
Patterns for Identifying and Structuring Features from

Textual Descriptions: An Exploratory Study

Nili Itzik and Iris Reinhartz-Berger

Department of Information Systems, University of Haifa, Israel

nitzik@campus.haifa.ac.il, iris@is.haifa.ac.il

Abstract. Software Product Line Engineering (SPLE) supports developing and

managing families of similar software products, termed Software Product Lines

(SPLs). An essential SPLE activity is variability modeling which aims at repre-

senting the differences among the SPL’s members. This is commonly done with

feature diagrams – graph structures specifying the user visible characteristics of

SPL’s members and the dependencies among them.

Despite the attention that feature diagrams attract, the identification of features

and structuring them into feature diagrams remain challenging. In this study, we

utilized Natural Language Processing (NLP) techniques in order to explore dif-

ferent patterns for identifying and structuring features from textual descriptions.

Such a catalog of patterns is important for both manually-created and automati-

cally-generated feature diagrams.

Keywords: Variability Analysis, Feature Diagrams, Natural Language Pro-

cessing, Empirical Evaluation

1 Introduction

Software Product Line Engineering (SPLE) supports developing and managing simi-

lar software products (SPLs) [‎14]. SPLE has been proven to be successful in reduc-

tion of development cost, time-to-market and improvement of product's quality [‎12].

Variability modeling is a crucial activity for identifying and documenting the precise

differences among the SPL’s members for effective and efficient development and

management of the entire SPL. Feature diagrams [‎3], which are commonly the out-

comes of the variability modeling activity, are graph (or tree) structures that describe

“features” of a SPL and the relationships and dependencies among them [‎9]. A “fea-

ture” can be defined as "a prominent or distinctive user-visible aspect, quality, or

characteristic of a software system or systems" [‎9].

Variability models in general and feature diagrams in particular are created either

manually by humans or automatically utilizing methods such as [‎2], [‎4], [‎15], [‎18].

Being manually or automatically created, the identification and structuring of features

are important for the comprehensibility of the models. In this study we explored dif-

ferent semantic patterns to create feature diagrams from textual descriptions. The

mailto:nitzik@campus.haifa.ac.il,%20iris@is.haifa.ac.il

descriptions were short and focused on the (visible) behaviors of the SPLs’ members.

We further grounded these patterns utilizing Natural Language Processing (NLP)

techniques and proposed guidelines for their use. Thus, the contribution of the work is

two-fold. First, the patterns provide guidelines for modelers who create feature dia-

grams as to how to identify and structure features. Second, the patterns may be the

basis for flexible automatic feature extraction processes.

The rest of the paper is structured as follows. Section ‎2 briefly reviews related

work. Section ‎3 describes the study’s settings and execution, while Section ‎4 presents

the patterns extraction process and outcomes. Section ‎5 discusses the findings and

refers to limitations. Finally, Section ‎6 concludes and suggests future directions.

2 Related Work

As noted, feature diagrams can be created manually or automatically from text. Only

a few studies suggest guidelines for (manually) creating feature diagrams. In [‎10]

guidelines for identifying features and classifying them according to the types of in-

formation they represent are suggested. The four classes of features are: capability,

operating environment, domain technology, and implementation technique. Organiza-

tion of the features into diagrams is then done by analyzing the relations between

these classes of features. In [‎11] further guidelines have been suggested for domain

planning, feature identification, feature organization, and feature refinement. For ex-

ample, it is recommended not to “organize features to represent functional dependen-

cies,” but to “capture and represent commonalities and differences.”

Studies that use textual descriptions for automatically (or semi-automatically) iden-

tifying and extracting features relay on syntactic patterns, utilizing different parts-of-

speech (POS). Examples of such studies are [‎2], [‎4], [‎5], [‎7], [‎13], [‎18]. They mainly

use nouns and verbs for this purpose. Some of them suggest structuring the features

using different clustering algorithms. In [‎8], an automatic Semantic and Ontological

Variability Analysis (SOVA) method is suggested to construct feature diagrams based

on behavioral similarity and variability. The input textual descriptions are parsed

according to the semantic roles of the phrases in the sentences and the behavioral

elements are extracted utilizing an ontological model. Then the semantic similarity

between the behavioral elements is used for creating feature diagrams.

