
 7

A Systematic Mapping Study on Software Process Education

Alberto Heredia
Universidad Carlos III de Madrid

Computer Science Department
Leganés 28911, Spain

alberto.heredia@uc3m.es

Ricardo Colomo-Palacios
Østfold University College

Faculty of Computer Sciences
Halden 1783, Norway

ricardo.colomo-palacios@hiof.no

Antonio Amescua-Seco
Universidad Carlos III de Madrid

Computer Science Department
Leganés 28911, Spain
amescua@inf.uc3m.es

Abstract

Software professionals often face trouble
when developing software products as it is a
highly dynamic, knowledge-intensive
complex process. The success of the software
process heavily depends on the people
involved, among other factors, making their
education and training an interesting topic for
research. The purpose of this study is to
structure and characterize the state of the
practice on software process education to help
identify best practices and find new
challenges. To do so, authors conducted a
systematic mapping study to identify primary
studies in the existing literature related to
software process education. The analysis of
results helps clarify the general characteristics
of the software process education and training
initiatives, the lessons learned in previous
research, and the future works proposed by the
authors in previous research on software
process education.

1 Introduction
Modern societies increasingly depend on the services
offered through computerized systems. The advent of
smartphones, tablets, wearables and other intelligent
devices makes that more and more products embed or
take advantage of some piece of software.
Unfortunately, software is a complex product, difficult
to develop [FuNi14].

Software Engineering has the main goal of creating
software products with quality, respecting time and
budget constraints [Hump95]. To do so, the software
development activity usually follows a software
process, which can be defined as the coherent set of

policies, organizational structures, technologies,
procedures, and artifacts that are needed to conceive,
develop, deploy, and maintain a software product
[Fugg00], i.e., it describes the approach that is taken as
software is engineered.

However, the controversial reports from The
Standish Group continuously mention a low percentage
of successful projects delivering software on time, on
budget, and with required features and functions. Other
forums, such as Risk Digest [Acmc15], constantly
document numerous examples of software failures that
could be harmful for the society, e.g., the accidental
erasure of criminal records or the exposure of private
data from online customer databases.

Many of these problems found in software products
are unintentionally caused by people [KuFM13], as
software in the end is developed by individuals and is
largely dependent on human capital [CCGG09,
CCMS14, CCSG13a, HeCG13]. Thus, it is worth
researching how they are educated and trained on the
process to follow for the development of a software
product[CCSG13b, RoZS14].

Training software engineers in order for them to
acquire the knowledge and skills required in
professional practice depends on the stage of their
careers. As an example, software engineering courses
at the university usually consist of lectures along with a
small software project [BaOH05], but software process
is often treated as an additional module to the core
curriculum. Trainings in an industry environment are,
on the other hand, organized in a workshop style with
theoretical and practical parts interwoven [KuFM13].
Yet it is not clear if this education and training –no
matter the way it is provided– effectively prepares
software process (improvement) practitioners as skilled
and competent professionals for industrial life.

In fact, software engineering professionals are often
unsatisfied with their level of preparation for the real-
world when they start working in industry [Exte14].
Some authors point out the root of the problem lies in
the way software process is typically taught at
universities [AlUn14, BaOH05]; due to the time and
scope constraints inherent in an academic setting, most

Copyright © by the paper’s authors.

Proceedings of the International Workshop on Software Process
Education, Training and Professionalism, Gothenburg, Sweden

20015-06-15 published at http://ceur-ws.org

 8

course projects leaves little room for experiencing the
many facets of the software lifecycle [KoCM14].

Many authors have researched on how to make
improvements in software process education and
training to overcome this issue using different
approaches. The first one lays on a specific subject that
is needed but currently missing or not properly
addressed [WaSB12]. Another approach aims at
bringing the class project closer to a real-world one, for
instance, by intentionally applying unexpected
complications during the project [Daws00] or
involving external organizations [ChCh11]. A third
approach uses a simulated environment in conjunction
with lectures and projects for enhancing the learning
and understanding of complex themes [BaOH05].
Finally, the gamification of learning has emerged as a
significant trend in recent years in an effort to make
education more attractive by means of incorporating
game mechanics and elements [PGBP15].

Regardless of the approach chosen, it is also
important to consider how instructors intend their
students to learn. The most traditional delivery method
consists of a series of lectures and demonstrations in
which the teacher presents a particular subject and
directly instructs students. This method is often
contrasted to experiential learning, which is based upon
the premise that the best way to learn how to do
something is by actually doing it [BaOH05]. Other
methods center learning around an anchor such as a
case study or a problem [BSHK90], foster a situated
learning in which the learning environment is closer to
reality [AnRS96], focus on the aptitude of students and
tailor the learning environment to their needs [Yeh12],
emphasize a lateral thinking that require students to
take different perspectives [Bono09], or just focus on
motivating students to learn [Kell87].

