
Extending Software Development Methodologies
to Support Trustworthiness-by-Design

Nazila Gol Mohammadi1, Torsten Bandyszak1, Sachar Paulus2,
Per Håkon Meland3, Thorsten Weyer1 and Klaus Pohl1

1paluno – The Ruhr Institute for Software Technology, University of Duisburg-Essen,
45127 Essen, Germany

{nazila.golmohammadi, torsten.bandyszak, thorsten.weyer,
klaus.pohl}@paluno.uni-due.de

2Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10,
68163 Mannheim, Germany

s.paulus@hs-mannheim.de
3SINTEF ICT, Strindveien 4, N-7465 Trondheim, Norway

per.h.meland@sintef.no

Abstract. People are increasingly concerned about the trustworthiness of
software that they use when acting within socio-technical systems. Ideally,
software development projects have to address trustworthiness requirements
from the very early stages of development using constructive methods to enable
trustworthiness-by-design. We analyze the development methodologies with re-
spect to their capabilities for supporting the development of trustworthy soft-
ware. Our analysis reveals that well-established development methodologies do
not specifically support the realization of trustworthy software. Based on find-
ings, we propose a generic mechanism for extending development methodolo-
gies by incorporating process chunks that represent best practices and explicitly
address the systematical design of trustworthy software. We demonstrate the
application of our approach by extending a design methodology to foster the
development of trustworthy software for socio-technical systems.

Keywords: Trustworthiness, Trustworthiness-by-design, Software Develop-
ment Methodology

1 Introduction

Trustworthiness is a major issue for the development of software-intensive socio-
technical systems [1, 2]. For instance, for the users of today’s web applications and
services it becomes increasingly difficult to track or control who stores personal and
business-critical data. Thus, software-intensive systems need to be trustworthy to
address concerns of their users and thereby foster the trust in these systems. Under-
standing how to address trustworthiness in early design phases is crucial for the suc-
cessful development of software systems. Software development methodologies and
processes should address the different challenges of engineering trustworthy software.

mailto:klaus.pohl%7d@paluno.uni-due.de,�
mailto:per.h.meland@sintef.no�

Trustworthiness is an important quality that needs to be engineered. There is a strong
dependency between the degree of trustworthiness an information system exhibits and
the suitability of the applied development methodology [3].

There are limited contributions that approach the trustworthiness issues other than
those related to security. Most existing approaches assume that one-dimensional
properties of services lead to trustworthiness of such services, and even to trust in it
by users, such as a certification (e.g., Common Criteria [4]), the presence of certain
technologies (e.g., encryption), or the use of certain methodologies (e.g., SSE-CMM
[5]). In contrast, the Trusted Software Methodology [3] as a comprehensive and holis-
tic methodology that explicitly focuses on trustworthiness is not flexible, since it is
based on a certain development process. Though in principle the application of any
development process model may result in trustworthy products, commonly used and
well-established methodologies, such as user-centered [6] or test-driven development
[7], do not specifically foster the systematic establishment of trustworthiness proper-
ties within the system. In order to address this gap, we believe that specific techniques
and developer guidance should be defined as generic and reusable process building
blocks. Defining reusable process chunks that can be integrated into well-established
development methodologies instead of defining yet another development methodolo-
gy brings flexibility, enables a powerful process modeling tool support, and reduces
the complexity of tailoring already established development processes.

First, we review and analyze well-established software development methodolo-
gies by studying their characteristics that are promising to build trustworthy infor-
mation systems, and the ones indicating improvement potential. In this paper, we
build upon an outline of our approach sketched in [8], and provide a generic mecha-
nism for enhancing software development by incorporating process chunks that ex-
plicitly address and enable trustworthiness-by-design. In particular, we propose an
extension of the Software Process Engineering Meta-model (SPEM) [9], which allows
for integrating and tailoring certain “trustworthy” process chunks into different devel-
opment methodologies. These capability patterns can represent a broad range of
trustworthiness-related practices, such as the preparation for run-time maintenance
[10]. As an example, we analyzed the User-Centered Design (UCD) methodology [6]
with respect to trustworthiness potentials and drawbacks as an example. Based on
these findings, we demonstrate our approach by exemplarily extending the UCD pro-
cess model.

