
Workshop Proceedings

Workshop on

Algorithms & Theories for the
Analysis of Event Data (ATAED’2015)

Brussels, Belgium, June 22-23, 2015

Satellite event of the conferences

15th International Conference on Application of
Concurrency to System Design (ACSD 2015)

36th International Conference on Application and Theory
of Petri Nets and Concurrency (PN 2015)

Edited by
Wil van der Aalst, Robin Bergenthum, and Josep Carmona

.

These proceedings are published online by the editors as Volume 1371 at CEUR
Workshop Proceedings

http://ceur-ws.org/Vol-1371

Copyright c©2015 for the individual papers is held by the papers authors. Copy-
ing is permitted only for private and academic purposes. This volume is published
and copyrighted by its editors.

Preface

Regions have been defined about 20 years ago by Ehrenfeucht and Rozen-
berg as sets of nodes of a finite transition system that correspond to potential
conditions that enable or disable transition occurrences in a corresponding ele-
mentary net system. Later, similar concepts were used to derive Petri nets from
languages. Both state-based and language-based approaches aim to constrain a
Petri net by adding places that are called regions. Over time, many variations
have been proposed, e.g., approaches dealing with multiple-token in a place,
extensions to partial orders, etc.

Initially, region theory focused on synthesis where the input behavior and
resulting Petri net are supposed to be equivalent with respect to some equivalence
criterion (e.g., bisimilar). Recently, region-based research started to focus also on
process mining where the goal is not to create an equivalent model, but to infer
new knowledge from the input. Process mining takes as input observed behavior
rather than assuming a complete description in terms of a transition system or
prefix-closed language. Classical region based techniques are unable to discover
process models from event logs. One needs to deal with new problems such as
noise and incompleteness. Equivalence notions are replaced by trade-offs between
fitness, simplicity, precision, and generalization. A model with good fitness allows
for most of the behavior seen in the event log. A model that does not generalize
is “overfitting”. Overfitting is the problem that a very specific model is generated
whereas it is obvious that the log only holds example behavior. A model that
allows for “too much behavior” lacks precision (i.e., is underfitting). Simplicity
is related to Occam’s Razor which states that “one should not increase, beyond
what is necessary, the number of entities required to explain anything”. Following
this principle, we often look for the simplest process model that can explain
what was observed in the event log. Process discovery from event logs is very
challenging because of these and many other trade-offs. Clearly, there are many
theoretical process-mining challenges with a high practical relevance that need
to be addressed urgently.

The challenges and opportunities formed the main motivation for propos-
ing the Algorithms & Theories for the Analysis of Event Data (ATAED’2015)
workshop as a succession of the Applications of Region Theory (ART) workshop
series. Our goal was (and is) to bring together researchers working on region-
based synthesis and process mining. Looking at the proceedings, we succeeded
in doing so!

The ATAED’2015 workshop took place in Brussels on June 22-23, 2015 and
was a satellite event of both the 36th International Conference on Application
and Theory of Petri Nets and Concurrency (Petri nets 2015) and the 15th In-
ternational Conference on Application of Concurrency to System Design (ACSD
2015). Papers related to process mining, region theory and other synthesis tech-
niques were presented at ATAED’2015. These techniques have in common that
‘lower level’ behavioral descriptions (event logs, partial orders, transition sys-
tems, etc.) are used to create ‘higher level’ process models (e.g., various classes
of Petri nets, BPMN, or UML activity diagrams). In fact, all techniques that

aim at learning or checking concurrent behavior from transition systems, runs,
or event logs were welcomed. The workshop was supported by the IEEE Task
Force on Process Mining (www.win.tue.nl/ieeetfpm/).

After a careful reviewing process, eleven papers were accepted for the work-
shop. Overall, the quality of the submitted papers was good and most submis-
sions matched very well the workshop goals. We thank the reviewers for providing
the authors with valuable and constructive feedback. Moreover, we were honored
that Eike Best (University of Oldenburg) was willing to give an invited talk on
the “Synthesis of Diamonds”. We thank Eike, the authors, and the presenters
for their wonderful contributions.

In the remainder, the accepted papers of the Algorithms & Theories for the
Analysis of Event Data (ATAED’2015) workshop are briefly summarized.

– The paper “On Binary Words Being Petri Net Solvable” by Kamila Barylska,
Eike Best, Evgeny Erofeev, Lukacs Mikulski, and Marcin Piatkowski stud-
ies the class of two-letter Petri net solvable words, i.e., Petri nets with two
transitions and a reachability graph isomorphic to a trace-based transition
system. Several intriguing results are presented for this class, e.g., the exis-
tence of side-place-free solutions given particular conditions.

– Andrey Mokhov and Josep Carmona use Conditional Partial Order Graphs
(CPOGs) to create compact and easy-to-comprehend visualizations of event
logs with data. In their paper “Event Log Visualization with Conditional
Partial Order Graphs: From Control Flow to Data”, the authors provide a
technique to automatically derive the control-flow part of the CPOG repre-
sentation from an event log, and then incorporate the data contained in the
log as conditions for the CPOG vertices and arcs.

– The paper “Discovery of Personal Processes from Labeled Sensor Data: An
Application of Process Mining to Personalized Health Care” by Timo Sztyler,
Johanna Völker, Josep Carmona, Oliver Meier, and Heiner Stuckenschmidt
shows how process mining can be used for analyzing self-tracking data.
Smart-phones and smart-watches can be used to produce detailed data about
someone’s daily life. The authors describe the acquisition of such data in real-
life and use existing process mining techniques for eliciting, analyzing and
monitoring daily routines.

– “ILP-Based Process Discovery Using Hybrid Regions” by Sebastiaan van
Zelst, Boudewijn Van Dongen, and Wil van der Aalst unifies the two exist-
ing types of language-based regions (single variable-based regions and dual
variable-based regions) to provide a representation suitable for process min-
ing. Integer Linear Programming (ILP)-based process discovery is further
enhanced with a generalized ILP objective function. It is shown that any
instantiation of the objective function leads to ILPs that favor minimal re-
gions.

– Robin Bergenthum, Thomas Irgang, and Benjamin Meis present a folding
algorithm to construct a business process model from a specification in their
paper “Folding Example Runs to a Workflow Net”. Different to mainstream
process mining techniques the input is not a sequential event log but a set of

example runs represented as labeled partial orders. By adopting ideas from
the theory of regions, the authors aim at improving precision of the model
while folding the runs into a model.

– The paper “Mining Duplicate Tasks from Discovered Processes” by Borja
Vázquez-Barreiros, Manuel Mucientes, and Manuel Lama tackles the clas-
sical problem of label splitting in process mining. The authors propose an
approach that uses the local information in the log to enhance an already
mined model by performing a local search over the potential tasks to be
duplicated. Experimental results show that, in a case study, the final model
was improved in 35 out of 36 cases.

– The paper “A Method For Assessing Parameter Impact on Control-Flow Dis-
covery Algorithms” by Joel Ribeiro and Josep Carmona presents a method
to automatically assess the impact of parameters of control-flow discovery
algorithms. The metaheuristic approach for process mining can be used to
guide the user in selecting a technique, representational bias, and suitable
parameter setting. The method has been evaluated over a set of logs while
using the flexible heuristic miner.

– Antonia Azzini, Paolo Ceravolo, Ernesto Damiani, and Francesco Zavatartelli
introduce the notion of extended behavior in their paper “Knowledge Driven
Behavioural Analysis in Process Intelligence”. They present a methodology
where first the descriptive knowledge is collected and the knowledge base
queried, then (in the prescriptive and predictive knowledge phases) business
rules and objectives are evaluated and unexpected business patterns and
exceptions are uncovered.

– “Compact Regions for Place/Transition Nets” by Robin Bergenthum presents
an approach using compact regions to synthesize a Petri net from a partial
language. The language of a marked Petri net is its set of compact valid
example runs. Compact regions are relevant as they may lead to faster syn-
thesis algorithms computing smaller Petri nets. Initial results suggest that
synthesis is indeed faster and that the compact solution space leads to nets
having less places.