We thus need to further study how software
engineers learn the software process. The objective of
this paper is to structure and characterize the state of
the practice on software process education. In
consequence, the authors of this study conducted a
systematic mapping study to identify, select, classify
and analyze primary studies published in scientific
journals. To the best of our knowledge, no systematic
mapping study on software process education has been
published yet.

The remainder of this paper proceeds as follows.
Section 2 describes the method followed in this
research work. Section 3 analyzes and discusses the

results of the systematic mapping study. The paper
concludes with the limitations of this research and
concluding remarks.

2 Research Method
The purpose of this study is to structure and
characterize the state of the practice on software
process education, analyzing previous works published
in the literature to provide an overview of the topic and
to help discover potential gaps for future research.
Thus, the main research question driving this study is:

What is the state of the practice of the education on
software process?

Due to the breadth of the topic, a systematic
mapping study [KiBP11] is used to identify and
categorize all relevant research papers (referred to as
primary studies) related to software process education.
The study follows the guidelines provided by Petersen
et al. [PFMM08]. The following sub-sections present
the different stages of the mapping study: definition of
research questions, conducting the search for primary
studies, screening papers based on inclusion/exclusion
criteria, classifying the papers, and data extraction and
aggregation.

2.1 Research Questions

To answer the main research question driving this
mapping study, the authors of this study stated the
following specific research questions:
RQ1. What are the general characteristics of the

software process education and training
initiatives?

RQ2. What lessons did researchers learned from
previous research on software process
education?

RQ3. What future works did authors propose in
previous research on software process
education?

The answer to RQ1 will help determine different
aspects of the software process education such as
which stage of software engineers’ career does this
education usually focus on, the educational methods
that are typically followed, how this education is
usually delivered, or which parts of the software
process have not received much attention yet with
regard to software process education. The aim of RQ2

 9

is to identify best practices on the field. RQ3 gathers
challenges identified in the field of software process
education.

2.2 Search Strategy

The search strategy is key to ensure a good starting
point for the identification of studies and ultimately for
the actual outcome of the study. An extensive and
broad set of primary studies was needed to answer the
research questions. The most popular academic
databases in the domain of software engineering were
selected to be used in this systematic mapping to search
for potentially relevant papers:
• ACM Digital Library (http://dl.acm.org)
• IEEE Xplore Digital Library (http://ieeexplore.ieee.org)
• ScienceDirect (http://www.sciencedirect.com)
• Springer Link (http://link.springer.com)

Regarding the keywords for the search, after some
exploratory searches using different combination of
keywords, the researchers jointly established the final
string to be used in the search for papers in the
databases:

“software process” AND (education OR training)
The search was performed at the beginning of 2015.

The search string was applied to title, abstract and
keywords, and limited to journal papers written in
English in the area of Computer Science and published
between the years 2000 and 2014. A total of 1450
papers were retrieved from the different databases.
Unfortunately, despite using the advanced search, only
IEEE’s database seems to properly retrieve exact
phrases in title, abstract and keywords, so this set had
to be revised and only 253 unique papers were finally
considered for the study selection (Figure 1).

9
4%

20
8%

147
58%

77
30% ACM Digital Library

IEEE Xplore Digital Library

ScienceDirect

Springer Link

Figure 1: Selected databases and retrieved papers

2.3 Study Selection

The main guiding criterion to include a paper in the
study or not was its focus on software process
education. To reduce the possibility of researcher bias,
the authors jointly agreed the exclusion criteria to be
used in the following order:

• Based on title: the title does not suggest that there is
any relation to software process education.

• Based on abstract: the abstract shows the paper is
not focused on software process education.

• Based on full text: the paper is definitely not related
to software process education.

In those cases where there was disagreement
between researchers regarding the relevancy of a paper,
the paper was not finally excluded.

The authors of this study must point out that the
revision of the full text of the primary studies allowed
to assure that all of them were relevant for structuring
and characterizing the state of the practice of the
education on software process. This revision is also
important because this study does not contain a formal
quality evaluation of the primary studies, which indeed
is not essential in mapping studies and could not be
properly achieved due to the inclusive nature of the
search that includes theoretical studies as well as
empirical studies of all types [KiBP11].

After the exclusion of irrelevant papers, the
researchers finally agreed on 33 primary studies to be
included in the systematic mapping study (Table 1).
The full list of primary studies is listed in the appendix.

Table 1: Study selection reading detail

Reading detail # of studies
Search 253
Title 95
Abstract 53
Full-text 33

2.4 Study classification

A data extraction form was designed to collect relevant
information from each one of the selected primary
studies. It included the following properties: title,
authors, year, journal, number of citations in the ISI
Web of Knowledge, type of participants in the
educational initiative, educational method, mode of
delivery, focus of the initiative, lessons learned in the
initiative, and future work proposed.

 10

The authors agreed in classifying primary studies
depending on three different types of participants in the
educational initiative: undergraduates, graduates and
industry professionals.