There are also studies that generate features diagrams from feature configurations

using refactoring techniques, e.g., [‎1] and [‎16]. In these studies the inputs are some

structured or formal representations (such as, propositional formulas or feature lists

and dependencies). Identification of features is not needed, as the features are already

given. Organization of features into diagrams is done by analyzing implication

graphs, which are directed graphs with features as vertices and edges that represent

dependencies between features.

To summarize, existing studies provide some general guidelines for creating fea-

ture diagrams. Others extract features using specific, pre-defined syntactic or gram-

matical patterns. The organization of features into diagrams in those studies is done

using transformation rules or clustering algorithms, without referring to the extracted

features characteristics (e.g., their POS). In our study, we explored the various seman-

tic patterns that can represent features, as well as the relations among them.

3 Study’s Settings and Execution

In order to explore the various ways modelers extract features from textual descrip-

tions and organize them into feature diagrams, we developed a questionnaire with

eight short paragraphs. Each paragraph described a SPL including information on the

applications’ behaviors and the allowed variability in the SPL. The task was to pre-

sent for each description a feature diagram that resembles the description
1
.

The participants in this study were 11 information systems students at the Universi-

ty of Haifa, Israel. Those students participated in an advanced software engineering

course that was devoted to SPLE. The descriptions referred to application domains

expected to be familiar to students: e-shop, library management, photo sharing, and

text editing. Overall we received 78 feature diagrams from the eleven participants, as

a few participants answered the questionnaire partially.

4 Outcomes: Feature Patterns and their Relations

Looking at the obtained feature diagrams, we observed that the participants used vari-

ous linguistic and semantic parts of the original descriptions when naming the fea-

tures. Therefore, we decided to utilize NLP techniques to analyze the results. Particu-

larly, we decided to use the Semantic Role Labeling (SRL) technique [‎6], which re-

fers to the semantic roles of phrases in particular sentences and goes beyond POS.

Next we elaborate on SRL, the patterns we identified, and the relations found between

the extracted patterns when organizing the features into diagrams.

4.1 Semantic Role Labeling

SRL [‎6] associates constituents of a phrase with their semantic roles in the phrase.

Those semantic roles identify the relationships that a syntactic constituent has with a

predicate. Typical semantic arguments include: (1) Agent (A0) – Who performs the

action?; (2) Object (A1) – On what object is the action performed?; (3) Instrument

(A2) – How is the action performed? Identification of adjunctive arguments, termed

modifiers, is further supported in SRL, for example: Temporal (AM-TMP) – When is

the action performed? or Adverbial (AM-ADV) – In what conditions is it performed?

The benefits of SRL for analyzing variability of functional requirements have al-

ready explored in [‎15]
2
. As an example consider the following sentence:

1 The questionnaire can be found at http://mis.hevra.haifa.ac.il/~iris/research/SOVA/

featureExtQue.pdf.
2 We used the English version of SRL. As the text descriptions were given in Hebrew – the

mother tongue of the participants, we had to translate them to English. Two researchers veri-

fied the translation and especially its accuracy with respect to POS.

http://mis.hevra.haifa.ac.il/~iris/research/SOVA/

The users subscribe to the site and update their profiles, using an online interface.

Two verb predicates are identified in this sentence: 'subscribe' and 'update'. Ac-

cordingly, the extracted roles (marked in square brackets) are:
 The users[Agent] subscribe[action]to the site[object]using an online interface[AM−ADV]

The users[Agent]update[action]their profile[object]using an online interface[AM−ADV]

The features extracted from this sentence are expected to include “update profile”

and “subscribe to site.” However, these features could appear in different contexts.

