
Towards a Model of Context-Aware Recommender 

System 

Lauma Jokste 

 

 Information Technology Institute, Riga Technical University, Kalku 1, Riga, Latvia 

lauma.jokste@rtu.lv  

Abstract. Users often have difficulties to use large-scale information systems 

efficiently because of their complexity. Additionally, these systems might be 

context dependent. If these context dependencies are taken into account during 

the system’s run-time phase, the most appropriate functionality might be 

provided to users in the form of recommendations for each context situation. 

The paper proposes to account for the context dependencies by using context 

aware recommendations and outlines an approach for modeling such 

recommendations. This approach is based on methodological foundations of 

Capability Driven Development. The paper discusses a motivational case for 

developing context aware recommendations and presents the initial method for 

recommendation modelling. 

Keywords: Recommender Systems, Recommendation Modeling, Context-

Aware recommendations, Capability Metamodel. 

1   Introduction and Related Work 

Large-scale information systems (IS) are subject to dynamically changing 

circumstances in the IS delivery phase. The current situation can be described by 

different context data defined as “any information that can be used to characterize 

the situation of an entity. An entity is a person, place, or object that is considered 

relevant to the interaction between the user and the application, including the user 

and the applications themselves” [1]. The context data can be taken into account in IS 

delivery thus increasing the usability and user satisfaction.  

Complex and extensive IS might reduce the user satisfaction and, if possible, users 

might choose alternative ways of completing their tasks. For example, citizens are 

avoiding using public e-services and are favoring physical services. Recommender 

systems are widely used in order to improve the usage of software and tools. They 

provide suggestions by recommending the items that users might likely be interested 

in [2].  Recommender systems are increasingly popular. Many recommender systems 

focus on improving and evaluating the collaborative-filtering technique [3]. They use 

internal information about historical user activity, user profile information and other 

to match users with recommended items [4]. 

Gradually, the recommender systems start to use more varied data and data 

sources, for example, social network data [5][6][7]. In some cases the context 



information might be relevant to calculate the most appropriate recommendations for 

users by using context-aware recommendation systems [8]. Recent investigations 

present location-based [9] and weather-dependent [10] recommendation algorithms 

and methods. Discovering suitable context data is still a challenge in recommender 

systems evaluation [11]. The proposed approach in this paper includes the usage of 

different context data that can be retrieved from both internal and external data 

sources. Context processing includes not only reading the context data, but also 

context data analysis which helps to predict the context data and user behavior. 

The recommender systems are usually item oriented and suggest the items in which 

users would be potentially interested in [12]. For instance, e-commerce sites such as 

Amazon.com recommend items users would be likely to buy [13], while content 

based systems recommend things based on textual analysis, e.g. in research area, 

citations can be recommended for the research by analyzing words in research papers 

[14]. In order to improve the recommender algorithms, hybrid recommender systems 

are developed by combining different recommendation algorithms and methods into 

one information system [15]. The approach proposed in this paper assumes that 

recommendations could be any kind of software entity and examples of 

recommendations include suggestions to execute a function, procedure, workflow or 

to perform data processing operations. 

This paper presents the recommendation system proposal which starts with 

recommendation modeling. Different kind of context information can be used as an 

input to the recommendation module. The modeling phase is considered as significant 

since models can help to deal with complexity and are easy perceptible for 

stakeholders without any specific IT skills [16]. Recommendation modeling includes 

specifying a set of business rules that help to define the software entities context 

dependencies and appoints which recommendations should be run in each contextual 

situation.  

Nowadays variability in IS delivery becomes more and more important. When 

business processes change, the software supporting these processes should be adjusted 

accordingly in order to fulfill the organizations goals [17]. Competitive software 

should be able to deal with the variability with minimal efforts. Changes in business 

processes can be affected by internal and/or external context. Adjusting software to 

changes in form of user recommendations by integrating Recommendation module in 

existing software allows to deal with variability without an important effort because 

recommendations can be easily changed in recommendation module without changing 

underlying software. 

This paper analyses the potential of using context-aware recommendations and 

proposes an approach for modeling context aware recommender systems. The 

modeling approach is based on the Capability Driven Development (CDD) method 

used in development of adaptive systems [18]. The potential of using context-aware 

recommender systems is analyzed by exploring a use case from the e-government 

domain described in section 2. Section 3 provides an overview of the recommendation 

modeling method including a small representative example of recommendation 

modeling. Section 4 presents the conclusions and future work. 