Regarding the different educational methods and
attending to the background of this research described
previously, the authors decided to classify the primary
studies in these groups: lectures, exercises, project,
teaching a missing subject, adding realism to a project,
inclusion of simulation in practical classes, and
gamification.

Finally, for classifying the main mode of delivery
used by the initiative the authors agreed in the
following ones: traditional, experiential (learning by
doing), anchored instruction, aptitude-treatment
interaction, situated learning, lateral thinking, and
motivation.

2.5 Data extraction and synthesis of results

This section synthesizes the results produced by the
extraction of data from the primary studies according
to the protocol described above.

The distribution of primary studies does not vary
much throughout the years considered in this mapping
study. Number of publications fluctuates mainly
between 1 and 3, being 2002 and 2008 the most
productive years with 5 publications.

Data extracted from primary studies revealed that a
total of 77 different authors published papers on the
topic of software process education. It is not a surprise
to find W.S. Humphrey is the most prolific author
among the primary studies with 3 papers as he created
the Personal Software Process (PSP), which is one of
the processes often used in software process education.

Regarding the journals that published the primary
studies, IEEE Software is the journal that accepted the
most publications (7) related to software process
education, closely followed by the Journal of
Computing Sciences in Colleges, the Journal of
Systems and Software, Information and Software
Technology, and the Software Quality Journal.

Similarly, papers published in IEEE Software sum
the largest amount of citations in ISI (64), given that
the Journal of Computing Sciences in Colleges (79
citations in Google Scholar) is not indexed in ISI.
Taking into account the number of papers, journals
such as IEEE Transactions on Engineering
Management, IEEE Transactions on Software

Engineering and Annals of Software Engineering have
a better average of citations in ISI as they published
only one of the primary studies that, however, received
a significant amount of citations.

To provide a better overview of the field, Figure 2
depicts the types of students involved in the initiatives
described in the primary studies, Figure 3 shows the
educational methods followed in the initiatives
described in the primary studies, and Figure 4
illustrates the modes used for delivering education in
the initiatives described in the primary studies. The
authors must point out that some primary studies
involved more than one type of students, followed
more than one method and/or used more than one mode
of delivery in their educational initiatives.

18
35%

23
45%

10
20%

Undergraduates

Graduates

Professionals

Figure 2: Participants in the primary studies

6
14%

8
19%

6
14%

9
22%

8
19%

4
10%

1
2% Lectures

Exercises
Project
Missing subject
Realism
Simulation
Gamification

Figure 3: Educational methods in the primary studies

4
11%

21
57%

3
8%

3
8%

2
6%

2
5%

2
5% Traditional

Experiential

Anchored

Situated

Aptitude-treatment

Lateral thinking

Motivation

Figure 4: Modes of delivery in the primary studies

 11

3 Analysis and discussion of results
In the following sub-sections the authors analyze and
discuss the results produced by conducting the
systematic mapping study according to the steps
described in the previous section in order to find
answers to the research questions of this study.

3.1 What are the general characteristics of the
software process education and training
initiatives? (RQ1)

According to the results shown in Figure 2, the
majority of studies related to software process
education focus research on early stages of software
engineers’ career, graduates (23) and undergraduates
(18), while few of them focus on education for industry
professionals (10).

Some of the studies represented in Figure 3 follow
the most traditional method for educating future
software engineers (6) consisting in a series of lectures
combined with some exercises and/or a small project to
put acquired knowledge into practice; these studies are
usually oriented to undergraduates. Most of the studies,
however, describe initiatives to cover a subject that is
usually missing in software process education curricula
(9); these initiatives aimed at completing the education
on software process are usually based also in the
combination of lectures with exercises and/or a small
project. Another method which is broadly used (8) is
making students’ project experience closer to the real
world (e.g. using an external customer [S23]). Several
experiences with simulations (4) to improve software
process education have been also reported in the last
years; these simulations are often oriented to graduates,
and especially to industry professionals, in conjunction
with other initiatives based on task assignments,
tutorials and workshops. Finally, only one primary
study is related to gamification [S17].

Given that many of the primary studies report
initiatives using exercises, it is not strange finding
experiential learning is the most used delivery method
by far (21), see Figure 4; as Albert Einstein once said:
“Learning is experience, everything else is
information”. Results also show that modes of delivery
such as situational learning or motivation are generally
used when adding realism to a project; while the
former is basically used with undergraduates, the latter
is mainly used when education is oriented to industry
professionals.

To conclude this section, the authors found several
of these approaches focus on teaching a specific
software process such as the PSP (7) or the TSP (5),
while others train students in iterative and agile
software development methods (10). Still many of
them put emphasis on process improvement training
(8), mainly related to CMM and CMMI. Only 3 of the
primary studies deal with software process education
from the point of view of Project Management. Finally,
the remainder focuses on specific parts of the software
process such as design, programming or document
inspection.

3.2 What lessons did researchers learned from
previous research on software process
education? (RQ2)

Previous research on software process education has
provided numerous and various lessons learned. In the
following paragraphs the authors cover the most
relevant ones found in the scope of this mapping study.

