 661.5552 
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