– In “An Optimal Process Model for a Real Time Process”, the authors Likewin
Thomas, Manoj Kumar M.V., Annappa B., and Vishwanath K.P. provide a
solution for recommending an optimal path of execution taking into account
resource allocations. The proposed AlfyMiner compares variants of the same
process encountered in different organizations. The authors include func-
tionality to compare processes and to analyze resource behavior. This is
then used to recommend next actions and suitable resources.

– The paper “Capturing the Sudden Concept Drift in Process Mining” by
Manoj Kumar M.V., Likewin Thomas and Annappa B. focuses on sudden
changes during process execution, i.e., second-order process dynamics. The
paper proposes the extraction of a so-called “event class correlation feature”
from logs for localizing the sudden concept drift in the control-flow perspec-
tive of the operational process. Experiments using synthetic event data show
that (under ideal circumstances) sudden process changes can be detected.

The workshop proceedings provide a nice selection of ongoing research on the
intersection of process mining and region-based synthesis. The papers illustrate
the range of problems and solution approaches related to lifting ‘lower level’
dynamic behavior to ‘higher level’ process models. Given the rapid growth of
event data, the area is expected to become even more relevant in years to come.
We hope that ATAED’2015 serves as a starting point for a viable workshop
series bringing together the two communities working on process mining and
region-based synthesis.

Enjoy reading the proceedings!

Wil van der Aalst, Robin Bergenthum, and Josep Carmona
June 2015

Program committee of ATAED’2015

Wil van der Aalst, TU Eindhoven, The Netherlands (co-chair)
Rafael Accorsi, Universitaet Freiburg, Germany
Eric Badouel, INRIA Rennes, France
Robin Bergenthum, FernUni Hagen, Germany (co-chair)
Luca Bernardinello, Universit degli studi di Milano-Bicocca, Italy
Seppe vanden Broucke, KU Leuven, Belgium
Benôıt Caillaud, INRIA Rennes, France
Toon Calders, Universit Libre de Bruxelles, Belgium
Josep Carmona, UPC Barcelona, Spain (co-chair)
Paolo Ceravolo, University of Milan, Italy
Benôıt Depaire, Hasselt University, Belgium
Jörg Desel, FernUni Hagen, Germany
Boudewijn van Dongen, TU Eindhoven, The Netherlands
Luciano Garca-Bañuelos, University of Tartu, Estonia
Lúıs Gomes, Universidade Nova de Lisboa, Portugal
Gabriel Juhás, Slovak University of Technology, Slovak Republic
Anna Kalenkova, Higher School of Economics NRU, Russia
Jetty Kleijn, Leiden University, The Netherlands
Robert Lorenz, Uni Augsburg, Germany
Zbigniew Paszkiewicz, PricewaterhouseCoopers, Belgium
Marta Pietkiewicz-Koutny, Newcastle University, GB
Grzegorz Rozenberg, Leiden University, The Netherlands
Marcos Sepúlveda, Universidad Catolica de Chile, Chile
Jianmin Wang, Tsinghua University, China
Jochen De Weerdt, KU Leuven, Belgium
Alex Yakovlev, Newcastle University, GB

Table of Contents

K. Barylska, E. Best, E. Erofeev, L. Mikulski, M. Piatkowski
On Binary Words Being Petri Net Solvable 1 - 15

A. Mokhov, J. Carmona
Event Log Visualisation with Conditional Partial Order Graphs from
Control Flow to Data 16 - 30

T. Sztyler, J. Völker, J. Carmona, O. Meier, H. Stuckenschmidt
Discovery of Personal Processes from Labeled Sensor Data -
An Application of Process Mining to Personalized Health Care 31 - 46

S.J. van Zelst, B.F. van Dongen, W.M.P. van der Aalst
ILP-Based Process Discovery Using Hybrid Regions 47 - 61

R. Bergenthum, T. Irgang, B. Meis
Folding Example Runs to a Workflow Net 62 - 77

B. Vázquez-Barreiros, M. Mucientes, M. Lama
Mining Duplicate Tasks from Discovered Processes (short paper) 78 - 82

J. Ribeiro, J. Carmona
A Method for Assessing Parameter Impact on Control-Flow
Discovery Algorithms 83 - 96

A. Azzini, P. Ceravolo, E. Damiani, F. Zavatarelli
Knowledge Driven Behavioural Analysis in Process Intelligence 97 - 111

R. Bergenthum
Compact Regions for Place/Transition Nets (short paper) 112 - 116

Likewin Thomas, Manoj Kumar M V, Annappa B, Vishwanath K P
An Optimal Process Model for a Real Time Process 117 - 131

Manoj Kumar M V, Likewin Thomas, Annappa B
Capturing the Sudden Concept Drift in Process Mining 132 - 143

On Binary Words Being Petri Net Solvable

Kamila Barylska1,2?†, Eike Best1∗,??, Evgeny Erofeev1? ? ?, Lukasz Mikulski2†,
Marcin Pia↪tkowski2†

1 Department of Comp. Sci., Carl von Ossietzky Univ. Oldenburg, Germany
{eike.best,evgeny.erofeev}@informatik.uni-oldenburg.de

2 Faculty of Math. and Comp. Sci., Nicolaus Copernicus University Toruń, Poland
{kamila.barylska,lukasz.mikulski,marcin.piatkowski}@mat.umk.pl

Abstract. A finite word is called Petri net solvable if it is isomorphic to
the reachability graph of some unlabelled Petri net. In this paper, the
class of two-letter Petri net solvable words is studied.
Keywords: Binary words, labelled transition systems, Petri nets, syn-
thesis

1 Introduction

Region theory [1] provides a polynomial algorithm, based on solving linear
inequations, that checks whether a given finite labelled transition system is the
reachability graph of some place/transition Petri net [5], and if it is, synthesises
one of them. Due to the size of a transition system, this algorithm may be very
time-consuming. Moreover, it may produce one out of a class of different nets, and
there may not be a unique simplest one. For some applications, only certain types
of labelled transition systems are relevant. This leads to the idea of investigating
properties of labelled transition systems before synthesising them, in the hope of
obtaining more efficient and possibly also more deterministic synthesis algorithms.
It may even be possible to find exact structural characterisations, based solely
on graph-theoretical properties, such as for the class of finite labelled transition
systems which correspond to T-systems [2].

This paper reports progress on a similar effort about characterising the set of
finite words over an alphabet {a, b} which are Petri net solvable, i.e., for which
a place/transition net with an isomorphic reachability graph exists. We shall put
forward two conjectures, and describe some progress in analysing them. This

? Supported by a research and a visiting fellowship within the project ”Enhancing
Educational Potential of Nicolaus Copernicus University in the Disciplines of Mathe-
matical and Natural Sciences” (project no. POKL.04.01.01-00-081/10)

?? Supported by the German Research Foundation through the DFG/RFBR cooperation
project CAVER, BE 1267/14-1

? ? ? Supported by the German Research Foundation through the Research Training Group
(DFG GRK 1765) SCARE – http://www.uni-oldenburg.de/en/scare/
† Supported by the National Science Center under grant no. 2013/09/D/ST6/03928

1

work could well be of interest in a wider context, as it might entail a nontrivial
necessary condition for the solvability of an arbitrary labelled transition system.
If the latter is solvable, then finding a PN-unsolvable word as a path in it may
have a strong impact on its structure / shape.