2   Motivational case 

In order to justify development of context aware recommender systems, context 

dependencies in large scale IS are analyzed by using the case of the public electronic 

finishing service E-Loms, part of the municipal e-service platform 

www.epakalpojumi.lv developed by the Latvian company ZZ Dats Ltd. Currently, E-

Loms provides several functions: to check information about lakes and rivers; to buy 

fishing licences online; to register the catch etc. E-service users’ statistics (see the 

following figures) show that the number of licences sold varies in a wide range 

meaning that the usage of this service is affected by different circumstances. Several 

context elements affecting the e-service usage have been retrieved during the e-

service usage analysis.  

Assumption 1: E-service usage depends on the current and predicted air 

precipitation level. Fig. 1 shows the number of licences sold in September 2014 and 

the level of air precipitation in September 2014. There have been two pronounced rain 

periods and during these periods the number of fishing licences sold has rapidly 

decreased, thus the service usage dependents upon current and predicted air 

precipitation level. 

 

 

Fig. 1. E-service usage and air precipitation level dependencies 

Assumption 2: E-service usage depends on the current and predicted air 

temperature. Fig. 2 shows the number of fishing licences sold and the average air 

temperature in February 2014. The same periods are highlighted in both charts. 

Periods with the lowest air temperature and the sharpest drops in temperature match 

with periods in which the largest numbers of fishing licences have been sold. In 

winter, ice fishing is very popular but it requires low air temperatures. This means e-

service usage is highly dependent on the air temperature. 

Assumption 3: E-service usage depends on calendar events. Analysis of e-service 

usage statistics in 2014 brings forward the following regularities: 

 The beginning of January – many fishermen buy their yearly fishing licence; 

 1st of May – fishing season opening – in the end of April and the beginning 

of May the number of licences sold has rapidly increased; 

 In the beginning of June the number of fishing licences sold has rapidly 

increased marking the beginning of the summer and vacations periods. 

 The number of licenses sold is rapidly increasing on Fridays and Saturdays. 

http://www.epakalpojumi.lv/


 

Fig. 2. Number of sold fishing licenses and average air temperatures in February 2014 

The examples suggest that the usage of the E-Loms e-service is highly affected by 

different dynamical context data. When monitoring, predicting and taking into 

account the run-time context data, the e-service delivery might be improved by 

generating context aware recommendations for the service users. 

There are many other context data that can be obtained, stored and exploited in 

order to apply recommendations that help users to navigate in large service catalogs 

or recommend users potentially the most important functions in each context 

situation. This could take the recommendations to a new level where context 

dependencies could be defined for software entities and the execution of other 

software entities can be provided to users in the form of recommendations. 

3 Context-aware Recommendation Modeling 

Usually recommendations are item-oriented where items are suggested based on user 

profile and historical user activity information which is mined from usage logs [19]. 

The use case example demonstrated in Section 2 proves that not only items can be 

recommended, but also different software entities can be used as recommendations. 

The conceptual basis of context-aware recommendation algorithm design and 

development is based on the Capability metamodel [18] which is developed within 

the FP7 project “CaaS: Capability as a Service” and is a part of the Capability Driven 

Development approach. Capability term is important in recommendations modeling 

because context processing and recommendations application relates to IS ability to 

deliver a certain value to a user in changing context circumstances. This section 

presents the Capability metamodel which is expanded in order to fulfill the needs for 

modeling context-aware recommendations. 

The specific aspects relevant for context-aware recommendation modeling which 

are added to the Capability metamodel are marked in a darker color in Fig. 3.  

From the recommendation’s perspective, the Software Entity is the detailed (i.e., 

executable) level of Capability and each Software Entity has a Context Set which 

defines the context information that affects the Software Entity delivery. The term 

Software Entity describes different executable artefacts and can be either software as 

a whole or a single workflow, procedure, function, job etc.  

Recommendations conform to the definition of patterns which are “reusable 

solutions for reaching business Goals under specific situational contexts.” [18] They 



are reusable solutions that can be applied to the Software Entity in a certain run-time 

context situation with the purpose of improving the usage of the Software Entity. The 

recommendations are user-oriented and improve the user satisfaction with a software, 

service or software entity.  
 class Recommendations Metamodel

Software Entity

Context 
adjustment rule

Recommendation 
Pattern

Measurable 
Property

Context 
Element

Context 
Type

Context 
Situation

Context 
Element Value

Context Source

Capability 
Adjustment 

Rule

Recommendation 
Pattern Type

Context Set

Recommendation 
Text

Capability
1

design for

0..*

1..*

set for

0..1

0..*

supports

1

1 *

1

consists of

1..*

1..*

fits for

1..*

1
has

1..*

0..*

measured by

0..1

1

contains

1..*

1

0..*

1

has

1

0..*

conforms

0..*

1..*

initiates

0..* 1

applies

1

1

contains

0..*

1

consists of

0..*

1..*

obtained from

1..*

 

Fig. 3. Capability metamodel for modeling context-aware recommendations 

A Recommendation Pattern can be applied automatically (e.g. automatic Software 

Entity highlighting) or recommended to a user with an informative notification which 

provides a choice to the user to run the recommended Recommendation Pattern. In 

the second case, the Recommendation Text should be defined as a separate class in 

the metamodel that marks separately modifiable text without changing the 

Recommendation Pattern itself. Each Recommendation Pattern can have multiple 

notification text values and the appropriate value for each context situation is defined 

in a Capability Adjustment Rule. In the example model (Fig. 6), the Recommendation 

Pattern is for instance a classificatory value ‘yearly license’ and the Recommendation 

Text recommends users to choose a licence type ‘yearly license’ instead of ‘one day 

license’. 