The remainder of this paper is structured as follows: Section 2 provides a brief
overview on the fundamental notions of trust and trustworthiness of STS. Section 3
presents our approach for extending development methodologies by trustworthiness-
by-design capabilities and illustrates its application by showing how a popular engi-
neering methodology can be extended to support trustworthiness-by-design. Section 4
summarizes the paper and gives an outlook on future work.

2 Fundamentals and Related work

Trust is defined as “a bet about the future contingent actions of others” [11]. Regard-
ing software-intensive socio-technical systems (STS), which include humans, organi-

zations, and the information systems [7], the scope of this definition can be broadened
in order to include these systems as potential trustees. Because of delegation of tasks
to STS, it can be said that the trustworthiness of such systems is a key concern that
needs to be fostered and even engineered into these systems to maintain high levels of
trust within society. Trustworthiness requirements are project-specific, and depend on
domain and application. Software trustworthiness is highly dependent on the pre-
scribed, yet evolving, set of requirements, technical decisions, and management deci-
sions throughout the development process life cycle. A comprehensive list of trust-
worthiness attributes (e.g., correctness, reliability, safety, usability, security) should
be taken into consideration when developing trustworthy software [2]. Hence, we
focus on a multitude of software quality attributes that contribute to trustworthiness as
analyzed in [2]. For example, trustworthiness may be evaluated with respect to the
availability, confidentiality and integrity of stored information, the response time, or
accuracy of outputs [12, 13, 14].

To the best of our knowledge, the Trusted Software Methodology (TSM) [3] is the
only comprehensive approach that describes processes and guidance for engineering
and assessing trustworthy software. It covers multiple quality attributes, and focuses
on processes instead of evaluating development artifacts. TSM provides a set of Trust
Principles, which describe established development practices or process characteris-
tics that enhance software trustworthiness. A development process can be assessed by
means of five different levels of trustworthiness, according to the conformance to the
trust principles. This also constitutes the basis for process improvement with respect
to trustworthiness. Though the principles constitute general best practices, the meth-
odology, however, is assumed to be applied following a military standard for software
development [15]. In contrast, our focus is on enhancing a broad spectrum of general
software development methodologies in order to incorporate the consideration of
trustworthiness and use them to create trustworthy software.

Yang et al. [3] review a set of software development methodologies in order to de-
rive a meta-model for trustworthy development processes. They define process trust-
worthiness as “the degree of confidence that the software process produces expected
trustworthy work products that satisfy their requirements” [3]. The meta-model in-
cludes, for example, trustworthy products that depend on a trustworthy process. It also
depicts the connection to trustworthiness requirements. For modeling process trust-
worthiness, they adopt the Process Area concept from CMMI [16] and extend it by
the Trust Principles, then constituting Trustworthy Process Areas (TPAs) [3]. The
TPAs, in turn, can be refined by three categories, i.e. regarding trustworthiness assur-
ance, trustworthiness monitoring, and trustworthiness engineering process areas.
Thus, the approach covers the whole system life-cycle. Yang et al. also present their
efforts towards designing a comprehensive Trustworthy Process Management
Framework, which e.g., additionally involves a measurement model based on metrics
[3].

In contrast, our approach relies on the SPEM [7], which provides a meta-model for
describing software development processes. In our approach, we will use the Delivery
Process and Capability Pattern concepts from SPEM. Capability patterns are process
building blocks that are independent of specific process phases, and represent best

development practices to be incorporated into a process [7]. The Delivery Process and
Capability Pattern concepts originate from the SPEM. SPEM provides adequate con-
cepts that allow for describing capability patterns on a fine-granular level, i.e. assign-
ing concrete tasks, responsible roles, guidance, or involved artifacts.

The concepts introduced can be compared to the work of Yang et al. [3]. However,
we propose a different structure and different concepts, e.g., using SPEM capability
patterns instead of CMMI process areas (cf. [16]), or combining design and assess-
ment in one meta-model.