2 Basic notations and conventions used in this paper

A finite labelled transition system with initial state is a tuple TS = (S,→, T, s0)
with nodes S (a finite set of states), edge labels T , edges →⊆ (S × T × S), and
an initial state s0 ∈ S. A label t is enabled at s ∈ S, written formally as s[t〉, if
∃s′ ∈ S : (s, t, s′) ∈→. A state s′ is reachable from s through the execution of
σ ∈ T ∗, denoted by s[σ〉s′, if there is a directed path from s to s′ whose edges
are labelled consecutively by σ. The set of states reachable from s is denoted
by [s〉. A (firing) sequence σ ∈ T ∗ is allowed from a state s, denoted by s[σ〉,
if there is some state s′ such that s[σ〉s′. Two lts TS1 = (S1,→1, T, s01) and
TS2 = (S2,→2, T, s02) are isomorphic if there is a bijection ζ : S1 → S2 with
ζ(s01) = s02 and (s, t, s′) ∈→1⇔ (ζ(s), t, ζ(s′)) ∈→2, for all s, s′ ∈ S1.

A word over T is a sequence w ∈ T ∗, and it is binary if |T | = 2. A word
t1t2 . . . tn of length n ∈ N uniquely corresponds to a finite transition system
({0, . . . , n}, {(i− 1, ti, i) | 0 < i ≤ n ∧ ti ∈ T}, T, 0).

An initially marked Petri net is denoted as N = (P, T, F,M0) where P is a finite
set of places, T is a finite set of transitions, F is the flow function F : ((P × T)∪
(T × P))→ N specifying the arc weights, and M0 is the initial marking (where
a marking is a mapping M : P → N, indicating the number of tokens in each
place). A side-place is a place p with p•∩•p 6= ∅, where p• = {t ∈ T | F (p, t)>0}
and •p = {t ∈ T | F (t, p)>0}. N is pure or side-place free if it has no side-
places. A transition t ∈ T is enabled at a marking M , denoted by M [t〉, if
∀p ∈ P : M(p) ≥ F (p, t). The firing of t leads from M to M ′, denoted by M [t〉M ′,
if M [t〉 and M ′(p) = M(p)−F (p, t) +F (t, p). This can be extended, as usual, to
M [σ〉M ′ for sequences σ ∈ T ∗, and [M〉 denotes the set of markings reachable
from M . The reachability graph RG(N) of a bounded (such that the number of
tokens in each place does not exceed a certain finite number) Petri net N is the
labelled transition system with the set of vertices [M0〉, initial state M0, label
set T , and set of edges {(M, t,M ′) | M,M ′ ∈ [M0〉 ∧M [t〉M ′}. If an lts TS is
isomorphic to the reachability graph of a Petri net N , we say that N solves TS.

3 Separation problems, and an example

In region theory, a labelled transition system (S,→, T, s0) is assumed to be given
as an input. In order to synthesise (if possible) a Petri net with isomorphic reacha-
bility graph, T is used as the set of transitions, and for the places, 1

2 ·(|S|·(|S|−1))
state separation problems and up to |S|·|T | event/state separation problems have

2

to be solved. A state separation problem consists of a set of states {s, s′} with
s 6= s′, and for each such set, one needs a place that distinguishes them. Such
problems are always solvable for words; for instance, we might introduce a count-
ing place which simply has j tokens in state j. An event/state separation problem
consists of a pair (s, t) ∈ S×T with ¬(s[t〉). For every such problem, we need a
place p such that M(p) < F (p, t) for the marking M corresponding to state s,
where F refers to the arcs of the hoped-for net.

0 1 2 3a a b

TS1 w = aab

a b

q p
2

N1

0

1

2 3

4

5

a

b

b

a

a

TS2

w = abbaa

Fig. 1. N1 solves TS1. No solution of TS2 exists.

For example, in figure 1, the labelled transition systems TS1 and TS2 correspond
to the words aab and abbaa, respectively. The former is PN-solvable, since the
reachability graph of N1 is isomorphic to TS1. TS2 contains an unsolvable
event/state separation problem. The state s = 2 just between the two b’s satisfies
¬(s[a〉). We need a place q whose number of tokens in (the marking corresponding
to) state 2 is less than needed for transition a to be enabled. Such a place q has
the general form shown on the right-hand side of figure 2. It is useful to speak
of the effect E(τ) of a sequence τ ∈ T ∗ on place q. For the letter a, the effect is
defined as E(a) = (a+−a−), and this can be generalised easily. Thus, for instance,
the effect E(abbaa) is E(abbaa) = 3·(a+ − a−) + 2·(b+ − b−). If q prevents a at
state 2 in abbaa, then it must satisfy the following inequalities, amongst others:
a− ≤ m, since a is enabled initially; a− ≤ m+ E(abba), since state 4 enables a;
and m+ E(ab) < a−, or equivalently, 0 ≤ −m− E(ab) + a− − 1, expressing the
fact that q solves the event/state separation problem ¬(2[a〉). Later, we show
that this set of inequalities cannot be solved in the natural numbers.

m

p

a b

a−

a+

b−

b+

m

q

a b

a−

a+

b−

b+

Fig. 2. Places p / q with four arc weights a−, a+, b−, b+ and initial marking m.
They are similar, but p will be used for preventing b, and q for preventing a.

In a word of length n, the equation system for a single event/state separation
problem comprises n + 1 inequations. In binary words, we have n + 2 such
problems, one for every state 0, . . . , n − 1 and two for the last state. Thus, a
word w of length n is PN-solvable if and only if all those n + 2 systems, each
having n+ 1 inequalities and five unknowns a−, a+, b−, b+,m, are solvable in N.
The question dealt with in this paper is whether the set of binary words that are
PN-(un)solvable can be characterised equivalently, in a more structural way. We
shall assume, from now on, that T = {a, b}.

3

4 Minimal unsolvable binary words, and some conjectures

Let a word w′ ∈ T ∗ be called a subword (or factor) of w ∈ T ∗ if ∃(u1, u2 ∈ T ∗) :
w = u1w

′u2, and let #t(w) denote the number of times the letter t occurs in w.
Observe that if w is PN-solvable then all its subwords are, too. To see this, let
the Petri net solving w be executed up to the state before w′, take this as the
new initial marking, and add a pre-place with #a(w′) tokens to a and a pre-place
with #b(w

′) tokens to b. Thus, if a subword of w is unsolvable, then w is. For this
reason, the notion of a minimal unsolvable word is well-defined (namely, as an
unsolvable word all of whose subwords are solvable). A complete list of minimal
unsolvable words up to length 110 can be found in [6]. As a consequence of the
next proposition, any minimal unsolvable word either starts and ends with a or
starts and ends with b.

Proposition 1. Solvability of aw and wb implies solvability of awb

If both aw and wb are solvable, then awb is also solvable.

Proof: Assume that aw and wb are PN-solvable words over {a, b}. If w = bk (for
k ∈ N) then awb = abk+1 is obviuosly solvable, hence we assume that b contains
at least one a. Let N1 = (P1, {a, b}, F1,M01) and N2 = (P2, {a, b}, F2,M02) be
Petri nets such that N1 solves aw and N2 solves wb. We can assume that N1

and N2 are disjoint, except for their transitions a and b. Forming the union of
N1 and N2 gives a net which is synchronised at a and b, and which allows all
(and only) sequences allowed by both N1 and N2. We modify N1 and N2 before
forming their union, as follows:

(i) Modify N1 by adding, to each place p in •b ∩ P1, another F1(p, b) tokens.
This allows an additional b.

(ii) Modify N2 by adding, to each place q in •a ∩ P2, another F2(q, a) tokens.
This allows an additional a. Further, for each place p in a• ∩P2 ∩ •b, add the
quantity F2(a, p) both to F2(p, b) and to F2(b, p). The new arc weights lead
to the same effect of b on p, but prevent premature occurrences of b which
could have been allowed by adding the tokens in front of b in step (i).