Check 
compliance to 

Context 
Adjustment 

Rules 

Context 
Adjustment 

Rules repository

Search 
Capability 

Adjustment
 rule

Compliance = True

Execulte 
Capability 

Adjustment 
rule

Rule found

Apply 
Recommendation 

Pattern

Capability 
Adjustment Rules 

repository

Compliance = False

Rule not found

Capability 
Adjustment Rules 

repository

Internal/ 
External data 

base

Context 
data 

monitoring

 
Fig. 4. General recommendation algorithm execution business process model 



Context Adjustment Rules define the context ranges which affect the Software 

Entity while Capability Adjustment Rules initiate the recommendation which is 

appropriate for the certain run-time Context Situation. The form of Capability 

Adjustment Rules should be decided, for instance rules can be written as IF/THEN or 

Event-Condition-Action rules. The Recommendation Pattern Type specifies the type 

of recommendation, e.g. a function, procedure, textual notification, etc. The Context 

Source serves as a reference to the source from which the context data is obtained. 

Based on a Recommendation model which is modelled according to proposed 

metamodel, a Recommendation module can be built. In Fig. 4 a general 

recommendation module execution process is given. The process includes concepts 

from the Capability metamodel. Context data monitoring is represented as a 

subprocess which will be specified in further research by taking into account different 

context sources that can be used to obtain context information relevant to IS delivery. 

In Fig. 5 and 6 an example of a recommendation model is given. 

 
 class E-Loms Recommendations Model

Capability: E-Loms 
Service Promotion

Software Entity: 
Licence purchase 

procedure

Context Set: Licence 
purchase procedure

Context Element: 
Calendar event

Context Element: 
Air temperature

Measurable Property: 
Impact of Calendar 

event

Measurable Property: 
Date of Calendar event

Measurable Property: 
Degrees, C

Context Element: 
Purchase history

Measurable Property: 
Number of purchased 
licences in particular 

lake/river

Measurable Property: 
Type of purchased 

licences in particular 
lake/river

Context Adjustment Rule: 
Licence purchase 

procedure is dependant of 
value(Air temperature) =<0 

or >=20 

Context Adjustment Rule: 
Licence purchase procedure 

is dependant of 
value(Number of purchased 

licences in particular 
lake/river)=<1

 

Fig. 5. Context modeling part of the E-Loms recommendation model example 

 class E-Loms Recommendations Model

Recommendation 
Type: Value from 

classificatior

Recommendation R1: 
licence classification 
value 'Yearly licence'

Recommendation R2: 
Inform about air 

temperature

Recommendation 
Type: Textual 

notification

Software Entity: 
Licence purchase 

procedure

Recommendation Text: 
'Warning: <licence_date> 

air temperature will be 
below zero!'

Recommendation 
Text: 'Want to buy a 

yearly licence?'

 

Fig. 6. Recommendation modeling part of the E-Loms recommendation model example 

 



The Context Situation is a run-time element and cannot be modeled during the 

design phase. For instance, if a user is buying a one-day license in a lake where he 

already has bought one-day licenses, then another value from the classificatory can be 

recommended – ‘a yearly license’. Recommendations can be run by a Capability 

Adjustment Rule, e.g. If number of bought licenses in lake X >=1, THEN run 

recommendation R1. 

 

4 Conclusion and Future work 

In this paper we discuss the usage of the Capability metamodel in the design of 

context-aware recommendations for software entities in order to increase user 

satisfaction. The example demonstrated in the paper proves the potential of generating 

recommendations based on run-time context data.  

Current recommendation algorithms and methods are mostly item-oriented and 

based on a limited amount of data (user profile data, user activity, similarities between 

users and items etc.). The delivery of many software and software entities is affected 

by different context information. The achievement of business goals can be improved 

by applying context aware recommendations in software delivery.  

The recommendation modeling method would allow designing modifiable 

recommendations more efficiently. In the Recommendation module, 

recommendations can be modified by defining or changing Capability Adjustment 

and Context Adjustment Rules, recommendation values, or modifying 

recommendations in the recommendation repository. Once the module is built, 

stakeholders without specific IT skills should be able to manage and maintain the 

recommendations. 