In general, introducing processes into the classroom
environment is not easier than injecting them into the
workplace, so future researchers should take some
considerations into account. Matching the software
process weight to the students’ abilities, expectations
and tolerance is vital for success [S25]. Furthermore,
although the use of model representations eases the
understanding of the process and increases visibility,
giving the students a written process description is not
enough; instructors must also provide guidance in the
form of mentoring to have a major impact [S6].
Motivation is also essential as engaged and motivated
students are more likely to accept the software process
[S29].

In addition, if tools are used to support process
activities, they should be easy to learn and use to create
a positive attitude towards their adoption [S2]; despite
their learning curve, software process tools have
proven to be important to the successful development
of projects. In some cases, using a knowledge
repository can facilitate the learning process and the
transfer of knowledge among students [S20]; low-
experienced software engineers can gain experience
from more experienced ones and giving them more
autonomy [HGAS13].

With regard to software development methods,
results point out that Agile works well for student
projects in an introductory software engineering course

 12

[S26]. Such incremental and iterative approaches allow
students to learn from preceding iterations and
incorporate previous experience and feedback into the
next iteration [S27].

PSP and TSP are also good means to introduce
discipline concepts and software process to potential
engineers because they show students how to define
processes, how to use a defined process, how to plan,
measure and track their work, and how to measure and
manage quality [S31]. Results gathered from the
primary studies confirm the benefits of training
students on the PSP. It enhances predictability and
reduces the number of (trivial) defects in the code,
although students may require more time for finishing
tasks because of the error checking that leads to the
improved robustness [S8].

The authors in [S28] and [S29] provide some
recommendations for using PSP and TSP as discipline
drivers in software process education: 1) Customize
PSP and TSP courses to the context and the needs of
the students; 2) Integrate PSP as part of TSP in order
for students to first master PSP techniques before
assuming a role in a software development group; 3)
Arrange PSP training regularly and continuously to
ensure that a student can meet both essential and
accidental software challenges (actually, some authors
state that learners should apply PSP practices not just
in a single course, but as a regular part of their studies
for instilling good habits and professional attitudes); 4)
Motivate students about the benefits of PSP and TSP;
and 5) Let students see their progress through the data
collected, but these data should not be used for grading
purposes in order to reduce the likelihood of students
manipulating the values in an attempt to gain better
grades.

Another interesting recommendation found in the
primary studies is tailoring the assignments the course
to imitate the real-world software projects [S12].
Realism has to be seek so that when a process-related
problem arises, the process should be improved in
order to not repeat the same problem in subsequent
projects. To increase reality, instructors can promote
collaboration between students and external customers
[S33], provided that customers’ involvement may help
to produce software better adapted to real expectations.
However, there is a risk of students giving more
attention to the product than the process as customers
are interested in the product [S23]. On the other hand,
facilities such as studios [S24] not only bring home a

great opportunity to take theory into practice, but also
provide students with environments and experiences
they will encounter or maybe even bring to their future
jobs.

When using a project to educate on software
process or in senior capstone courses, students can use
everything they already learned [S14]. The use of
dynamic teams [S27] in these projects is a good
experience because it challenges students to adapt to
multiple personalities and skill sets; they can learn
from one another, they feel more comfortable in rating
peers honestly, and it leads to fewer group breakdowns
when team members underperform. Other practices
such as pair designing [S18] may slow down the
project, but it is more predictable than individual
designing with regards to quality.

To improve the likelihood of successfully design
and implement a software project course, researchers
should follow several guidelines [S30]: 1) Clearly
identify course goals; 2) If the course is time-restricted
or represents students’ first team project experience,
use a modest and well-defined problem; 3) Use a
defined team process for the project work; 4) Enforce
process discipline; and 5) Instructors should move their
role from lecturer to coach.

Concerning process improvement training,
CMMI-recommended practices are accepted across
much of the industry and thus they are a good reference
for software process education efforts. Results of
previous research [S22] revealed some hot spots that
require more training in software process programs
(e.g. organizational practices). It may be beneficial to
dedicate significant time to provide details about
process models such as CMMI at the graduate level,
but it may not be appropriate at the undergraduate level
[S3]. Therefore, researchers recommend addressing
individual skills at the undergraduate level and
management skills at the graduate level.

With regard to gamification, it proved to have
potential to support education [S17], although further
research is needed. In this sense, [HCAY14] presents a
Gamification approach for software process, but not
linked to education or training. Likewise, simulation
seems to be very useful because allows students to
change process settings and helps decide if a process is
suitable for a certain context [S10]. When researching
on the benefits of simulation for educating on the
software process, researchers must take into account
that it is not an inexpensive undertaking and students

 13

need time for the familiarization with the simulator
[S1]. Yet, there is little evidence that process
simulation has become an accepted and regularly used
tool in industry [S4]. Moreover, the use of simulation
techniques like, for instance System Dynamics is well
grounded in software engineering education
[GCGP08].