Define N as the union of the two nets thus modified, and see figure 3 for an
example. (The added tokens are drawn as hollow circles.) In general, N solves
awb in the following way: The initial a is allowed in N1 by definition and in N2

by the additional tokens. The subsequent w is allowed in both nets, and hence in
their synchronisation. The final b is allowed in N2 by definition and in N1 by the
additional tokens. No premature b is allowed by the arc weight increase, and no
final additional a is allowed because N1 does not allow it. 1

¿From the list [6], it can be observed that all minimal unsolvable words starting
and ending with a are of the following general form:

s0 [(abα) b∗ 〉 s [(baα)+ 〉 r [a 〉 where α ∈ T ∗ and s0, s, r are states (1)

4

a b

◦

•

••
N1

a b

p
•

◦

•◦

2

N2

a b

p
•

•

••

2
3

2

N

Fig. 3. N1 (black tokens) solves aw = abab. N2 (black tokens) solves wb = babb.
N (redundant places omitted) solves awb = ababb.

with a not being separated at s. For example, abbaa satisfies (1) with α = ε, the
star ∗ being repeated zero times, and the plus + being repeated just once. Indeed,
it is easy to prove that such words are generally PN-unsolvable:

Proposition 2. Sufficient condition for the unsolvability of a word

If a word over {a, b} has a subword of the form (1), then it is not PN-solvable.

Proof: For a word w of the form (1), we prove that w cannot be solved (implying
the proposition in the context of the considerations above). Because baα occurs
at least once after state s, b is enabled at s, and a is not enabled at s. Suppose
that some place q as in figure 2 (r.h.s.) exists which separates a at s. Let E
be E(abα), i.e., the effect of abα on q, and let Eb = E(b). E(b) ≥ 1 because q
separates a at s but not at s+ 1. For w, we derive the following inequalities:

(0) a− ≤ m
(s+1) a− ≤ m+ E + k·Eb + Eb for some fixed k ≥ 0

(r) a− ≤ m+ E + k·Eb + `·E for the same k and some fixed ` > 0
(sep) 0 ≤ −m− E − k·Eb + a− − 1 for the same k

(0) is true because at s0, a is enabled. (s+1) is true because a is enabled one
state after s. (r) is true because a is enabled at r; and ` > 0 because of the +.
Finally, (sep) is true because q disables a at state s. Adding (s+1)+(sep) gives
1 ≤ Eb. Adding (0)+(sep) gives 1 ≤ −E − k·Eb, and using also 1 ≤ Eb gives
1 ≤ −E − k·Eb ≤ −E. Adding (r)+(sep) gives 1 ≤ `·E, contradicting 1 ≤ −E.
The system cannot be solved, and no place q separating a at s exists. 2

Conjecture 1. A converse of proposition 2
Suppose a word over {a, b} is non-PN-solvable and minimal with that property.
Then it is (modulo swapping a and b) of the form given in (1). Strengthened
conjecture: It is either of the form ab bj︸︷︷︸

α

bkba bj︸︷︷︸
α

a with j ≥ 0, k ≥ 1 or of the

form abα(baα)`a with ` ≥ 1 Conj. 1

Proposition 3. Another sufficient condition for unsolvability

Let w be of the form s0[α〉s[β〉r[a〉 such that α starts with a and β starts with b.

If #a(β)·#b(α) ≥ #a(α)·#b(β) (2)

then w is unsolvable.

For instance, for w = abbaa, α = ab and β = ba, and (2) holds true.

5

Proof: If a place q separates a at s and has marking m at s0, then for Eα =
E(α) = #a(α)·Ea + #b(α)·Eb and Eβ = E(β) = #a(β)·Ea + #b(β)·Eb we have:

(0) a− ≤ m (since α starts with a)
(r) a− ≤ m+ Eα + Eβ

(sep) 0 ≤ −m− Eα + a− − 1 (since ¬s[a〉)

Adding (0)+(sep) yields 1 ≤ −Eα, hence (A): −(#a(α)Ea+#b(α)Eb) ≥ 1, where
Ea and Eb denote the effects of a and b on q, respectively. As before, Eb ≥ 1.
Adding (r)+(sep) yields 1 ≤ Eβ , hence (B): (#a(β)Ea + #b(β)Eb) ≥ 1. Then,

−#a(β) ≥ #a(β)#a(α)Ea + #a(β)#b(α)Eb (algebra, and by (A))

≥ #a(β)#a(α)Ea + #a(α)#b(β)Eb (using (2) and Eb ≥ 1)

≥ #a(α) (algebra, and by (B))

However, −#a(β) ≥ #a(α) implies #a(β) = #a(α) = 0, and this is a contradic-
tion since α contains at least one a. Thus, such a place q does not exist. 3

Words in which the letters a and b strictly alternate are easy to solve. Therefore,
it stands to reason to investigate cases in which a letter occurs twice in a row.

Proposition 4. Solvable words starting with a can be prefixed by a

If a word av is PN-solvable then aav is, too.

Proof: Let N = (P, {a, b}, F,M0) be a net solving av. We shall construct a net
which solves aav. The idea is to obtain such a net by “unfiring” a once from the
initial marking of N . Since this may lead to a non-semipositive marking which
we would like to avoid, we will first normalise and modify the net N , obtaining
another solution N ′ of av, and then construct a solution N ′′ for aav (cf. Fig. 4).

For normalisation, we assume that there are two places pb and qa; the first prevents
b explicitly in the initial phase, and the second prevents a after the last occurrence
of a. They are defined by M0(pb) = 1, F (a, pb) = 1, F (b, pb) = `+1 = F (pb, b),
where ` is the number of a before the first b in av, and M0(qa) = k, F (qa, a) = 1,
where k is the number of a in av. (All other F values = 0.)

Let NUF (a) = {p ∈ a• |M0(p) < F (a, p)} be the set of places which do not allow
the “unfiring” of a at M0. Note that neither pb nor qa are in NUF (a). Note also
that for every p ∈ NUF (a), F (p, a) ≤ M0(p) < F (a, p) – the first because a is
initially enabled, the second by p ∈ NUF (a). That is, a has a positive effect on p.
Without loss of generality, b has a negative effect on p (otherwise, thanks to the
normalising place pb, p could be deleted without changing the behaviour of N).

For every p ∈ NUF (a) we add the quantity F (a, p) uniformly to M0(p), to F (p, b),
and to F (b, p), eventually obtaining N ′ = (P ′, {a, b}, F ′,M ′0), and we show that
N ′ also solves av. First, both M0[a〉 ∧ ¬M0[b〉 and M ′0[a〉 ∧ ¬M ′0[b〉 (the former
by definition, the latter by construction). For an inductive proof, suppose that
M0[a〉M1[τ〉M and M ′0[a〉M ′1[τ〉M ′. We have M [b〉 iff M ′[b〉 by construction. If

6

M [a〉, then also M ′[a〉, since M ≤M ′. Next, suppose that ¬M [a〉; then there is
some place q such that M(q) < F (q, a). We show that, without loss of generality,
q /∈ NUF (a), so that q also disables a at M ′ in N ′. If M disables the last a in av,
we can take q = qa /∈ NUF (a). If M disables some a which is not the last one in
av, then q cannot be in NUF (a), since b acts negatively on such places.

Now, we construct a net N ′′ = (P ′, {a, b}, F ′,M ′′0) from N ′ by defining M ′′0 (p) =
M ′0(p) − F ′(a, p) + F ′(p, a) for every place p. By construction, aav is a firing
sequence of N ′′. Furthermore, M ′′0 does not enable b because of pb. 4

a b

p

•

qa
••

pb
• 2

2

N

a b

•
p

•

qa
••

pb
• 2

2

2

N ′

a b

p

••

qa
•••

pb
2

2

2

N ′′

Fig. 4. N is normalised and solves abab. N ′ solves abab as well. N ′′ solves aabab.

As a consequence, if av is minimally PN-unsolvable, then v starts with a b.

Proposition 5. No aa and bb inside a minimal unsolvable word

If a minimal non-PN-solvable word is of the form u = aαa, then either α does
not contain the factor aa or α does not contain the factor bb.