This paper presents the initial proposal for context-aware recommendations 

modeling. The context-aware recommendation modeling and designing method 

should be improved and developed in detail in following aspects: 

 The form for defining the Context Adjustment Rules and the Capability 

Adjustment Rules should be specified; 
 The context processing subprocess should be specified; 

 The technical solution for developing and implementing the recommendation 

module should be developed; 

 The recommendation modeling method and recommendation module should 

be validated. 

References 

1. Dey, A.K. Understanding and Using Context. In: Personal Ubiquitous Computing, 

vol 5(1), pp. 4–7 (2001) 

2. Rubens, N., Kaplan, D. and Sugiyama, M. Recommender Systems Handbook: Active 

Learning in Recommender Systems (eds. P.B. Kantor, F. Ricci, L. Rokach, B. 

Shapira). Springer (2011) 



3. Hang, S., Hui, P., Kulkarni, S. R. And Cuff, P.W. Wisdom of the Crowd: 

Incorporating Social Influence in Recommendation Models. Proc. ICPADS ’11, 

IEEE, pp. 835-840 (2012) 

4. Burke, R. Hybrid Recommender Systems: Survey and Experiments. In: User 

Modeling and User-Adapter Interaction, Vol 12, Issue 4, pp 331-370 (2002) 

5. Aranda J., Givoni I., Handcock, and Tarlow, D. An Online Social Network-based 

Recommendation System, Technical report (2010) 

6. He J. and Chu, W.W. A Social Network Based Recommender System, Annals of 

Information Systems: Special Issue on Data Mining for Social Network Data (AIS-

DMSND) (2010) 

7. Shang, S., Hui, P., Kulkarni, S.R. and Cuff, P.W. Wisdom of the crowd: 

Incorporating Social Influence in Recommendation Models. In: Proceedings of the 

IEEE 17th International Conference on Parallel and Distributed Systems (ICPADS 

'11), pp. 835-840 (2011)  

8. Adomavicius, G. and Tuzhilin, A.Context-Aware Recommender Systems. In: 

Recommender Systems Handbook, pp. 217-253 (2011) 

9. Savage, N.S., Baranski, M., Chavez, N.E. and Höllerer, T. I’m feeling LoCo: A 

Location Based Context Aware Recommendation System. Proceedings of the 8th 

International Symposium on Location‐Based Services (2011) 

10. Braunhofer, M., Elahi, M., Ge, M., Ricci, F. and Schievenin, T. STS: Design of 

Weather-Aware Mobile Recommender Systems in Tourism. In: Carolis B.N., Carolis 

E. (eds.) Artificial Intelligence meets Human Computer Interaction, CEUR 

Workshop proceedings, vol 1125 (2013) 

11. Yujie Z. and Licai W. Some challenges for context-aware recommender systems. In: 

Proceedings of the 5th International Conference on Computer Science and Education 

(ICCSE), pp. 362 – 365 (2010) 

12. Linden, G., Smith, B. and York, J. Amazon.com Recommendations. Industry report. 

Published by the IEE Computer Society (2003) URL: 

http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf Last accessed: 

March 26, 2015. 

13. Duma, D. and Klein, E. Citation Resolution: A method for evaluating context-based 

citation recommendation systems. In: Proceedings of the 52nd Annual Meeting in the 

Association for Computational Linguistics, Volume 2, pp. 358-363 (2014) 

14. Hussein, T., Linder, T., Gaulke, W. and Ziegler, J. Hybreed: A software framework 

for developing context-aware hybrid recommender systems. In: User Modeling and 

User-Adapted Interaction, Vol 24. Issue 1-2, pp. 121-174 (2014) 

15.  Ricci, F., et al. (eds.). Recommender Systems Handbook, Springer Science + 

Business Media (2011) 

16. Carvalho, J. A. Strategies to Deal with Complexity in Information Systems 

Development. URL: http://www3.dsi.uminho.pt/jac/SI/zdocumentos/complexity.pdf 

Last accessed: March 26, 2015 

17. Soffer, P. Analyzing the Scope of a Change in a Business Process Model, 

Proceedings of Int’l Conference on Advanced Information Systems Engineering 

Workshops (2004) 

18. Stirna, J., Grabis, J., Henkel, M. and Zdarvkovic, J. Capability Driven Development – 

and Approach to Support Evolving Organizations. In: The Practice of Enterprise 

Modeling: PoEM, Germany, Rostok, 7-8 November, 2012. Berlin: Springer Berlin 

Heidelberg, pp.117-131 (2012) 

19. Koenigstein, N. and Koren, Y. Towars scalable and accurate item-oriented 

recommendations. In: Proceedings of the 7th ACM conference on Recommender 

systems (2013) 

 

http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf

