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Abstract. Events on the Web are increasingly being produced in the
form of data streams, and are present in many different scenarios and
applications such as health monitoring, environmental sensing or social
networks. The heterogeneity of event streams has raised the challenges of
integrating, interpreting and processing them coherently. Semantic tech-
nologies have shown to provide both a formal and practical framework
to address some of these challenges, producing standards for representa-
tion and querying, such as RDF and SPARQL. However, these standards
are not suitable for dealing with streams for events, as they do not in-
clude the concpets of streaming and continuous processing. The idea of
RDF stream processing (RSP) has emerged in recent years to fill this
gap, and the research community has produced prototype engines that
cover aspects including complex event processing and stream reasoning
to varying degrees. However, these existing prototypes often overlook
key principles of reactive systems, regarding the event-driven processing,
responsiveness, resiliency and scalability. In this paper we present a re-
active model for implementing RSP systems, based on the Actor model,
which relies on asynchronous message passing of events. Furthermore,
we study the responsiveness property of RSP systems, in particular for
the delivery of streaming results.

1 Introduction

Processing streams of events is challenging task in a large number of systems
in the Web. Events can encode different types of information at different levels,
e.g. concerts, financial patterns, traffic events, sensor alerts, etc., generating large
and dynamic volumes of streaming data. Needless to say, the diversity and the
heterogeneity of the information that they produce would make it impossible to
interpret and integrate these data, without the appropriate tools. Semantic Web
standards such as RDF1 and SPARQL2 provide a way to address these chal-
lenges, and guidelines exist to produce and consume what we know as Linked
Data. While these principles and standards have already gained a certain degree
of maturity and adoption, they are not always suitable for dealing with data
streams. The lack of order and time in RDF, and its stored and bounded char-
acteristics contrast with the inherently dynamic and potentially infinite nature
1 RDF 1.1 Primerhttp://www.w3.org/TR/rdf11-primer/
2 SPARQL 1.1 http://www.w3.org/TR/sparql11-query/



of the time-ordered streams. Furthermore, SPARQL is governed by one-time
semantics as opposed to the continuous semantics of a stream event processor.
It is in this context that it is important to ask How can streaming events can
be modeled and queried in the Semantic Web?. Several approaches have been
proposed in the last years, advocating for extensions to RDF and SPARQL for
querying streams of RDF events. Examples of these RDF stream processing
(RSP) engines include C-SPARQL [4], SPARQLstream [6], EP-SPARQL [3] or
CQELS [11], among others.

Although these extensions target different scenarios and have heterogeneous
semantics, they share an important set of common features, e.g. similar RDF
stream models, window operators and continuous queries. There is still no stan-
dard set of these extensions, but there is an ongoing effort to agree on them in
the community 3. The RSP prototypes that have been presented so far focus al-
most exclusively in the query evaluation and the different optimizations that can
be applied to their algebra operators. However, the prototypes do not consider
a broader scenario where RDF stream systems can reactively produce and con-
sume RDF events asynchronously, and deliver continuous results dynamically,
depending on the demands of the stream consumer.

In this paper we introduce a model that describes RSP producers and con-
sumers, and that is adaptable to the specific case of RSP query processing. This
model is based on the Actor Model, where lightweight objects interact exclusively
by interchanging immutable messages. This model allows composing networks of
RSP engines in such a way that they are composable, yet independent, and we
show how this can be implemented using existing frameworks in the family of
the JVM (Java Virtual Machine) languages. In particular, we focus on specifying
how RSP query results can be delivered in scenarios where the stream producer
is faster than the consumer, and takes into account its demand to push only the
volumes of triples that can be handled by the other end. This dynamic push
delivery can be convenient on scenarios where receivers have lower storage and
processing capabilities, such as constrained devices and sensors in the IoT. The
remainder of the paper is structured as follows: we briefly describe RSP systems
and some of their limitations in Section 2, then we present the actor-based model
on Section 3. We provide details of the dynamic push delivery on Section 4, and
the implementation and experimentation are described in Section 5. We present
the related work on Section 6 before concluding in Section 7.