3 Integrating Trustworthiness-by-Design in Development
Methodologies

Characteristics of Trustworthiness-by-Design Processes. In order to incorporate
the notion of trustworthiness-by-design into development methodologies, we consider
and extend the SPEM meta-model [7] by specializing the Delivery Process concept so
that it subsumes trustworthiness-by-design processes. We also utilize the concept of
Capability Patterns. We define a Trustworthy Product (i.e. work product, develop-
ment artifact) as a product that holds a range of its trustworthiness attributes for satis-
fying its trustworthiness requirements. Fig. 1 shows a corresponding ontology for
Trustworthiness-by-Design Processes. The meta-model presented here shows the
concepts that we have introduced in addition to SPEM (highlighted in grey in Fig. 1),
specifically: Trustworthiness-by-design Process is a specialization of a delivery pro-
cess and contains a set of capability patterns. A properly applied trustworthiness-by-
design process will create a Trustworthy Product that exhibits certain trustworthiness
attributes to meet its Trustworthiness Requirements. Trustworthiness requirements
specify requirements that a Trustworthy Product should fulfill. Assessment Model
verifies if the trustworthiness requirements have been met. Metrics could be used to
evaluate the products. Trustworthiness Evidence is some kind of evidence to show
that a trustworthiness-by-design process has been followed. Though this will not
guarantee trustworthiness, it is at least an indication that planned measures have been
taken into account to ensure it.
We define capability patterns that particularly address trustworthiness to improve
existing design process models. For describing capability patterns, we provide the
necessary content, e.g., concrete tasks, responsible roles, guidance, and involved arti-
facts [7].

An exemplary capability pattern for trustworthiness-by-design is the identification
of threats and mitigating controls. This capability pattern involves analyzing system
models or specifications in order to anticipate risks that might corrupt the system’s
trustworthiness across the whole life-cycle (e.g., also considering system operation).
To provide tool support for designing, tailoring and sharing trustworthy development
processes, we use the Eclipse Process Framework (EPF1

1 Eclipse Process Framework Project (EPF), http://www.eclipse.org/epf/

), which has an underlying

meta-model based on SPEM. The EPF is a customizable software process-engineering
framework for authoring, tailoring, and deploying development processes. All our
capability patterns are organized in a plug-in that can be imported into any EPF pro-
ject, which again can be exported to online process handbooks.

Guidance

+trustworthiness
Attributes

Trustworthy
Product

Role

Deliverable

Outcome

Artifact Task

Content
Element Describable

Element

Method
Element

Work
Definition

Activity

Process

Phase

Delivery
Process

Trustworthiness
Requirement

Assessment
Model

Trustworthiness
Evidences

Trustworthiness-
by-Design Process

Trustworthy
WorkProduct

WorkProduct

CapabilityPattern Iteration
performs

has based on

evaluated by
depends

Fig. 1. Ontology for Trustworthiness-by-Design Processes

Extending the User-centered Design Methodology. The nature of engineering of
trustworthy systems is different from simply engineering usable software. The key
here is that trustworthiness is a subjective value judgment of stakeholders in a STS.
There is a need to understand what trustworthiness attributes of the system will en-
hance the trust of a stakeholder in that system and how system design can thus help to
circumvent any distrust-related concerns that the stakeholders have about the service.
This makes it necessary to not only elicit requirements with respect to the way in
which people will use the system, as would be done in a standard UCD [6] process,
but also to draw up a set of requirements about which trustworthiness attributes will
address the potential trust issues that the end users of the system highlight.

In order to assess the product with respect to the satisfaction of trustworthiness re-
quirements the overall structure of the UCD approach can remain the same, with the
only difference that in the process, besides usability and usefulness, trust and trust-
worthiness needs are specifically addressed.
We suggest the following extensions of the four major phases of the UCD methodol-
ogy:
• In the initial specify context of use phase (Phase 1 in Fig. 2), a usability expert elic-

its from the future end users what the potential trust concerns are that they have
with respect to using the system.

