
A three-level formal model for software
architecture evolution

Abderrahman Mokni+, Marianne Huchard*, Christelle Urtado+, Sylvain
Vauttier+, and Huaxi (Yulin) Zhang‡

+LGI2P, Ecole Nationale Supérieure des Mı̂nes Alès, Nı̂mes, France
*LIRMM, CNRS and Université de Montpellier 2, Montpellier, France
‡ Laboratoire MIS, Université de Picardie Jules Verne, Amiens, France

{Abderrahman.Mokni, Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr,
huchard@lirmm.fr, yulin.zhang@u-picardie.fr

Abstract. This papers gives an overview of our formal approach to
address the architecture-centric evolution at the three main steps of
component-based software development: specification, implementation
and deployment. We illustrate our proposal with an example of software
evolution that leads to erosion and we demonstrate how our evolution
process can resolve this problem.

Keywords: Software architecture, architecture levels, reuse, software
evolution, B formal models

1 Introduction

Software evolution has gained a lot of interest during the last years [1]. Indeed,
as software ages, it needs to evolve and be maintained to fit new user require-
ments. This avoids to build a new software from scratch and hence save time and
money. Handling evolution in component-based software systems is non trivial
since an ill-mastered change may lead to architecture inconsistencies and incoher-
ence between design and implementation. Many Adls (Architecture Description
Languages) were proposed to support architecture modeling and analysis. Ex-
amples include C2SADL [2], Wright [3] and Darwin [4]. Although, some Adls
integrate architecture modification languages, handling and controlling architec-
ture evolution in the overall software lifecycle is still an important issue. In this
paper, we attempt to provide a solution to the architecture-centric evolution that
preserves consistency and coherence between architecture levels. We propose an
architecture evolution process based on the formal foundations of our three-level
Adl Dedal [5]. The process is then illustrated by an evolution scenario on a sim-
plified Home Automation Software architecture. The remainder of this paper is
organized as follows: Section 2 briefly discusses examples of existing Adls. Sec-
tion 3 gives an overview of Dedal and its formal foundations. Section 4 describes
the evolution process based on Dedal. Section 5 presents an evolution scenario
that illustrates the proposed evolution process before Section 6 concludes and
discusses future work.

2 Existing ADLs

Over the two last decades, a number of Adls were proposed [6]. Most of them
provide textual notations to describe architectural entities (i.e. components, in-
terfaces and connections). Initially, Adls were domain-specific. Examples include
C2SADL [2] for the design of concurrent systems and Wright [3] and Darwin [4]
for the design and analysis of distributed architectures. Later on, attempts to
unify Adls and make them general-purpose were made. For example, ACME [7]
was designed for such purpose. It consists in a common interchange description
language that offers annotation facilities to support architecture descriptions in
other languages. Another relevant example is xADL 2.0 [8]. It was designed to
support various types of systems. The strength of xADL 2.0 resides in its exten-
sibility since it is XML-based. It offers then an easy way for architects to adapt
its use to any kind of architectures.

Although a lot of effort was dedicated to improve the expressiveness of Adls
and promote their use to model software architectures, several important issues
are not taken into account. First, existing Adls hardly support all the develop-
ment steps of component-based software architectures (i.e. specification, imple-
mentation and deployment). Most of them cover only one or at most two levels
which harden their integration in development processes. Second, they hardly
support architecture evolution and handle architecture inconsistencies such as
drift or erosion [9]. C2SADL and Darwin are exceptions. They include language
to describe changes. However, they do not support reverse evolution and they
do not cover all steps of component-based development either.

In this work, we address architecture evolution in the whole component-based
development process. We show how architectural erosion could be avoided thanks
to reverse evolution.

3 Overview of Dedal

3.1 The three architecture levels

Dedal is a novel ADL that covers the whole life-cycle of a component-based
software. It proposes a three-step approach for specifying, implementing and
deploying software architectures in a reuse-based process [10].

To illustrate the three architecture levels of Dedal, we propose an example
of a Home Automaton Software (Has). Figure 1 presents the Has architecture
at three abstraction levels:
The abstract architecture specification (cf. Figure 1-a) is the first level
of architecture software descriptions. It represents the architecture as designed
by the architect and after analyzing the requirements of the future software.
In Dedal, the architecture specification is composed of component roles and
their connections. Component roles are abstract and partial component type
specifications. They are identified by the architect in order to search for and
select corresponding concrete components in the next step.