2 RSP Engines, Producers and Consumers

In general RSP query engines can be informally described as follows: given as
input a set of RDF streams and graphs, and a set of continuous queries, the
RSP engine will produce a stream of continuous answers matching the queries
(see Figure 1). This high-level model of an RSP engine is simple yet enough
to describe most stream query processing scenarios. Nevertheless, this model,
3 W3C RDF Stream Processing Community Group http://www.w3.org/community/rsp



and the existing implementations of it, does not detail how stream producers
communicate with RSP engines, and how stream consumers receive results from
RSP engines. This ambiguity or lack of specification has resulted in different
implementations that may result in a number of issues, especially regarding
responsiveness, elasticity and resiliency.

Fig. 1: Evaluation of continuous queries in RDF Stream Processing. The data stream flows through
the engine, while continuous queries are registered and results that match them are streamed out.

2.1 RSP Query Engines

To illustrate these issues, let’s consider first how streams are produced in these
systems. On the producer side, RDF streams are entities to which the RSP
engine subscribes, so that whenever a stream element is produced, the engine
is notified (Figure 2). The issues with this model arise from the fact that the
RSP engine and the stream producer are tightly coupled. In some cases like C-
SPARQL or SPARQLstream, the coupling is at the process level, i.e. both the
producer and the engine coexist in the same application process. A first issue
regards scalability: it is not possible to dynamically route the stream items from
the producer to a different engine or array of engines, since the subscription is
hard-wired on the code. Moreover, if the stream producer is faster than the RSP
engine, the subscription notifications can flood the latter, potentially overflowing
its capacity. A second issue is related to resilience: failures on the stream producer
can escalate and directly affect or even halt the RSP engine.

Fig. 2: Implementation of an RSP query engine based on tightly coupled publisher and subscribers.

Looking at the stream consumer side, the situation is similar. The continuous
queries, typically implemented as SPARQL extensions, are registered into the
RSP engine, acting as subscription systems. Then, for each of the continuous
queries, a consumer can be attached so that it can receive notifications of the
continuous answers to the queries (see Figure 2). Again, we face the problem



of tightly coupled publisher and subscribers that have fixed routing configura-
tion and shared process space, which may hinder the scalability, elasticity and
resiliency of the system. Added to that, the delivery mode of the query results
is fixed and cannot be tuned to the needs of the consumer.

It is possible to see these issues in concrete implementations: for instance
in Listing 1 the C-SPARQL code produces an RDF stream. Here, the stream
data structure is mixed with the execution of the stream producer (through a
dedicated thread). Even more important, the tightly coupled publishing is done
when the RDF quad is made available through the put method. The engine (in
this case acting as a consumer) is forced to receive quad-by-quad whenever the
RDF Stream has new data.
public class SensorsStreamer extends RdfStream implements Runnable {

public void run() {

while(true){

RdfQuadruple q=new RdfQuadruple(subject,predicate,object,

System.currentTimeMillis());

this.put(q);

}

}

}

Listing 1: Example of generation of an RDF stream in C-SPARQL.

A similar scenario can be observed on query results recipient. The continuous
listener code for the CQELS engine in Listing 2 represents a query registration
(ContinuousSelect) to which one or more listeners can be attached. The subscrip-
tion is tightly coupled, and results are pushed mapping by mapping, forcing the
consumer to receive these updates and act accordingly.
String queryString =" SELECT ?person ?loc "

ContinuousSelect selQuery=context.registerSelect(queryString);

selQuery.register(new ContinuousListener() {

public void update(Mapping mapping){

String result="";

for(Iterator<Var> vars=mapping.vars();vars.hasNext();){

result+=" "+context.engine().decode(mapping.get(vars.next()));

System.out.println(result);

}

}

});

Listing 2: Example of generation of an RDF stream in CQELS.

2.2 Results Delivery for Constrained Consumers

In the previous section we discussed some of the general issues of current RSP
engines regarding producing and consuming RDF streams. Now we focus on the
particular case where a stream consumer is not necessarily able to cope with the
rate of the stream producer, and furthermore, when the stream generation rate
fluctuates. As an example, consider the case of an RDF stream of annotated geo-
located triples that mobile phones communicate to stationary sensors that detect
proximity (e.g. for a social networking application, or for public transportation
congestion studies), In this scenario the number of RDF stream producers can
greatly vary (from a handful to thousands, depending on how many people are
nearby in a certain time of the day), and also the stream rate can fluctuate.