Fig. 1 demonstrates three such contexts for the feature “update profile”: the agent who

performs the action (a), the object on which the action is performed (b), and the action

itself (c).

User

Update
profile

Subscribe
to site

Profile

Update Delete

Update

Profile Order

(a) (c)(b)

 Legend
Mandatory
Optional

Fig. 1. Possible contexts to the feature “update profile”

4.2 Identified Feature Patterns

To identify the feature patterns we mapped the features that were specified by the

participants to the different descriptions to the outcomes of the SRL technique on

those descriptions. The extracted patterns are listed in Table 1. Since instruments and

modifiers played similar roles in our descriptions – they both describe actions – cur-

rently we do not distinguish between patterns based on those roles. Furthermore, the

other roles, namely, agents, actions, and objects, appear in (almost) any sentence,

while modifiers and instruments interchangeably appear, if at all.

As can be seen the commonly used patterns in our study described partial function-

ality (i.e., combination of actions and the objects on which they are performed, e.g.,

“update profile”) and objects (e.g., profile). These are followed by “descriptive” and

“actions” patterns, which utilize different modifiers/instruments and the sentences’

predicates, respectively. We further observed stakeholders-related patterns, namely,

patterns involving the agent role, and different combinations of functionality-related

roles, e.g., Action+Modifier/Instrument and Action+Object+Modifier/Instrument.

Table 1. The extracted feature patterns

Pattern Name Patterns Content Example

(modifier type)

occur-

rences

Partial functionality Action+Object “make order” 314

Objects Object “price” 246

Descriptive Modifier/ Instrument “via credit card” (AM-MNR) 230

Actions Action “purchase” 163

Stakeholders Agent “supplier” 59

Described actions Action+ Modifier/

Instrument

“view by popularity” (Instru-

ment)

39

Described partial

functionality

Action+ Object+ Modi-

fier/ Instrument

 “prices automatically updat-

ed” (AM-MNR)

9

Described objects Object+ Modifier/ In-

strument

“operations on file” (AM-LOC)

9

Actions by stake-

holders

Agent+Action “users register” 5

Described stake-

holders

Agent+ Modifier/ In-

strument

“retrieval interface from sup-

plier’s site”

4

Full functionality Agent+ Action+ Object “Suppliers publish items” 3

4.3 Relations of Feature Patterns

We further tried to examine the relations between the features’ patterns when organiz-

ing the features into diagrams. To this end, we examined for each one of the five top

found patterns what patterns their descendants follow, and particularly their direct

child features. Table 2 summarizes those findings.

 A child of a feature following the “partial functionality” pattern commonly fol-

lows “descriptive”, “objects”, or “partial functionality” patterns. This means that

the child refers to other aspects of the functionality (as in “descriptive” and “ob-

jects” patterns) or refines the parent (as in “partial functionality” pattern).

 A child of a feature following the “objects” pattern commonly follows “objects” to

refine the parent. However, it can also follow “descriptive”, “partial functionality”,

or even “actions” to describe or specify the possible uses of the objects.

 A child of a feature following the “descriptive” pattern commonly follows “de-

scriptive”, “actions”, or “partial functionality” patterns. In many cases the “de-

scriptive” pattern appears in the leaves of the diagram.

 A child of a feature following the “actions” pattern follows “descriptive”, “ob-

jects”, “actions”, or “partial functionality” patterns.

 A child of a feature following the “stakeholders” pattern mainly follows the “par-

tial functionality” pattern that describes the actions which are performed by the

stakeholders and the objects on which they are performed. Other children’s pat-

terns were also observed in this case, most notably, “actions” and “objects”.