To conclude this section, researches should consider
learning from practitioners of other engineering
disciplines [S19], as their lessons learned can be useful
for software engineering too.

3.3 What future works did authors propose in
previous research on software process
education? (RQ3)

In spite of the large amount of lesson learned gathered
from previous research on software process education,
not many of the primary studies propose future works.
The most common ones proposed exporting described
initiatives to other universities [S16] or to the industry
[S15].

More interesting proposals, especially those focused
on simulation and gamification, suggested enhancing
complexity and variability to allow a more dynamic
learning experience [S17]. In addition, future research
could consider the extension of the single-learner
model towards a collaborative learning environment
[S1]. Nevertheless, there is still a need for providing
evidence of the usefulness of simulation in the real-
world and additional studies of long-term evolution
from a product and organizational perspective [S4].

Primary studies related to the PSP raise several
questions to address with further studies regarding the
degree to which PSP students make more balanced
estimates, the relationship between productivity and
effort estimation accuracy, whether planning time and
postmortem time are dependent on project size or
whether they are more or less constant and could be
viewed as overhead [S28]. Other additional important
questions could be: How will defect estimation behave
in further studies? How could we prepare a set of
exercises that allows us to separate the complexity of
exercises from the PSP levels? To what extent is a
virtual environment the most appropriate tool for
teaching discipline teamwork? What kind of feedback
is received best as motivation by the students: defects,
size estimation or effort estimation?

To conclude the answer to this research question,
studies considering issues related to human capital
suggest incorporating ethical and social aspects of ICTs
in computer science programs and developing
awareness of potential threats posed by new ICTs
among today’s students [S33]. Others propose analyses
of the impact of outdated technology skills or about
attitudes toward software process innovations [S5].

4 Limitations
The objective of this study was to structure and
characterize the state of the practice on software
process education, analyzing previous works published
in the literature to provide an overview of the topic and
to help discover potential gaps for future research. For
that purpose, the authors decided to use a general
search string to not bias the study towards any specific
educational method or mode of delivery. However,
other searches using keywords related to specific
educational method, such as realism or simulation, or
mode of delivery, such as lateral thinking or situated
learning, could provide more primary studies. This
limitation makes this study to be a first step towards a
future research that could include a systematic
literature review centered on new approaches for the
education on software process based on trending modes
of delivery such as flipped learning or Massive Open
Online Courses (MOOCs).

Similarly, due to the specific focus of this 1st
International Workshop on Software Process
Education, Training and Professionalism, the authors
decided to include just the term “software process” and
not the term “software engineering” in the search
string. Broadening the scope of this research to
software engineering education and not focusing only
in the software process would have provided a richer
set of primary studies and should be considered for a
future work.

The exclusion of conference papers and books
represent another limitation of this study. This
publication bias is based mainly on practical concerns;
the amount of primary studies to be included could
have been unmanageable and a lot of analysis would be
needed to handle the fact that many journal papers are
improvements of previously published conference
papers. Nevertheless, the inclusion of journal papers
guarantees a high scientific quality of the primary
studies. However, and in spite of the inclusion of

 14

journals, given the composition of databases for the
study, some papers published in journals not listed in
the databases can also be biased in this study.

Finally, another threat for this study is researcher
bias that could have affected the selection of primary
studies, their classification and the accuracy in data
extraction. To reduce the subjective component of this
study, two researchers participated in the selection and
classification of primary studies following a multi-
staged protocol for the inclusion and exclusion criteria
and resolving disagreements by discussion.

5 Conclusions and future work
Software process improvement is considered one of the
most important fields in the software engineering
discipline. However, and in spite of its importance,
increasing its coverage in educational settings is still
challenging. The complexity of the subject together
with the need of a good background of the discipline is
normally pushing subjects into master programs, while
PSP and TSP approaches are mostly present in
bachelor curricula. This paper is a first effort towards
understanding the subject and interpreting its needs and
implementation in the academia.

Future works will be twofold. Firstly, it is intended
to investigate the use of MOOCs in software process
improvement settings and secondly, it is aimed to
develop specific gamification strategies and tools for
software process improvement education and training.

References
[Acmc15] ACM COMMITTEE ON COMPUTERS AND PUBLIC

POLICY: The Risks Digest. URL
http://catless.ncl.ac.uk/risks. - abgerufen am
2015-02-27

[AlUn14] BIN ALI, NAUMAN ; UNTERKALMSTEINER,
MICHAEL: Use and evaluation of simulation
for software process education: a case study.
In: . Seeon Monastery, Germany : Shaker
Verlag, 2014, S. 59–73

[AnRS96] ANDERSON, JOHN R. ; REDER, LYNNE M. ;
SIMON, HERBERT A.: Situated Learning and
Education. In: Educational Researcher Bd. 25
(1996), Nr. 4, S. 5–11