• In the specify user requirements phase (Phase 2 in Fig. 2), these concerns can then
be turned into use case descriptions of situations in which the trust issues become
apparent to the user. To this end, the Trustworthiness Capability Pattern “Identifi-
cation of threats and mitigation controls” should be incorporated into UCD. By
means of the involved analysis tools, threats to trustworthiness can be derived. It

should also be determined which controls can be applied in the design to mitigate
the identified trustworthiness and trust issues.

• The produce design solutions phase (Phase 3 in Fig. 2) should then implement
(e.g., in a prototype) the identified trustworthiness requirements.

• The “Measurement of end-to-end trustworthiness” capability pattern can enhance
the evaluation against requirements phase by providing appropriate metrics and
measurement approaches to validate that the system satisfied the required trustwor-
thiness level (this can enhance Phase 4 in Fig. 2).

Name: User-Centered Design Process
Description: User-centered design processes [6] consist of the following general phases:

1) Knowledge elicitation and attempt at understanding the context of use;
2) Defining user requirements;
3) Prototyping the system and
4) Evaluation, which provides input for the refinement of the design.

This process model is generally used iteratively and by going through the process multiple
times, developers converge on a user-friendly system.
Elements interesting for trustworthiness:
• User-centered design is a specialization of incremental development and therefore shares

the same trustworthiness characteristics.
• By using an incremental user-centered process, it is possible that throughout the design

process the design is validated to establish whether the trustworthiness attributes designed
into the system appropriately address any concerns with respect to trust that the system
users might have.

Improvement potential:
• Documenting trustworthiness requirements and thereafter generation of trustworthiness

evaluation results for explicit documentation of trustworthiness evidences in order to sup-
port designers when making design decisions. Additionally, these documents bring aware-
ness about the designed system to the end-users.

• Involvement of end-user to derive their trustworthiness expectations and to evaluate the
system design towards the satisfaction of those expectations.

Usability for modeling trustworthiness: The user centered design processes are unrelated
to trustworthiness modeling. Only the use of modeling techniques in general for a user cen-
tered design will enable to also model trustworthiness requirements.

Fig. 2. Indicative trustworthiness analysis for User-Centered Design

Fig. 3 illustrates the extension of UCD by plugging one of the proposed capability
patterns namely “Identify Threats and Controls” in early stage of specifying user re-
quirements.

As we have already shown above, the extension of the UCD process can be sup-
ported by using the EPF Composer. Fig. 4 shows an excerpt from the description of
the extended UCD methodology as part of a software development process model (i.e.
delivery process as defined by SPEM).

As the excerpt sketches, the corresponding “Trustworthy User Centered Design”
methodology integrates the two additional capability patterns “Identification of threats
and mitigation controls” (Fig. 4, Index no. 6) and “Measurement of end-to-end trust-
worthiness” (Fig. 4, Index no. 13) into specific phases of the original user-centered
design process model.

Fig. 3. Extending the User-Centered Design2 8 for enabling Trustworthiness-by-Design []

Fig. 4. Enhancing the UCD methodology with trustworthiness capability patterns

4 Conclusion and Future Work

Existing software design methodologies have some capacities in ensuring security and
a few other trustworthiness attributes. However, the treatment of a complete set trust-
worthiness attributes and requirements in software development is not yet well stud-
ied. We analyzed development methodologies for trustworthy development.

As a result, we concluded that none of them fully assures or addresses the devel-
opment of trustworthy software. Consequently, individual activities, so-called “trust-
worthy development practices”, must be identified and tailored into these processes in
order to proceed towards systematically developing trustworthy software. The con-
cept and an initial set of reusable, trustworthiness-enhancing process chunks in the
form of Capability Patterns have been introduced. We have observed that the usage of
appropriate trustworthiness capability patterns increases the confidence that the soft-
ware development processes will result in trustworthy software.

Our work is still in progress, and the main ideas and findings will be further inves-
tigated. Further work is needed to evaluate the recommended extensions to these

2 Based on http://www.sapdesignguild.org/editions/edition10/ucd_overview.asp

Capability Patterns
plugged into User-
centered Design to
enable Trustwor-
thiness-by-design

methodologies, how to combine capability patterns and investigate how trustworthi-
ness attributes can be treated in a measurable and comparable way.

References
1. Whitworth, B.: A Brief Introduction to Socio-technical Systems. In: Encyclopedia of In-

formation Science and Technology, pp. 394–400. IGI Global (2009)
2. Gol Mohammadi, N.; Paulus, S.; Bishr, M.; Metzger, A.; Könnecke, H.; Hartenstein, S.;

Weyer, T.; Pohl, K.: Trustworthiness Attributes and Metrics for Engineering Trusted In-
ternet-based Software Systems. In: Cloud Computing and Service Science 2013 (Selected
Papers from CLOSER), CCIS, Springer (2013)

3. Yang, Y., Wang, Q., Li, M.: Process Trustworthiness as a Capability Indicator for Measur-
ing and Improving Software Trustworthiness. In: Trustworthy Software Development Pro-
cesses, Int’l. Conf. on Software Process. LNCS, vol. 5543, pp. 389-401. Springer (2009)

4. International Organization for Standardization: ISO 15408-1, Common Criteria, Infor-
mation technology -- Security techniques -- Evaluation criteria for IT security. Internation-
al Standard (2009)

5. International Organization for Standardization: ISO/IEC 21827, Information technology,
Security techniques, Systems Security Engineering -- Capability Maturity Model® (SSE-
CMM®). International Standard (2008)

6. Sutcliffe, A. G.: Convergence or Competition between Software Engineering and Human
Computer Interaction. In: Human-Centered Software Eng. - Integrating Usability in the
Software Development Lifecycle, Human-Computer Inter. Series, vol. 8, pp. 71-84 (2005)

7. Sommerville, I., Software Engineering. 9th Edition, Pearson, Boston (2011)
8. Gol Mohammadi, N.; Bandyszak, T.; Paulus, S.; Håkon Meland, P.; Weyer, T.; Pohl, K.:

Extending Development Methodologies with Trustworthiness-By-Design for Socio-
Technical Systems, In: Proceedings 7th Int’l. Conf. TRUST (2014)

9. Object Management Group: Software & Systems Process Engineering Meta-Model Speci-
fication, Version 2.0. Technical Report, Object Management Group (2008)

10. Bandyszak, T.; Gol Mohammadi, N.; Bishr, B.; Goldsteen, A.; Moffie, M.; Nasser, B. I.;
Hartenstein, S.; Meichanetzoglou, S.: Cyber-Physical Systems Design for Runtime Trust-
worthiness Maintenance Supported by Tools. In: 1st Int’l. Workshop on Requirements En-
gineering for Self-Adaptive systems and Cyber Physical Systems (2015)

11. Sztompka, P.: Trust: A Sociological Theory. Cambridge University Press (1999)
12. Avizienis, A., Laprie, J. C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of

Dependable and Secure Computing. In: IEEE Transactions on Dependable and Secure
Computing, vol. 1 issue 1, 11–33 (2004)

13. Gómez, M., Carbó, J., Benac-Earle, C.: An Anticipatory Trust Model for Open Distributed
Systems. In: Anticipatory Behavior in Adaptive Learning Systems. LNCS, vol. 4520, pp.
307–324. Springer (2007)

14. Yolum, P., and Singh, M. P.: Engineering Self-Organizing Referral Networks for Trust-
worthy Service Selection. In: IEEE Trans. on Systems, Man and Cybernetics, Part A: Sys-
tems and Humans vol. 35 no. 3, 396–407 (2005)

15. U.S. Department of Defense: Trusted Software Methodology, SDI-SD-91-000007, Vol-
umes 1 and 2. Technical Report, U.S. Department of Defense, Strategic Defense Initiative
Organization (1992)

16. Software Engineering Institute: Capability Maturity Model® Integration for Software En-
gineering, Version 1.1. Technical Report, Software Engineering Institute, Carnegie Mellon
University (2002)

http://link.springer.com/search?facet-author=%22Per+H%C3%A5kon+Meland%22�

	1 Introduction
	2 Fundamentals and Related work
	3 Integrating Trustworthiness-by-Design in Development Methodologies
	4 Conclusion and Future Work
	References