Table 2. Relations between parent’s and child‘s patterns

 Parent’s pattern 

Child’s pattern 

Partial func-

tionality

Ob-

jects

Descrip-

tive

Actions Stake-

holders

Partial functionality 35 50 22 14 74

Objects 58 62 11 20 26

Descriptive 72 53 26 35 8

Actions 9 18 23 16 25

Stakeholders 5 2 7

Described actions 11 2 1 9 2

Described objects 1 2 1

Described partial function-

ality

 3 4 2

Full functionality 2

Actions by stakeholders 1

5 Discussion and Limitations

We identify a number of interesting results that worth further discussion. First, we

found that in many cases the features describe functionality-related aspects. These

findings are in-line with the definitions of features that many of them highlight the

functional part of the features.

Second, the top found patterns refer to either functionality or structure. In [‎8], we

have already reported that most feature diagrams in S.P.L.O.T
3
 – an academic reposi-

tory of feature diagrams – followed to some extent a structural or a functional per-

spective. A structural perspective corresponds to our “objects” and “described ob-

jects” patterns. A functional perspective is highly related to our “actions”-involving

patterns. We further found that actions were usually accompanied with the objects on

which they are performed (corresponding to our “partial functionality” pattern).

Third, our findings can be directly transformed into guidelines for modeling feature

diagrams from textual descriptions:

1. Extract actions (potentially with their associated objects), objects, modifiers, and

agents from the textual descriptions. Examine whether they can serve as features,

namely, their variability is of interest.

2. Try to refine each of the extracted features with the same pattern (used to extract

the feature) or with the other top found patterns.

3. Examine the parts of the descriptions not covered by the previous steps. Try to use

the other patterns to fully model variability.

Finally, our patterns cover the ways existing methods extract features from textual

descriptions. This originates from the fact that our patterns are semantic, as opposed

3 S.P.L.O.T Software Product Lines Online Tools. http://www.splot-research.org/

http://www.splot-research.org/

to the syntactic and grammatical patterns used by the existing approaches. The same

sequence of POS can be mapped to different semantic roles. For example, adjec-

tive+noun can be used for describing the agent (e.g., registered user) or the object

(e.g., small items). As such, the suggested catalog goes beyond the syntactical struc-

ture of the sentence. It can further be used by those methods to enable more flexible

generation of feature diagrams and may set the ground for systematic methods to

identify and structure SPL features.

The validity of our study is subject to several threats. First, the knowledge and

skills of our participants may be questioned. However, they were students in an ad-

vanced software engineering course who had the required background in SPLE and

feature modeling. The use of students in different software engineering research areas

is acceptable as it was shown that students have a good understanding of the way

industry behaves [‎17]. Second, the relatively low number of participants may chal-

lenge the ability to generalize the results. Thus, each participant was required to mod-

el several feature diagrams, resulting with 78 diagrams overall. Although these dia-

grams are not independent, it enabled us analyzing more cases. Another threat is the

possibility that the way the descriptions were phrased influenced the feature extrac-

tion process. Thus, we used eight different descriptions. We did not use a fixed, pre-

defined way to phrase those descriptions. Finally, the questionnaire used in this study

was written in Hebrew and translated to English in order to apply the SRL technique.

This may affect the pattern extraction process. To overcome this threat, a researcher

not involved in the current study additionally verified the translation in general and

with respect to POS in particular. Following her feedback, a few corrections were

made prior to execution of the study.

6 Summary and Future Work

Variability modeling is an important activity in Software Product Line Engineering

(SPLE). Extraction of features and structuring them into diagrams are challenging,

time-consuming, and error-prone. In this paper we present a catalog of patterns that

can be used to extract features from textual descriptions. These patterns are based on

semantic considerations (rather than syntactic and grammatical ones). We further

discuss the relations between those patterns in order to assist in organizing the fea-

tures hierarchically and creating feature diagrams. As far as we know, we are the first

ones to create a catalog of semantic patterns and use it to create feature diagrams.

Further work is required to replicate the study with different experienced popula-

tions of participants and different textual descriptions (in terms of length and phrasing

styles). The usefulness of the patterns for modeling variability and automatically gen-

erating feature diagrams needs to be explored as well. Finally, exploration and analy-

sis of the indirect relations between patterns and refinement of patterns based on ex-

isting or additional roles may provide interesting findings that can help improve fea-

ture diagrams creation processes.

References

1. Acher, M., Baudry, B., Heymans, P., Cleve, A., & Hainaut, J. L. (2013). Support for re-

verse engineering and maintaining feature models. Workshop on Variability Modelling of

Software-intensive Systems (VaMoS), Article #20.‏
2. Acher, M., Cleve, A., Perrouin, G., Heymans, P., Vanbeneden, C., Collet, P.,& Lahire, P.

(2012). On extracting feature models from product descriptions. Workshop on Variability

Modelling of Software-intensive Systems (VaMoS), pp. 45-54.

3. Chen, L., & Babar, M.A. (2011). A systematic review of evaluation of variability man-

agement approaches in software product lines. Information and Software Technology 53,

pp. 344-362.

4. Davril, J. M., Delfosse, E., Hariri, N., Acher, M., Cleland-Huang, J., & Heymans, P.

(2013). Feature model extraction from large collections of informal product descriptions.

The 9th Joint Meeting on Foundations of Software Engineering, pp. 290-300.‏
5. Ferrari, A., Spagnolo, G. O., & Dell'Orletta, F. (2013). Mining commonalities and variabil-

ities from natural language documents. Software Product Line Conference (SPLC’13), pp.

116-120.

6. Gildea, D. & Jurafsky, D. (2002). Automatic Labeling of Semantic Roles. Computational

Linguistics 28 (3), pp. 245-288.

7. Hariri, N., Castro-Herrera, C., Mirakhorli, M., Cleland-Huang, J., & Mobasher, B. (2013).

Supporting domain analysis through mining and recommending features from online prod-

uct listings. IEEE Transactions on Software Engineering 39(12), pp. 1736-1752.

8. Itzik, N. & Reinhartz-Berger, I. (2014). Generating Feature Models from Requirements:

Structural vs. Functional Perspectives. Software Product Line Conference (SPLC’14) –

Volume 2: Workshops, Demonstrations, and Tools, pp. 44-51.

9. Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E. & Peterson, A. S. (1990), Feature-

Oriented Domain Analysis (FODA) Feasibility Study. Technical Report, SEI.

10. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M. (1998). Form: A feature-oriented

reuse method with domain-specific reference architectures. Annals of Software Engineer-

ing 5, pp. 143–168.

11. Lee, K., Kang, K.C., & Lee, J. (2002). Concepts and guidelines of feature modeling for

product line software engineering. International Conference on Software Reuse, pp. 62–77.

12. McGregor, J.D., Muthig, D., Yoshimura, K., & Jensen, P. (2010). Guest Editors' Introduc-

tion: Successful Software Product Line Practices. IEEE Software 27(3), pp. 16-21.

13. Niu, N. and Easterbrook, S. (2008). Extracting and modeling product line functional re-

quirements. Requirements Engineering conference (RE’08), pp. 155-164.‏
14. Pohl, K., Böckle, G., & van der Linden, F. (2005). Software Product-line Engineering:

Foundations, Principles, and Techniques, Springer.

15. Reinhartz-Berger, I., Itzik, N., & Wand, Y. (2014). Analyzing Variability of Software

Product Lines Using Semantic and Ontological Considerations. Conference on Advanced

Information Systems Engineering (CAiSE’14), LNCS 8484, pp. 150-164.

16. She, S., Lotufo, R., Berger, T., Wasowski, A., & Czarnecki, K. (2011). Reverse engineer-

ing feature models. International Conference on Software Engineering, pp. 461-470.

17. Svahnberg, M., Aurum. A., & Wohlin, C. (2008). Using Students as Subjects – An Empir-

ical Evaluation. ACM-IEEE International Symposium on Empirical Software Engineering

and Measurement, pp. 288-290.

18. Weston, N., Chitchyan, R., & Rashid, A. (2009). A framework for constructing semanti-

cally composable feature models from natural language requirements. Software Product

Line Conference (SPLC’09), pp. 211-220.