[BaOH05] BAKER, ALEX ; OH NAVARRO, EMILY ; VAN
DER HOEK, ANDRÉ: An experimental card

game for teaching software engineering
processes. In: Journal of Systems and
Software, Software Engineering Education
and Training. Bd. 75 (2005), Nr. 1–2, S. 3–16

[Bono09] BONO, EDWARD DE: Lateral Thinking: A
Textbook of Creativity : Penguin UK, 2009 —
 ISBN 9780141938318

[BSHK90] BRANSFORD, JOHN D ; SHERWOOD, ROBERT D ;
HASSELBRING, TED S ; KINZER, CHARLES K ;
WILLIAMS, SUSAN M: Anchored instruction:
Why we need it and how technology can help.
In: NIX, D. ; SPIRO, R. (Hrsg.): Cognition,
education, and multimedia: Exploring ideas in
high technology. Hillsdale, NJ. : Lawrence
Erlbaum, 1990, S. 115–141

[CCGG09] CASADO-LUMBRERAS, C. ; COLOMO-PALACIOS,
R. ; GOMEZ-BERBIS, J.M. ; GARCIA-CRESPO,
A.: Mentoring programmes: a study of the
Spanish software industry. In: International
Journal of Learning and Intellectual Capital
Bd. 6 (2009), Nr. 3, S. 293–302

[CCMS14] COLOMO-PALACIOS, RICARDO ; CASADO-
LUMBRERAS, CRISTINA ; MISRA, SANJAY ;
SOTO-ACOSTA, PEDRO: Career Abandonment
Intentions among Software Workers. In:
Human Factors and Ergonomics in
Manufacturing & Service Industries Bd. 24
(2014), Nr. 6, S. 641–655

[CCSG13a] COLOMO-PALACIOS, RICARDO ; CASADO-
LUMBRERAS, CRISTINA ; SOTO-ACOSTA, PEDRO
; GARCÍA-CRESPO, ÁNGEL: Decisions in
software development projects management.
An exploratory study. In: Behaviour &
Information Technology Bd. 32 (2013),
Nr. 11, S. 1077–1085

[CCSG13b] COLOMO-PALACIOS, R. ; CASADO-LUMBRERAS,
CRISTINA ; SOTO-ACOSTA, PEDRO ; GARCÍA-
PEÑALVO, FRANCISCO J. ; TOVAR-CARO,
EDMUNDO: Competence gaps in software
personnel: A multi-organizational study. In:
Computers in Human Behavior, Advanced
Human-Computer Interaction. Bd. 29 (2013),
Nr. 2, S. 456–461

[ChCh11] CHEN, CHUNG-YANG ; CHONG, P. PETE:
Software engineering education: A study on
conducting collaborative senior project

 15

development. In: Journal of Systems and
Software Bd. 84 (2011), Nr. 3, S. 479–491

[Daws00] DAWSON, RAY: Twenty Dirty Tricks to Train
Software Engineers. In: Proceedings of the
22Nd International Conference on Software
Engineering, ICSE ’00. New York, NY,
USA : ACM, 2000 — ISBN 1-58113-206-9,
S. 209–218

[Exte14] EXTER, MARISA: Comparing Educational
Experiences and On-the-job Needs of
Educational Software Designers. In:
Proceedings of the 45th ACM Technical
Symposium on Computer Science Education,
SIGCSE ’14. New York, NY, USA : ACM,
2014 — ISBN 978-1-4503-2605-6, S. 355–
360

[Fugg00] FUGGETTA, ALFONSO: Software Process: A
Roadmap. In: Proceedings of the Conference
on The Future of Software Engineering, ICSE
’00. New York, NY, USA : ACM, 2000 —
 ISBN 1-58113-253-0, S. 25–34

[FuNi14] FUGGETTA, ALFONSO ; DI NITTO, ELISABETTA:
Software Process. In: Proceedings of the on
Future of Software Engineering, FOSE 2014.
New York, NY, USA : ACM, 2014 —
 ISBN 978-1-4503-2865-4, S. 1–12

[GCGP08] GARCÍA-CRESPO, ÁNGEL ; COLOMO-PALACIOS,
R ; GOMEZ-BERBIS, MJ ; PANIAGUA-MARTIN,
F: A Case of System Dynamics Education in
Software Engineering Courses. In: IEEE
Multidisciplinary EngineeringEducation
Magazine Bd. 32 (2008), S. 52–59

[HCAY14] HERRANZ, EDUARDO ; COLOMO-PALACIOS,
RICARDO ; DE AMESCUA SECO, ANTONIO ;
YILMAZ, MURAT: Gamification as a
Disruptive Factor in Software Process
Improvement Initiatives. In: j-jucs Bd. 20
(2014), Nr. 6, S. 885–906. —
 |http://www.jucs.org/jucs_20_6/gamification_
as_a_disruptive|

[HeCG13] HERNÁNDEZ-LÓPEZ, ADRIÁN ; COLOMO-
PALACIOS, RICARDO ; GARCÍA-CRESPO,
ÁNGEL: Software engineering job productivity
— a systematic review. In: International
Journal of Software Engineering and