Proof: By contraposition. Assume that α contains a factor aa and a factor bb.
Two cases are possible:

Case 1: There is a group of a’s which goes after a group of b’s. Let am and bn

be such groups, assume that am goes after bn and that there are no groups of a
or of b between them. Then u is of the following form

s0 [. . . 〉 q [abn(ab)kam 〉 r [. . . 〉

where n,m ≥ 2, k ≥ 0. Recombine the letters in u to the following form:

s0 [. . . 〉 q [(ab)bn−2(ba)k+1aam−2 〉 r [. . . 〉

Since u ends with a, (ab)bn−2(ba)k+1a is a proper subword of u. But it has the
form (abw)b∗(baw)+a, with w = ε, which implies its unsolvability by proposition
2, contradicting the minimality of u.

Case 2: All groups of a precede all groups of b. In this case u is of the form

aax0bax1 . . . baxnby0aby1aby2 . . . abyma

where at least one of xi and one of yj is greater than 1. Consider ` = max{i |
xi > 1}. If ` = 0, we get a contradiction to proposition 4. Hence, ` > 0. Let
t = min{j | yj > 1}. Then u has the form

s0 [a . . . 〉 q [bax`(ba)n−`(ba)tbyt 〉 r [. . . a 〉

7

Recombine the letters in u to the form

s0 [a . . . 〉 q [(ba)ax`−2(ab)n−`+t+1bbyt−2 〉 r [. . . a 〉

Hence, u has a proper subword (ba)ax`−2(ab)n−`+t+1b, which is of the form
(baw)a∗(abw)+b with w = ε, implying its non-PN -solvability, due to proposition
2 with inverted a and b. This again contradicts the minimality of u. 5

For these reasons, we are particularly interested in words of the following form:

either abx1a . . . abxna or bx1a . . . abxn where xi ≥ 1 and n > 1 (3)

In the first form, there are no factors aa. If factors bb are excluded and the word
starts and ends with an a, then we get words that are of the second form, except
for swapping a and b. This swapping is useful in order to understand how words
of the two forms are interrelated.

Conjecture 2. A converse of proposition 3
If a word is of the form w = αβa where α starts with a and β starts with b, and if
w is minimal non-PN-solvable and also of the form given in (3), then inequation
(2) holds. A stronger variant of this conjecture: If w = αβa is of the form

w = [abx1a . . . abxk−1︸ ︷︷ ︸
α

〉 s [ba . . . abxn︸ ︷︷ ︸
β

a 〉 with n ≥ 3 and xi ≥ 1

then a is not separated at state s iff #a(β)·#b(α) = #a(α)·#b(β). Conj. 2

5 Some results about words of the form bx1a . . . abxn

5.1 Side-places in words of the form bx1a . . . abxn

If a word w = bx1a . . . abxn can be solved at all, then side-places may be necessary
to do it. However, we will show that in the worst case, only some side-place q
around a, preventing a at some state, are necessary.

Lemma 1. side-place-freeness around b

If w = bx1a . . . abxn is solvable, then w is solvable without side-place around b.

Proof: Let w and its intermediate states be of the form1

w = s0[bx1〉s1[abx2〉s2[a〉 . . . sn−1[abxn〉sn (4)

Suppose some place p prevents b at some state sk, for 1 ≤ k ≤ n− 1. (The only
other state at which b must be prevented is state sn, but that can clearly be done

1 A note on convention: in the following, we use the letter s to denote states at which
b has to be prevented, and p for places doing this. Similarly, we use the letter r to
denote states at which a has to be prevented, and q for places doing this.

8

by a non-side-place, e.g. by an incoming place of transition b that has initially∑n
i=1 xi tokens.) Note that b− > b+, because place p allows b to be enabled at

the state preceding sk but not at sk. Similarly, a− < a+, because b is not enabled
at state sk but at the immediately following state, which is reached after firing a.
¿From the form (4) of w, we have

b+ ≤ m+ x1(b+ − b−)
b+ ≤ m+ (x1 + x2)(b+ − b−) + (a+ − a−)
· · ·
b+ ≤ m+ (x1 + . . .+ xn)(b+ − b−) + (n− 1)(a+ − a−)
0 ≤ −m− (x1 + . . .+ xk)(b+ − b−)− (k − 1)(a+ − a−) + b− − 1

(5)

The first n inequations assert the semipositivity of the marking of place p (more
precisely, its boundedness from below by b+, since p may be a side-place) at the
n states s1, . . . , sn. In our context, if these inequalities are fullfilled, then the
marking is ≥ b+ at all states, as a consequence of b− ≥ b+, a− ≤ a+, and the
special form of the word. The last inequality comes from ¬(sk[b〉).
We certainly have 0 ≤ b+ ≤ b− ≤ m, because of b− ≥ b+ as noted above, and
because b is initially enabled. If b+ = 0, then p is not a side-place around b, and
there is nothing more to prove (for p). If b+ ≥ 1, we consider the transformation

b′+ = b+ − 1 and b′− = b− − 1 and m′ = m− 1

The relation 0 ≤ b′+ ≤ b′− ≤ m′ still holds for the new values. Also, all inequalities
in (5) remain true for the new values: in the first n lines, 1 is subtracted on each
side, and on the last line, the increase in −m is offset by the decrease in b−. Thus,
we get a solution preventing b with a ‘smaller’ side-place, and we can continue
until eventually b+ becomes zero.

A side-place around b might, however, still be necessary to prevent a at some
state. We show next that such side-places are also unnecessary.

Let w and its intermediate states be of the form

[bx1−1〉r1[b a bx2−1〉r2[b a 〉 . . . [a bxk−1〉rk[b〉sk[a 〉 . . . [bxn−1−1〉rn−1[b a bxn〉

Suppose some place q as on the right-hand side of figure 2 prevents a at state rk,
for 1 ≤ k ≤ n− 1. Symmetrically to the previous case, we have b+ > b−. This
is true because, while q does not have enough tokens to enable a at state rk, it
must have enough tokens to enable a at the directly following state (which we
may continue to call sk). But we also have (w.l.o.g.) a+ < a−. For k ≥ 2, this
follows from the fact that if the previous a (enabled at the state sk−1 just after
rk−1) acts positively on q, then q also has sufficiently many tokens to enable a at
state rk. For k = 1, it is possible to argue that a+ ≤ a− is valid without loss of
generality. For suppose that q disables a only at r1 and nowhere else. (This is no
loss of generality because for the other states rk, k ≥ 2, copies of q can be used.)
Then we may consider q′ which is an exact copy of q, except that a+ = a−− 1 for
q′. This place q′ also disables a at state r1 (because it has the same marking as

9

q). Moreover, it does not disable a at any other state after r1 because it always
has ≥ a− − 1 tokens, and after the next b, ≥ a− tokens, since b+ > b−.

Because of b+ ≥ b− and a+ ≤ a−, q also prevents a at all prior states in the
same group of b’s. Moreover, in the last (i.e. n’th) group of b’s, a can easily be
prevented side-place-freely. For place q with initial marking m, we have

a+ ≤ m+ x1(b+ − b−) + (a+ − a−)
a+ ≤ m+ (x1 + x2)(b+ − b−) + 2(a+ − a−)
· · ·
a+ ≤ m+ (x1 + . . .+ xn−1)(b+ − b−) + (n− 1)(a+ − a−)
0 ≤ −m− (x1 + . . .+ xk − 1)(b+ − b−)− (k − 1)(a+ − a−) + a− − 1

(6)

The first n− 1 inequations assert the semipositivity of the marking of place q
(more precisely, its boundedness from below by a+, since q may be a side-place
of a) at the n− 1 states r1, . . . , rn−1. If these inequalities are fullfilled, then the
marking is ≥ a+ at all states after the first a, as a consequence of b+ ≥ b− and
the special form of the word. The last inequality asserts that place q prevents
transition a at state rk, hence effects the event/state separation of a at rk.