In this and other examples the assumption that all consumers can handle any
type of stream load does not always hold, and RSP engines need to consider
this fact. Some approaches have used load shedding, eviction and discarding
methods to alleviate the load, and could be applicable in these scenarios [1, 9].
Complementary to that, it should be possible for stream producers to regulate
the rate and the number of items they dispatch to a consumer, depending on
the data needs and demand of the latter.

3 An Actor Architecture for RDF Stream Processing

A central issue in the previous systems is that several aspects are mixed into a
single implementation. An RDF stream in these systems encapsulates not only
the stream data structure, but also its execution environment (threading model)
and the way that data is delivered (subscriptions). In distributed systems, one
of the most successful models for decentralized asynchronous programming is
the Actor model [2, 10]. This paradigm introduces actors, lightweight objects
that communicate through messages in an asynchronous manner, with no-shared
mutable state between them. Each actor is responsible of managing its own state,
which is not accessible by other actors. The only way for actors to interact is
through asynchronous and immutable messages that they can send to each other
either locally or remotely, as seen in figure 3.

Fig. 3: Actor model: actors communicate through asynchronous messages that arrive to their mail-
boxes. There is no shared mutable state, as each actor handles its own state exclusively.

We can characterize an actor A as a tuple: A = (s, b, mb), where s is the
actor state, b is the actor behavior and mb is its message box. The state s is
accessible and modifiable only by the actor itself, and no other Actor can either
read or write on it. The mailbox mb is a queue of messages mi that are received
from other actors. Each message mi = (as

i , ar
i , di) is composed of a data item

di, a reference to the sender actor as
i , and a reference to the receiver actor ar

i .
The behavior is a function b(mi, s) where mi is a message received through
the mailbox. The behavior can change the actor state depending on the message
acquired. Given a reference to an actor a, an actor can send a message mi through
the send(mi, a) operation. References to actors can be seen as addresses of an
actor, which can be used for sending messages.

We propose a simple execution model for RDF stream processing that is
composed of three generic types of actors: a stream producer, a processor and
a consumer, as depicted in Figure 4. A producer actor generates and transmits
messages that encapsulate RDF streams to the consumer actors. The processor
actor is a special case that implements both a producer (producer of results)



and a consumer (consumes the input RDF streams), as well as some processing
logic. Following the above definitions the data di of a message mi emitted by a
producer actor, or received by a consumer actor, is a set of timestamped triples.
This model does not prevent these actors to receive and send also other types of
messages.

In this model there is a clear separation of the data and the execution: the
data stream is modeled as an infinite sequence of immutable event messages,
each containing a set of RDF triples. Communication between producers and
consumers is governed through asynchronous messaging that gets to the mail-
boxes of the actors. In that way, the subscribers are not tightly coupled with the
producers of RDF streams, and in fact any consumer can feed from any stream
generated by any producer. Moreover, this separation allows easily isolating fail-
ures in either end. Failures on consumers do not directly impact other consumers
nor the producers, and vice-versa.

Fig. 4: RSP actors: RDF stream producers, processors and consumers. All actors send the stream
elements as asynchronous messages. An RSP query engine is both a consumer (receives an input
RDF stream) and a producer (produces a stream of continuous answers).

Event-driven asynchronous communication within RSP actors, as well as
avoiding blocking operators, guarantees that the information flow is not stuck
unnecessarily. Also, adaptive delivery of query results using dynamic push and
pull, can prevent data bottlenecks and overflow, as we will see later. By handling
stream delays, data out of order and reacting gracefully to failures, the system
can maintain availability, even under stress or non-ideal conditions. Similarly,
elasticity can boost the system overall responsiveness by efficiently distribut-
ing the load and adapting to the dynamic conditions of the system. The actor
model results convenient for RDF stream processing, as it constitutes a basis for
constructing what is commonly called a reactive system4. Reactive systems are
characterized for being event-driven, resilient, elastic, and responsive.