Knowledge Engineering Bd. 23 (2013),
Nr. 03, S. 387–406

[HGAS13] HEREDIA, ALBERTO ; GUZMÁN, JAVIER GARCÍA
; AMESCUA, ANTONIO ; SEGURA, MARIA
ISABEL SÁNCHEZ: Interactive Knowledge
Asset Management: Acquiring and
Disseminating Tacit Knowledge. In: Journal
of Information Science and Engineering Bd.
29 (2013), Nr. 1, S. 133–147

[Hump95] HUMPHREY, WATTS S.: A Discipline for
Software Engineering. Boston, MA, USA :
Addison-Wesley Longman Publishing Co.,
Inc., 1995 — ISBN 0201847485

[Kell87] KELLER, JOHN M.: Development and use of
the ARCS model of instructional design. In:
Journal of instructional development Bd. 10
(1987), Nr. 3, S. 2–10

[KiBP11] KITCHENHAM, BARBARA A. ; BUDGEN, DAVID ;
PEARL BRERETON, O.: Using mapping studies
as the basis for further research – A
participant-observer case study. In:
Information and Software Technology,
Special Section: Best papers from the APSEC
Best papers from the APSEC. Bd. 53 (2011),
Nr. 6, S. 638–651

[KoCM14] KOHWALTER, T.C. ; CLUA, E.W.G. ; MURTA,
L.G.P.: Reinforcing Software Engineering
Learning through Provenance. In: 2014
Brazilian Symposium on Software
Engineering (SBES), 2014, S. 131–140

[KuFM13] KUHRMANN, MARCO ; FERNÁNDEZ, DANIEL
MÉNDEZ ; MÜNCH, JÜRGEN: Teaching
Software Process Modeling. In: Proceedings
of the 2013 International Conference on
Software Engineering, ICSE ’13. Piscataway,
NJ, USA : IEEE Press, 2013 — ISBN 978-1-
4673-3076-3, S. 1138–1147

[PFMM08] PETERSEN, KAI ; FELDT, ROBERT ; MUJTABA,
SHAHID ; MATTSSON, MICHAEL: Systematic
Mapping Studies in Software Engineering. In:
Proceedings of the 12th International
Conference on Evaluation and Assessment in
Software Engineering, EASE’08. Swinton,
UK, UK : British Computer Society, 2008,
S. 68–77

 16

[PGBP15] PEDREIRA, OSCAR ; GARCÍA, FÉLIX ;
BRISABOA, NIEVES ; PIATTINI, MARIO:
Gamification in software engineering – A
systematic mapping. In: Information and
Software Technology Bd. 57 (2015), S. 157–
168

[RoZS14] RONG, GUOPING ; ZHANG, HE ; SHAO, DONG:
Where does experience matter in software
process education? An experience report. In:
2014 IEEE 27th Conference on Software
Engineering Education and Training (CSEE
T), 2014, S. 129–138

[WaSB12] VON WANGENHEIM, CHRISTIANE GRESSE ;
SAVI, RAFAEL ; BORGATTO, ADRIANO FERRETI:
DELIVER! – An educational game for
teaching Earned Value Management in
computing courses. In: Information and
Software Technology Bd. 54 (2012), Nr. 3,
S. 286–298

[Yeh12] YEH, YU-CHU: Aptitude-Treatment
Interaction. In: SEEL, P. D. N. M. (Hrsg.):
Encyclopedia of the Sciences of Learning :
Springer US, 2012 — ISBN 978-1-4419-
1427-9, 978-1-4419-1428-6, S. 295–298

Appendix: Primary studies selected for the
systematic mapping study

[S1] Pfahl, D., Klemm, M., Ruhe, G.: A CBT
module with integrated simulation component
for software project management education and
training. Journal of Systems and Software. 59,
283–298 (2001).

[S2] Agarwal, R., Prasad, J.: A field study of the
adoption of software process innovations by
information systems professionals. IEEE
Transactions on Engineering Management. 47,
295–308 (2000).

[S3] Biberoglu, E., Haddad, H.: A Survey of
Industrial Experiences with CMM and the
Teaching of CMM Practices. Journal of
Computing Sciences in Colleges. 18, 143–152
(2002).

[S4] Ali, N.B., Petersen, K., Wohlin, C.: A
systematic literature review on the industrial use

of software process simulation. Journal of
Systems and Software. 97, 65–85 (2014).

[S5] Matalonga, S., Solari, M., Feliu, T.S.: An
empirically validated simulation for
understanding the relationship between process
conformance and technology skills. Software
Qual J. 22, 593–609 (2013).

[S6] Elliott, M., Dawson, R., Edwards, J.: An
evolutionary cultural-change approach to
successful software process improvement.
Software Qual J. 17, 189–202 (2009).

[S7] Kamatar, J., Hayes, W.: An experience report
on the personal software process. IEEE
Software. 17, 85–89 (2000).

[S8] Prechelt, L., Unger, B.: An experiment
measuring the effects of personal software
process (PSP) training. IEEE Transactions on
Software Engineering. 27, 465–472 (2001).

[S9] Morisio, M.: Applying the PSP in industry.
IEEE Software. 17, 90–95 (2000).

[S10] Hsueh, N.-L., Shen, W.-H., Yang, Z.-W., Yang,
D.-L.: Applying UML and software simulation
for process definition, verification, and
validation. Information and Software
Technology. 50, 897–911 (2008).

[S11] Sampaio, A., Vasconcelos, A., Sampaio, P.R.F.:
Assessing agile methods: An empirical study. J
Braz Comp Soc. 10, 21–48 (2004).

[S12] Shen, W.-H., Hsueh, N.-L., Lee, W.-M.:
Assessing PSP effect in training disciplined
software development: A Plan–Track–Review
model. Information and Software Technology.
53, 137–148 (2011).

[S13] Carver, J., Shull, F., Basili, V.: Can
observational techniques help novices overcome
the software inspection learning curve? An
empirical investigation. Empir Software Eng.
11, 523–539 (2006).

[S14] Beasley, R.E.: Conducting a Successful Senior
Capstone Course in Computing. Journal of
Computing Sciences in Colleges. 19, 122–131
(2003).

[S15] García, J., Amescua, A., Sánchez, M.-I.,
Bermón, L.: Design guidelines for software
processes knowledge repository development.
Information and Software Technology. 53, 834–
850 (2011).

[S16] Bagert, D.J., Mengel, S.A.: Developing and
using a web-based project process throughout

 17

the software engineering curriculum. Journal of
Systems and Software. 74, 113–120 (2005).

[S17] Wangenheim, C.G. von, Thiry, M., Kochanski,
D.: Empirical evaluation of an educational game
on software measurement. Empir Software Eng.
14, 418–452 (2008).

[S18] Canfora, G., Cimitile, A., Garcia, F., Piattini,
M., Visaggio, C.A.: Evaluating performances of
pair designing in industry. Journal of Systems
and Software. 80, 1317–1327 (2007).

[S19] Hantos, P., Gisbert, M.: Identifying software
productivity improvement approaches and risks:
construction industry case study. IEEE
Software. 17, 48–56 (2000).

[S20] Amescua, A., Bermo ́n, L., Garci ́a, J., Sa ́nchez-
Segura, M.-I.: Knowledge repository to improve
agile development processes learning. IET
Software. 4, 434–444 (2010).

[S21] Guzmán, J.G., Martín, D., Urbano, J., Amescua,
A. de: Practical experiences in modelling
software engineering practices: The project
patterns approach. Software Qual J. 21, 325–
354 (2012).

[S22] Moreno, A.M., Sa ́nchez-Segura, M.-I., Medina-
Dominguez, F., Cuevas, G.: Process
Improvement from an Academic Perspective:
How Could Software Engineering Education
Contribute to CMMI Practices? IEEE Software.
31, 91–97 (2014).

[S23] Tadayon, N.: Software Engineering Based on
the Team Software Process with a Real World
Project. Journal of Computing Sciences in
Colleges. 19, 133–142 (2004).

[S24] Niño, J.: Software Engineering Team Studios.
Journal of Computing Sciences in Colleges. 23,
59–65 (2008).

[S25] Umphress, D.A., Hendrix, T.D., Cross, J.H.:
Software process in the classroom: the Capstone
project experience. IEEE Software. 19, 78–81
(2002).

[S26] Hart, D.: Supporting Agile Processes in
Software Engineering Courses. Journal of
Computing Sciences in Colleges. 25, 136–143
(2010).

[S27] Anewalt, K., Polack-Wahl, J.A.: Teaching an
Iterative Approach with Rotating Groups in an
Undergraduate Software Engineering Course.
Journal of Computing Sciences in Colleges. 25,
144–151 (2010).

[S28] Rombach, D., Münch, J., Ocampo, A.,
Humphrey, W.S., Burton, D.: Teaching
disciplined software development. Journal of
Systems and Software. 81, 747–763 (2008).

[S29] Borstler, J., Carrington, D., Hislop, G.W.,
Lisack, S., Olson, K., Williams, L.: Teaching
PSP: challenges and lessons learned. IEEE
Software. 19, 42–48 (2002).

[S30] Hilburn, T.B., Humphrey, W.S.: Teaching
teamwork. IEEE Software. 19, 72–77 (2002).

[S31] Humphrey, W.S.: Three Process Perspectives:
Organizations, Teams, and People. Annals of
Software Engineering. 14, 39–72 (2002).

[S32] Germain, É., Robillard, P.N.: Towards software
process patterns: An empirical analysis of the
behavior of student teams. Information and
Software Technology. 50, 1088–1097 (2008).

[S33] Begier, B.: Users’ involvement may help
respect social and ethical values and improve
software quality. Inf Syst Front. 12, 389–397
(2009).