Fig. 1. Illustrative Example

The concrete architecture configuration (cf. Figure 1-b) is an implemen-
tation view of the software architecture. It results from the selection of exist-
ing component classes in component repositories. Thus, an architecture config-
uration lists the concrete component classes that compose a specific version of
the software system. In Dedal, component classes can be either primitive or
composite. Primitive component classes encapsulate executable code. Compos-
ite component classes encapsulate an inner architecture configuration (i.e. a set
of connected component classes which may, in turn, be primitive or compos-
ite). A composite component class exposes a set of interfaces corresponding to
unconnected interfaces of its inner components.

The instantiated architecture assembly (cf. Figure 1-c) describes software
at runtime and gathers information about its internal state. The architecture as-
sembly results from the instantiation of an architecture configuration. It lists the
instances of the component and connector classes that compose the deployed ar-
chitecture at runtime and their assembly constraints (such as maximum numbers
of allowed instances).

3.2 The formal foundations of Dedal

Dedal is formalized using B [11], a set-theoretic and first order logic formalism.
The formalization [12] covers all the concepts of Dedal and includes a set of
rules that defines the relations between the different artifacts into and over each
architecture level of Dedal (cf. Figure 2). These rules are classified into two
categories: the intra-level rules and the inter-level rules.

Fig. 2. Inter-level relations in Dedal

Intra-level rules in Dedal consist in substitutability and compatibility be-
tween components of the same abstraction level (component roles, concrete com-
ponent types, instances). Defining intra-level relations is necessary to check the
architecture consistency. For instance, the components must be correctly con-
nected to each other (i.e. each required interface is connected to a compatible
provided one).

Inter-level rules are specific to Dedal and consist in relations between com-
ponents at different abstraction levels as shown in Figure 2. Defining inter-level
rules is mandatory to decide about coherence between two architecture descrip-
tions at different abstraction levels. For instance, the realization rule is used to
check that a given configuration is a valid implementation of a given specification
and the instantiation rule is used to check if an assembly correctly instantiates
a given configuration.

4 Software architecture evolution in Dedal

Handling software evolution in Dedal is quite advantageous. Indeed, Dedal covers
the whole life-cycle of software systems and hence all descriptions can be kept up-
to-date for further reuse, reimplementation and deployment in different contexts.
To keep architecture descriptions coherent, change must be propagated from
where it is initiated to the other abstraction levels descriptions. As a solution,
we propose an evolution process based on Dedal to enable change in software
systems in a manner that preserves architecture consistency and coherence.

The evolution process in Dedal lies on two kinds of rules: (1) static rules to
check architecture consistency and coherence between the different descriptions
and (2) evolution rules to trigger the change at each abstraction level and prop-
agate it to the other levels descriptions. Figure 3 presents the condition diagram
of the evolution process.

Fig. 3. Condition diagram of the evolution process

4.1 Static rules

Static rules in Dedal are classified into consistency rules and coherence rules.
Consistency rules are name uniqueness, completeness, connection correctness
and graph consistency. These properties are verified at the same abstraction
level by the evolution manager to check weather the architecture is structurally
consistent or a change must be triggered to restore consistency. Coherence rules
are used to check if software descriptions at the three abstraction levels of Dedal
are coherent. If an incoherence is detected, the evolution manager propagates
change to the other levels to restore coherence. Coherence rules include the
verification of the following properties:

– A configuration Conf is an implementation of a given specification Spec.
– A specification Spec is a documentation of a given configuration Conf.
– An assembly Asm is an instantiation of a given configuration Conf.
– A configuration Conf is instantiated by a given assembly Asm.

4.2 Evolution rules

An evolution rule is an operation that makes change in a target software archi-
tecture by the deletion, addition or substitution of one of its constituent elements
(components and connections). Each rule is composed of three parts: the opera-
tion signature, preconditions and actions. Specific evolution rules are defined at
each abstraction level to perform change at the corresponding formal description.
These rules are triggered by the evolution manager when a change is requested.
Firstly, a sequence of rule triggers is generated to reestablish consistency at the
formal description of the initial level of change. Afterward, the evolution man-
ager attempts to restore coherence between the other descriptions by executing
the adequate evolution rules. The following role addition rule is an example of
evolution rules at specification level:

/* Operation signature takes as arguments an instance of the architecture
specification(spec) and the instance of the new role(newRole)*/

addRole(spec, newRole) =
/* preconditions */
PRE
spec ∈ arch spec ∧ newRole ∈ compRole ∧ newRole 6∈ spec components(spec) ∧
/* spec does not contain a role with the same name*/
∀ cr.(cr ∈ compRole ∧ cr ∈ spec components(spec)

⇒ comp name(cr) 6= comp name(newRole))
THEN
/* actions */
/* update the set of clients (required interfaces), the set of

servers (provided interfaces) and the set of component roles */
spec servers(spec) := spec servers(spec) ∪ servers(newRole) ||
spec clients(spec) := spec clients(spec) ∪ clients(newRole) ||
spec components(spec) := spec components(spec) ∪ {newRole}

END;

5 Evolution scenario

5.1 Motivation

To illustrate the evolution approach, we propose an example of evolving the Has
architecture. The objective is to enable the control of the house through a mobile

device running under Android OS. The change is initiated at the configuration
level and attempts to adapt the current HAS implementation to an android
device.

Figure 4-a shows the initial implementation of HAS while Figure 4-b shows
the evolved one. Two main changes are noticed in the new configuration: the
orchestrator is substituted for a new one compatible with android. Since a new
service to control the intensity of lamp is required, the component Lamp is
replaced by the component AdjustableLamp with additional provided interface
(IIntensity) to adjust the luminosity.

Fig. 4. Evolving the HAS configuration

5.2 Tool support overview

At this stage of work, the evolution process is assisted using ProB [13], an an-
imation tool of B models. We manually instantiate the B formal models corre-
sponding to the Has architecture and execute evolution rules at each abstraction
level. We control the evolution process by checking consistency and coherence
properties thanks to the evaluation console of ProB. This first step provides
a proof feasability of our work. Ongoing work is to automate the generation of
Dedal formal models and use the ProB solver to automate the evolution process.

5.3 Evolving the HAS configuration

The change is initiated by disconnecting and deleting the old orchestrator. Then,
the one compatible with android is added and connected. The old Lamp is re-
placed by the adjustable one and connected to the android orchestrator. The
evolution manager performs the following operations:

disconnect(HAS config, (cl4, rintIPower), (cl1, pintIPower))
disconnect(HAS config, (cl4, rintIClock), (cl2, pintIClock))
disconnect(HAS config, (cl4, rintITherm), (cl3, pintITherm))
disconnect(HAS config, (cl4, rintIAirCon), (cl3, pintIAirCon))
deleteClass(HAS config, cl4)
addClass(HAS config, cl4a)
replaceClass(HAS config, cl1, cl1a)
connect(HAS config, (cl4a, rintIPower2), (cl1a, pintIPower2))
connect(HAS config, (cl4a, rintIIntensity), (cl1a, pintIIntensity))
connect(HAS config, (cl4a, rintIClock2), (cl2, pintIClock))
connect(HAS config, (cl4a, rintITherm2), (cl3, pintITherm))
connect(HAS config, (cl4a, rintIAirCon2), (cl3, pintIAirCon2))

We note that cl1, cl2, cl3 and cl4 refer respectively to the component classes
Lamp, Clock, AirConditioner and Orchestrator. cl1a and cl4a refer respectively
to the new component classes AdjustableLamp and AndroidOrchestrator. Their
Interface names are prefixed with rint(for a required interface) and pint(for
provided interface) followed by the interface type name and eventually a number
when there is several instances of the same interface

5.4 Propagating change to the HAS specification

The current Has specification is no longer a good documentation of the new
version of the HAS configuration and thus, we have a problem of erosion. In-
deed, the control of the light intensity is not included in the current specification.
Hence, a new documentation version is required to keep both descriptions co-
herent. Figure 5 shows the initial and evolved version of the HAS specification
after the change propagation.

Fig. 5. Evolving the HAS specification by change propagation

The change is propagated to the HAS specification by replacing the role
HomeOrchestrator(cr4) with HomeOrchestrator2 (cr4a) and the role Light(cr1)

by Lunminosity(cr1a). The following operations are performed by the evolution
manager:

disconnect(HAS spec, (cr4, rintILight), (cr1, pintILight))
disconnect(HAS spec, (cr4, rintIT ime), (cr2, pintIT ime))
disconnect(HAS spec, (cr4, rintITherm1), (cr3, pintITherm))
disconnect(HAS spec, (cr4, rintICon), (cr5, pintICon))
deleteRole(HAS spec, cr4)
addRole(HAS spec, cr4a)
replaceRole(HAS spec, cr1, cr1a)
connect(HAS spec, (cr4a, rintILight2), (cr1a, pintILight2))
connect(HAS spec, (cr4a, rintIIntensity), (cr1a, pintIIntensity))
connect(HAS spec, (cr4a, rintIT ime), (cr2, pintIT ime))
connect(HAS spec, (cr4a, rintITherm1), (cr3, pintITherm))
connect(HAS spec, (cr4a, rintICon), (cr5, pintICon))

5.5 Propagating change to the HAS assembly

The current HAS assembly violates the instantiation rule according to the new
version of the HAS configuration. This violation is detected by the evolution
manager and change is triggered at the assembly level to restore coherence. Fi-
gure 6 illustrates the changes applied on the assembly architecture.

Fig. 6. Evolving the HAS assembly

6 Conclusion and future work

In this paper, we give an overview of our three-level Adl Dedal and its formal
model. At this stage, a set of evolution rules is proposed to handle architecture
change during the three steps of software lifecycle: specification, implementation
and deployment. The rules were tested and validated on sample models using a
B model checker. As future work, we aim to manage the history of architecture
changes in Dedal descriptions as a way to manage software system versions.
Furthermore we are considering to automate evolution by integrating Dedal and
evolution rules into an eclipse-based platform.

References

1. Mens, T., Serebrenik, A., Cleve, A., eds.: Evolving Software Systems. Springer
(2014)

2. Medvidovic, N.: ADLs and dynamic architecture changes. In: Joint Proceedings
of the Second International Software Architecture Workshop and International
Workshop on Multiple Perspectives in Software Development (Viewpoints ’96) on
SIGSOFT ’96 Workshops, New York, USA, ACM (1996) 24–27

3. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM TOSEM
6(3) (July 1997) 213–249

4. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: Proceedings
of the 4th ACM SIGSOFT Symposium on Foundations of Software Engineering.
SIGSOFT ’96, New York, NY, USA, ACM (1996) 3–14

5. Zhang, H.Y., Urtado, C., Vauttier, S.: Architecture-centric component-based devel-
opment needs a three-level ADL. In: Proceedings of the 4th European Conference
on Software Architecture. Volume 6285 of LNCS., Copenhagen, Denmark, Springer
(August 2010) 295–310

6. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Transactions on Software Engineer-
ing 26(1) (January 2000) 70–93

7. Garlan, D., Monroe, R., Wile, D.: Acme: An architecture description interchange
language. In: Proceedings of the 1997 Conference of the Centre for Advanced
Studies on Collaborative Research. CASCON ’97, IBM Press (1997) 7–

8. Dashofy, E., van der Hoek, A., Taylor, R.: A highly-extensible, xml-based architec-
ture description language. In: Software Architecture, 2001. Proceedings. Working
IEEE/IFIP Conference on. (2001) 103–112

9. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIG-
SOFT Software Engineering Notes 17(4) (October 1992) 40–52

10. Zhang, H.Y., Zhang, L., Urtado, C., Vauttier, S., Huchard, M.: A three-level
component model in component-based software development. In: Proceedings of
the 11th GPCE, Dresden, Germany, ACM (September 2012) 70–79

11. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York, USA (1996)

12. Mokni, A., Huchard, M., Urtado, C., Vauttier, S., Zhang, H.Y.: Towards automat-
ing the coherence verification of multi-level architecture descriptions. In: Proceed-
ings of the 9th International Conference on Software Engineering Advances, Nice,
France (October 2014)

13. Leuschel, M., Butler, M.: Prob: An automated analysis toolset for the b method.
International Journal on Software Tools for Technology Transfer 10(2) (February
2008) 185–203

	A three-level formal model for software architecture evolution