4 The reactive manifesto http://www.reactivemanifesto.org/



4 Dynamic Push Delivery

In RSP engines there are typically two types of delivery modes for the stream of
results associated to a continuous query: pull and push. In pull mode, the con-
sumer actively requests the producer for more results, i.e. it has control of when
the results are retrieved. While this mode has the advantage of guaranteeing
that the consumer only receives the amount and rate of data that it needs, it
may incur in delays that depend on the polling frequency. In the push mode, on
the contrary, the producer pushes the data directly to the consumer, as soon as
it is available. While this method can be more responsive and requires no active
polling communication, it forces the consumer to deal with bursts of data, and
potential message flooding. In some cases, when the consumer is faster than the
producer, the push mode may be appropriate, but if the rate of messages exceeds
the capacity of the consumer, then it may end up overloaded, causing system
disruption, or requiring shedding or other techniques to deal with the problem
(see Figure 5a).

(a) Push: overload if the producer
pushes too fast.

(b) Dynamic push: demand on the
side of the consumer.

Fig. 5: Delivery modes in RSP engines.

As an alternative, we propose using a dynamic push approach for delivering
stream items to an RDF stream consumer, taking into consideration the capacity
and availability of the latter (see Figure 5b ). The dynamic mechanism consists in
allowing the consumer to explicitly indicate its demand to the producer. This can
be simply done by issuing a message that indicates the capacity (e.g. volume of
data) that it can handle. Then, knowing the demand of the consumer, the stream
producer can push only the volume of data that is required, thus avoiding any
overload on the consumer side. If the demand is lower than the supply, then this
behavior results in a normal push scenario. Otherwise, the consumer can ask for
more data, i.e. pull, when it is ready to do so. Notice that the consumer can at
any point in time notify about its demand. If the consumer is overloaded with
processing tasks for a period of time, it can notify a low demand until it is free
again, and only then raise it and let the producer know about it.

5 Implementing RSP Dynamic Push

In order to validate the proposed model, and more specifically, to verify the
feasibility of the dynamic push in a RSP engine, we have implemented this
mechanism on top of an open-source RSP query processor. We have used the
Akka library5, which is available for both Java and Scala, to implement our
5 Akka: http://akka.io/



RSP Actors. Akka provides a fully fledged implementation of the actor model,
including routing, serialization, state machine support, remoting and failover,
among other features. By using the Akka library, we were able to create producer
and consumer actors that receive messages, i.e. streams of triples. For example, a
Scala snippet of a consumer is detailed in Listing 3, where we declare a consumer
that extends the Akka Actor class, and implements a receive method. The receive
method is executed when the actor receives a message on its mailbox, i.e. in our
case an RDF stream item.
class RDFConsumer extends Actor {

def receive ={

case d:Data =>

// process the triples in the data message

}

}

Listing 3: Scala code snippet of an RDF consumer actor.

To show that an RSP engine can be adapted to the actor model, we have
used CQELS, which is open source and is written in Java, as it has demonstrated
to be one of the most competitive prototype implementations, at least in terms
of performance [12]. More concretely, we have added the dynamic push delivery
of CQELS query results, so that a consumer actor can be fed with the results of
a CQELS continuous query.

To show the feasibility of our approach and the implementation of the dy-
namic push, we used a synthetic stream generator based on the data and vocab-
ularies of the SRBench [15] benchmark for RDF stream processing engines. As a
sample query, consider the CQELS query in Listing 4 that constructs a stream
of triples consisting of an observation event and its observed timestamp, for the
last second.

PREFIX omOwl: http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#.

CONSTRUCT {?observation <http://epfl.ch/stream/produces> ?time}

WHERE {

STREAM <http://deri.org/streams/rfid> [RANGE 1000ms] {

?observation omOwl:timestamp ?time

}

}

Listing 4: Example of generation of CQELS query over the SRBench dataset.

In the experiments, we focused on analyzing the processing throughput of
the CQELS dynamic push, compared to the normal push operation. We tested
using different processing latencies, i.e. considering that the processing on the
consumer side can cause a delay of 10, 50, 100 and 500 milliseconds. This sim-
ulates a slow stream consumer, and we tested its behavior with different values
for the fluctuating demand: e.g. from 5 to 10 thousand triples per execution.
The results of these experiments are depicted in Figure 6, where each plot cor-
responds to a different delay value, the Y axis is the throughput, and the X axis
is the demand of the consumer.

As it can be seen, when the demand of the consumer is high, the behavior
is similar to the push mode. However if the consumer specifies a high demand



Fig. 6: Results of the experimentation: throughput of the results delivery after query processing for
bot dynamic and normal push. The delay per processing execution is of 500, 100, 50, 10 milliseconds
from left to right, top to bottom. The Y axis is the throughput, and the X axis is the demand.

but has a slow processing time, the throughput is slowly degraded. When the
processing time is fast (e.g. 10 ms), the push delivery throughput is almost
constant, as expected, although it is important to notice that in this mode, if
the supply is greater than the demand, the system simply drops and does not
process the exceeding items. In that regard, the dynamic push can help alleviate
this problem, although it has a minor penalty in terms of throughput.

6 Related Work & Discussion

RDF stream processors have emerged in the latest years as a response to the chal-
lenge of producing, querying and consuming streams of RDF events. These efforts
resulted in a series of implementation and approaches in this area, proposing
their own set of stream models and extensions to SPARQL [5, 11, 7, 3, 9]. These
and other RSP engines have focused on the execution of SPARQL streaming
queries and the possible optimization and techniques that can be applied in that
context. However, their models and implementation do not include details about
the stream producers and consumers, resulting in prototypes that overlook the
issues described in Section 2.

For handling continuous queries over streams, several Data Stream Manage-
ment Systems (DSMS) have been designed and built in the past years, exploiting
the power of continuous query languages and providing pull and push-based data
access. Other systems, cataloged as complex event processors (CEP), emphasize



on pattern matching in query processing and defining complex events from basic
ones through a series of operators [8]. Although none of the commercial CEP
solutions provides semantically rich annotation capabilities on top of their query
interfaces, systems as the ones dexfibed in [14, 13] have proposed different types
of semantic processing models on top of CEPs.

More recently, a new sort of stream processing platforms has emerged, spin-
ning off the massively parallel distributed Map-Reduce based frameworks. Ex-
amples of this include Storm6 or Spark Streaming7, which represent stream
processing as workflows of operators that can be deployed in the cloud, hiding
the complexity of parallel and remote communication. The actor based model
can be complementary to such platforms (e.g. Spark Streaming allows feeding
streams from Akka Actors on its core implementation).

7 Conclusions

Event streams are one of the most prevalent and ubiquitous source of Big Data
on the web, and it is a key challenge to design and build systems that cope with
them in an effective and usable way. In this paper we have seen how RDF Stream
Processing engines can be adapted to work in an architecture that responds to
the principles of reactive systems. this model is based on the usage of lightweight
actors that communicate via asynchronous event messages. We have shown that
using this paradigm we can avoid the tight coupled design of current RSP en-
gines, while opening the way for building more resilient, responsive and elastic
systems. More specifically, we have shown a technique for delivering the contin-
uous results of queries in an RSP engine through a dynamic push that takes
into consideration the demand of the stream consumer. The resulting prototype
implementation, on top of the well known CQELS engine, shows that is feasible
to adapt an RSP to include this mode, while keeping a good throughput.

When processing streams of data, whether they are under the RDF umbrella
or not, it is important to take architectural decisions that guarantee that the
system aligns with the characteristics of a reactive system. Otherwise, regardless
of how performant a RSP engine is, if it is not able to be responsive, resilient
to failures and scalable, it will not be able to match the challenges of streaming
applications such as the Internet of Things. we have seen that there are many
pitfalls in systems design that prevent most of RSP engines to be reactive, in the
sense that they do not always incorporate the traits of resilience, responsiveness,
elasticity and message driven nature. We strongly believe that these principles
have to be embraced at all levels of RDF stream processing to be successful.

As future work, we plan to extend the reactive actor model to all aspects of
an RSP engine, including the stream generation, linking with stored datasets and
dealing with entailment regimes. We also envision to use this architecture to show
that different and heterogeneous RSP engines can be combined together, forming
6
http://storm.apache.org/

7
https://spark.apache.org/streaming/



a network of producers and consumers that can communicate via messaging in
a fully distributed scenario.
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