If b− is already zero, place q is not a side-place of b. Otherwise, we may perform
the transformation

b′+ = b+ − 1 and b′− = b− − 1 and m′ = m

because of b+ ≥ b− as noted above. The left-hand sides of the first n − 1
inequalities in (6) do not decrease, and neither do the right-hand sides. The same
is true for the last inequality. 1

Lemma 2. Side-place-freeness around a, preventing b

Suppose w = bx1abx2a . . . abxn . If w is solvable by a net in which some place p
separates b, then we may w.l.o.g. assume that p is not a side-place around a.

Proof: The equation system (5) is invariant under the transformation

a′+ = a+ − 1 and a′− = a− − 1 and m′ = m

as neither the left-hand sides nor the right-hand sides change their values. 2

If some place q prevents transition a, then a side-place q connected to a may be
present. It may not always be possible to remove such a side-place. Consider, for
instance, the word w = bbbabab. It is of the form (4), and any net solving bbbabab
necessarily contains a side-place around transition a.2 The word bbabbababab can
also not be solved without a side-place (but bbabbabab can). So far, no tight (weak)
sufficient conditions for solvability, or solvability without side-places around a,
are known. However, the next lemma shows that the presence of a side-place
around a may be due to there being “many” initial b’s. That is, if x1 is “small
enough”, then such a side-place is not necessary.

2 The reader is invited to use [7] in order to verify this claim; we will not include a
proof in this paper for lack of space.

10

Lemma 3. Side-place-freeness around a, preventing a

Suppose w = bx1abx2a . . . abxn . If x1 ≤ min{x2, . . . , xn−1} and if w is solvable
by a net in which some place q prevents transition a at state rk with 1 ≤ k ≤ n,
then we may w.l.o.g. assume that q is not a side-place around a.

Proof: For preventing a at state rn, we only need a place with no input and
output a (weight 1) which has n− 1 tokens initially.

Suppose q prevents a at state rk, with 1 ≤ k ≤ n− 1. ¿From previous consider-
ations, we know a+ < a− and b+ > b−, and we may assume, w.l.o.g., that q is
not a side-place around b, i.e., that b− = 0. The initial marking m of q and the
remaining arc weights a+, a−, b+ satisfy the system of inequations (6), except
that it is simplified by b− = 0. If a+ = 0, then q is already of the required form.
For a+ > 0, we distinguish two cases.

Case 1: m > 0 and a+ > 0. Then consider the transformation

m′ = m− 1 and a′+ = a+ − 1 and a′− = a− − 1

By m > 0 and a− ≥ a+ > 0, we get new values m′, a′+, a
′
− ≥ 0. Moreover, (6)

remains invariant under this transformation. So, q′ serves the same purpose as q,
and it has one incoming arc from a less than q. By repeating this procedure, we
either get a place which serves the same purpose as q, or we hit Case 2.

Case 2: m = 0 and a+ > 0. In this case, we consider the transformation

m′ = m = 0 and a′+ = 0 and a′− = a−

Such a transformation also guarantees m′, a′+, a
′
− ≥ 0. Also, the last line of (6) is

clearly satisfied with these new values, since the value of its right-hand stays the
same (for k = 1) or increases (for k > 1). To see that the first n− 1 lines of (6)
are also true with the new values (and with b− = 0), and that we can, therefore,
replace q by q′, we may argue as follows. At any marking m̃ reached along the
execution of w, we have the following:

m̃(q) ≥ m̃(q′) ≥ 0 (7)

These inequalities imply that the new place q′ prevents a at rk, whenever the old
one, q, does, and that, moreover, no occurrences of a are excluded by the place
q′ where they should not be prohibited.

The first of the inequalities (7) holds because it holds initially (when m̃ = m, then
m̃(q) = m = m′ = m̃(q′)), and because the effect of a before the transformation
is (a+− a−), and after the transformation, it is (−a−). In other words, a reduces
the token count on q′ more than it does so on q, while b has the same effect on
q′ as on q. To see the second inequality in (7), let x = min{x2, . . . , xn−1}. Then

a− ≤ x1 · b+ ≤ x · b+

The first inequality follows because m = 0 and q has enough tokens after the
first x1 occurrences of b in order to enable a. The second inequality follows from

11

x1 ≤ x. But then, since a only removes a− tokens from q′ and the subsequent
block of b’s puts at least x · b+ tokens back on q′, the marking on q′ is always
≥ 0, up to and including the last block of b’s. 3

Corollary 1. Side-place-free solvability with few initial b’s

If w = bx1abx2a . . . abxn is solvable, then side-places are necessary, at worst,
between a and q, where q is some place preventing a at one of the states rk with
1 ≤ k < n− 1. If w = bx1abx2a . . . abxn is solvable and x1 ≤ min{x2, . . . , xn−1},
then w is solvable side-place-freely. 1

5.2 Solving words aw from words of the form w = bx1a . . . abxn

Solving a word of the form w = bx1a . . . abxn side-place-freely allows us to draw
some conclusion about prepending a letter a to it, as follows.

Lemma 4. Preventing a in aw

Suppose w = bx1abx2a . . . abxn is solvable side-place-freely. Then in aw, all oc-
currences of a can be separated side-place-freely.

Proof: In order to prevent a in w side-place-freely at any state rk, the system
(6) has a solution with a+ = 0 and b− = 0 for any fixed 1 ≤ k ≤ n − 1. This
refers to a pure input place q of a, which may or may not be an output place of
b. In order to prevent a in aw side-place-freely, we need to consider the states rk
as before (but shifted to the right by one index position, still just before the last
b of the k’th group of b’s) and a correspondingly modified system as follows:

0 ≤ m′ + (x1 + . . .+ xi) · (b′+) + (i+ 1) · (−a′−) for all 0 ≤ i ≤ n− 1

0 ≤ −m′ − (x1 + . . .+ xk − 1) · (b′+)− k · (−a′−) + a′− − 1
(8)

where m′, b′+ and a′− refer to a new pure place q′ preventing a at state rk in aw.
The line with i = 0 was added because m′ is required to be bounded from below
and a must be enabled initially. (In (6), nonnegativity of m follows from the line
with i = 1 and b being the first transition of w, which is no longer true in aw.)
Consider the transformation

m′ = m+ a− and b′+ = b+ and a′− = a−

These values satisfy (8), provided m, b+ and a− (together with a+ = 0 and
b− = 0) satisfy (6). The line with i = 0 follows from m′ = m + a− ≥ 0. The
other lines corresponding to i ≥ 1 reduce to the corresponding lines in (6), since
the additional (−a−) at the end of each line is offset by the additional (+a−)
at the beginning of the line. The last line (which belongs to state rk at which
a is separated) corresponds to the last line of (6), because the decrease by a−
at the beginning of the line is offset by an increase by a− in the term k · (−a′−)
(compared with (k − 1) · (−a−) as in (6)). 4

12

Note 1: In order to disable a at rk, q could be replaced by a place q′ obtained
by duplicating q and changing the initial marking m to m′ = m+ a−. Intuitively,
this means that m′ is computed from m by “unfiring” a once.

Note 2: Place q should not be removed as soon as q′ is added, because q could
also be preventing a at some other rk. In that case, a new place q′′ must be
computed from q for this different value of k. We may forget about q only after
all the relevant indices k have been processed.

Next, consider an input place p of b in a side-place-free solution of w and suppose
that p prevents b at state sk. Suppose that we want to solve aw. If p is not also
an output place of a, then it can simply be retained unchanged, and with the
same marking, prevent b at corresponding states in aw and in w. However, if p
is also an output place of a, there may be a problem, because “unfiring” a in
the initial marking may lead to negative tokens on p. This is illustrated by the
example babbabb which has a side-place-free solution, as shown on the left-hand
side of figure 5.

a b

•
p

•
q1
q2

••

2

2

solves
babbabb

a b

−1
p′

•••
q′1

•••
q′2

2

2

“solves”
ababbabb

a b

p′

•••
q′1

•••
q′2

5 3

2

solves
ababbabb

Fig. 5. Solving babbabb (l.h.s.), (almost) ababbabb (middle), and ababbabb (r.h.s.).

The places q1, q2 can be treated as in the above proof (that is, by chang-
ing their markings by “unfiring” a) and yield new places q′1, q

′
2 with marking

{(q′1, 3), (q′2, 3)}. If we allowed negative markings, then a new place p′ with ini-
tial marking (p′,−1) (and otherwise duplicating p) would do the job of solving
ababbabb (as in the middle of the figure). However, we shall need a more refined
argument in order to avoid negative markings.

Let p′ be a general new place which is supposed to prevent b at state sk in aw.
In order to check the general solvability of aw if w is side-place-freely solvable,
we consider a general transformation

m′ = m+µ , b′+ = b++β+ , b′− = b−+β− , a′+ = a++α+ , a′− = a−+α−

where µ ≥ −m, β+ ≥ −b+, β− ≥ −b−, α+ ≥ −a+ and α− ≥ −a−, as well as a
new inequation system:

b′+ ≤ m′ + (x1 + . . .+ xi) · (b′+ − b′−) + i · (a′+ − a′−) for 1 ≤ i ≤ n
0 ≤ −m′ − (x1 + . . .+ xk) · (b′+ − b′−)− k · (a′+ − a′−) + b′− − 1

This system has to be compared with a restricted form of (5) (setting b+ = a− = 0,
since the solution of w is pure). Doing this by line-wise comparison, we get the

13

following inequation system for the new value differences:

µ ≥ −m, β+ ≥ −b+, β− ≥ −b−, α+ ≥ −a+, α− ≥ −a−
β+ ≤ µ+ (x1 + . . .+ xi) · (β+ − β−) + i · (α+ − α−) + a+

0 ≤ −µ− (x1 + . . .+ xk) · (β+ − β−)− k · (α+ − α−)− a+ + β−

(9)

The lines with i must be solved simultaneously for every 1 ≤ i ≤ n while the line
with k must be solved individually for every 1 ≤ k ≤ n − 1, in order to get a
place preventing b at state sk. This leads to the following lemma.

Lemma 5. Solving aw from w

Suppose w = bx1abx2a . . . abxn is solvable side-place-freely. Then aw is solvable.

Proof: Suppose that a pure place p with parameters b− (arc into b), a+ (arc
from a) and m (initial marking) is given and suppose it separates b from sk in w.
This place solves (5) for that particular k. We distinguish two cases:

Case 1: a+ ≤ m. In this case, the place p can essentially be re-used for the same
purpose in the solution (that we construct in this way) for aw, since (9) is solved
by putting

µ = −a+ , β+ = β− = 0 , α+ = α− = 0

Hence, a place p′ which differs from p only by its initial marking (m′ = m− a+
instead of m) separates b at sk in aw.

Case 2: a+ > m. In this case, (9) can be solved by

µ = −m , β+ = β− = a+ −m , α+ = α− = 0

That is, we may replace p by a place p′ with zero initial marking and adding
uniformly the value a+ −m to the incoming and outgoing arcs of b, creating a
side-place around b. 5

For instance, in the solution of babbabb shown on the left-hand side of figure
5, the place p from a to b satisfies m=1, b−=1, b+=0, a−=0 and a+=2. (9) is
solved by µ = −1, β− = 2, β+ = 0, α− = 0 and α+ = 3. Hence with m′=m− 1,
b′−=b− + 2, b′+=b+, a′−=a− and a′+=a+ + 3, the net shown on the right-hand
side of figure 5 is a pure solution of ababbabb. (Place p′ prevents b not only in
states s1 and s2 but also in the initial state and in the final state.) There exist
words such as w1 = bbbabab or w2 = bbabbababab, however, which can be solved
but for which aw is not solvable. We have a converse of Lemma 5:

Lemma 6. Solving w side-place-freely from aw

If aw has a solution, then w has a side-place-free solution.

14

Proof: Suppose that aw has a solution in which some place q′, preventing a, has
a side-place around a. Because q′ prevents a, a′− > a′+ (unless it is the first a,
but then we don’t need q′ in solving w). Because a is enabled initially, m′ ≥ a′−.
But then, the transformation a′′− = a′− − a′+, a′′+ = 0, m′′ = m′ − a′+ yields
another place q′′ which is not a side-place around a but serves the same purpose
as q′. The rest of the proof follows because the above transformations (removing
side-places around b, or side-places around a which prevent b) do not introduce
any new side-places around a. 6

Corollary 2. Side-place-free solvability of bx1abx2a . . . abxn

w = bx1abx2a . . . abxn is solvable side-place-freely iff aw is solvable. 2

6 Concluding remarks

If the characterisations of minimal Petri net solvable binary words proposed
in this paper are valid, then the usual linear solver for detecting them can be
replaced by a pattern-matching algorithm based on conjecture 1, or by a letter-
counting algorithm based on conjecture 2. We have described a variety of results
providing some insight into this class of words. There are several other facts about
them which we did not have space to describe. For example, if a word is solvable
side-place-freely, then so is the reverse word. Also, if a word is solvable, then it
is solvable by places having exactly one outgoing transition. (This property is
not shared by words with three or more letters, a counterexample being abcbaa.)
Moreover, PN-solvable words are balanced in the following sense. Referring to
w = bx1abx2a . . . abxn , call w balanced if there is some x such that xi ∈ {x, x+ 1}
for all 2 ≤ i ≤ n− 1. We can prove that if w = bx1abx2a . . . abxn is PN-solvable,
then w is balanced, and moreover, xn ≤ x + 1. Presenting these, and other,
properties of PN-solvability must however be left to future publications.

Acknowledgements: We would like to thank Harro Wimmel and Uli Schlachter
for valuable comments, and Uli for finding weird words (amongst them, abcbaa as
mentioned in the conclusion) using [7, 3]. We thank also the anonymous reviewers
for their remarks which allowed to improve the presentation of the paper.

References

1. É. Badouel, P. Darondeau: Theory of Regions. In W. Reisig, G. Rozenberg (eds):
Lectures on Petri Nets I: Basic Models. LNCS Vol. 1491, 529–586 (1998).

2. E. Best, R. Devillers: State Space Axioms for T-Systems. G. Lüttgen, F. Corradini
(eds): Special volume on the occasion of Walter Vogler’s 60th birthday. Acta
Informatica, Vol. 52(2-3), 133-152 (2015).

3. E. Best, U. Schlachter: Analysis of Petri Nets and Transition Systems. ICE’2015.
4. B. Caillaud: http://www.irisa.fr/s4/tools/synet/
5. T. Murata: Petri Nets: Properties, Analysis and Applications. Proc. of the IEEE,

Vol. 77(4), 541-580 (1989).
6. M. Pia↪tkowski et al.: http://folco.mat.umk.pl/unsolvable-words (2015).
7. U. Schlachter et al.: https://github.com/CvO-Theory/apt (2013).

15

Event Log Visualisation with Conditional
Partial Order Graphs: from Control Flow to Data

Andrey Mokhov1, Josep Carmona2

1 Newcastle University, United Kingdom
andrey.mokhov@ncl.ac.uk

2 Universitat Politècnica de Catalunya, Spain
jcarmona@cs.upc.edu

Abstract Process mining techniques rely on event logs: the extraction of a process model
(discovery) takes an event log as the input, the adequacy of a process model (conformance) is
checked against an event log, and the enhancement of a process model is performed by using
available data in the log. Several notations and formalisms for event log representation have
been proposed in the recent years to enable efficient algorithms for the aforementioned process
mining problems. In this paper we show how Conditional Partial Order Graphs (CPOGs),
a recently introduced formalism for compact representation of families of partial orders, can
be used in the process mining field, in particular for addressing the problem of compact and
easy-to-comprehend visualisation of event logs with data. We present algorithms for extracting
both the control flow as well as the relevant data parameters from a given event log and show
how CPOGs can be used for efficient and effective visualisation of the obtained results. We
demonstrate that the resulting representation can be used to reveal the hidden interplay
between the control and data flows of a process, thereby opening way for new process mining
techniques capable of exploiting this interplay.

1 Introduction

Event logs are ubiquitous sources of process information that enabled the rise of the process mining
field, which stands at the interface between data science, formal methods, concurrency theory,
machine learning, data visualisation and others [26]. A process is a central notion in these fields and
in computing science in general, and the ability to automatically discover and analyse evidence-
based process models is of utmost importance for many government and business organisations.
Furthermore, this ability is gradually becoming a necessity as the digital revolution marches forward
and traditional process analysis techniques based on the explicit construction of precise process
models are no longer adequate for continuously evolving large scale real-life processes, because our
understanding of them is often incomplete and/or inconsistent.

At present, the process mining field is mainly focused on three research directions: i) the discovery
of a formal process model, typically, a Petri Net or a BPMN (Business Process Model and Notation);
ii) the conformance analysis of a process model with respect to a given event log; and iii) the
enhancement of a process model with respect to additional information (i.e., data) contained in
an event log. The bulk of research in these directions has been dedicated to the design of the
algorithmic foundation and associated software tools with many notable successes, such as, e.g.
the ProM framework [2]. However, a more basic problem of event log visualisation received little
attention to date, despite the fact that effective visualisation is essential for achieving a good
understanding of the information contained in an event log. Indeed, even basic dotted charts prove

16

very useful for describing many aspects of event logs even though they are just simple views of
event log traces plotted over time [25].

In this paper we discuss the application of Conditional Partial Order Graphs (CPOGs) for event
log visualisation. The CPOG model has been introduced in [17] as a compact graph-based repres-
entation for complex concurrent systems, whose behaviour could be thought of as a collection of
many partial order scenarios. The key idea behind our approach is to convert a given event log into
a collection of partial orders, which can then be compactly described and visualised as a CPOG.
Although CPOGs are less expressive than Petri Nets and have important limitations, such as the
inability to represent cyclic behaviour, they are perfectly suitable for representing event logs, which
are inherently acyclic. We therefore see CPOGs not as the final product of process mining, but
as a convenient intermediate representation of an event log that provides much better clarity of
visualisation as well as better compactness, which is important for the efficiency of algorithms fur-
ther in the process mining pipeline. Furthermore, CPOGs can be manipulated using algorithmically
efficient operations such as overlay (combining several event logs into one), projection (extracting
a subset of interesting traces from an event log), equivalence checking (verifying if two event logs
describe the same behaviour) and others, as has been formalised in [19].

The contribution of the paper is twofold. Firstly, we present a method for deriving compact
CPOG representations of event logs, which is based on the previous research in CPOG synthesis [17].
Secondly, we propose techniques for extracting data parameters from the information typically con-
tained in event labels of a log and for using these parameters for annotating the derived CPOG
model, thereby providing a direct link between the control and data aspects of a given system.

The remainder of the paper is organised as follows: the next section illustrates the motivation
and contributions of the paper with the help of a small example. Section 3 provides the background
on event logs, and Section 4 introduces the theory of CPOGs in detail, placing it in the context
of process mining. The extraction of CPOGs from event logs is described in Section 5. This is
followed by Section 6, which shows how one can automatically incorporate data into CPOGs.
Finally, Section 7 provides a discussion about related and future work.

2 Motivating Example

We start by illustrating the reasons that motivate us to study the application of CPOGs in process
mining, namely: (i) the ability of CPOGs to compactly represent complex event logs and clearly
illustrate their high-level properties, and (ii) the possibility of capturing event log meta data as part
of a CPOG representation, thereby taking advantage of the meta data for the purpose of explaining
the process under observation.

Consider an event log L = {abcd, cdab, badc, dcba}. One can notice that the order between
events a and b always coincides with the order between events c and d. This is an important piece
of information about the process, which however may not be immediately obvious when looking
at the log in the text form. To visualise the log one may attempt to use existing process mining
techniques and discover a graphical representation for the log, for example in the form of a Petri
Net or a BPMN. However, the existing process mining techniques perform very poorly on this log
and fail to capture this information. To compare the models discovered from this log by several
popular process mining methods, we will describe the discovered behaviour by regular expressions,
where operators || and ∪ denote interleaving and union, respectively.

17

The α-algorithm [27] applied to L produces a Petri Net accepting the behaviour a ∪ b ∪ c ∪ d,
which clearly cannot reproduce any of the traces in L. Methods aimed at deriving block-structured
process models [3][13] produce a connected Petri Net that with the help of silent transitions re-
produces the behaviour a || b || c || d, which is a very imprecise model accepting all possible inter-
leavings of the four events. The region-based techniques [4] discover the same behaviour as the
block-structured miners, but the derived models are not connected.

CPOGs, however, can represent L exactly and in a very compact form, as shown in Fig. 1(a).
Informally, a CPOG is an overlay of several partial orders that can be extracted from it by as-
signing values to variables that appear in the conditions of the CPOG vertices and arcs, e.g., the
upper-left graph shown in Fig. 1(b) (assignment x = 1, y = 1) corresponds to the partial order
containing the causalities a ≺ b, a ≺ d, b ≺ c, c ≺ d. One can easily verify that the model is
precise by trying all possible assignments of variables x and y and checking that they generate the
traces {abcd, cdab, badc, dcba} as expected, and nothing else. See Fig. 1(b) for the corresponding
illustration. The compactness of the CPOG representation of L is due to the fact that several event
orderings can be overlayed on top of each other taking advantage of the similarities between them.
See Sections 4 and 5 for a detailed introduction to CPOGs and algorithms for automated translation
of event logs to CPOGs.

(a) CPOG representation

x = 1
y = 1

d

a b

c

x = 0
y = 1

d

a b

c

x = 1
y = 0

d

a b

c

x = 0
y = 0

d

a b

c
(b) Four projections of the CPOG

Figure 1: Exact CPOG representation of log L = {abcd, cdab, badc, dcba}

It is worth mentioning that CPOGs allow us to recognise second order relations between events.
These are relations that are not relating events themselves, but are relating relations between
events: indeed, the CPOG in Fig. 1(a) clearly shows that the relation between a and b is equal to
the relation between c and d, and the same holds for pairs (a, d) and (b, c). In principle, one can
go even further and consider third order relations and so forth. The practical use of such a relation
hierarchy is that it may help to extract an event hierarchy from event logs, thereby simplifying the
resulting representation even further.

18

One may be unsatisfied by the CPOG representation in Fig. 1(a) due to the use of ‘artificial’
variables x and y. Where do these variables come from and what exactly do they correspond to
in the process? We found out that additional data which is often present in event logs can be
used to answer such questions. In fact, as we will show in Section 6, it may be possible to use
easy-to-understand predicates constructed from the data instead of ‘opaque’ Boolean variables.

For example, consider the same log L but augmented with temperature data attached to traces:

– abcd, t = 25◦

– cdab, t = 30◦

– badc, t = 22◦

– dcba, t = 23◦

With this information at hand we can now explain what variable x means. In other words, we
can open the previously opaque variable x by expressing it as a predicate involving data parameter t:

x = t ≥ 25◦

One can subsequently drop x completely from the CPOG by using conditions t ≥ 25◦ and t < 25◦

in place of x and x, respectively. See Fig. 2 for the corresponding illustration.

Figure 2: Using data to explain variables

To conclude, we believe that CPOGs bring unique log visualisation capabilities to the process
mining field. It is possible to use CPOGs as an intermediate representation of event logs, which
can be exact as well as more comprehensible both for humans and for software tools further in the
process mining pipeline.

3 Event Logs

In this section we introduce the notion of an event log, which is central for this paper and for the
process mining field. We also discuss important quality metrics that are typically used to compare
methods for event log based process mining.

Table 1 shows a simple event log, which contains not only event information but also data in
the form of event attributes. The example event log matches the log used in the previous section,

19

Event Case ID Activity Timestamp Temperature Resource Cost Risk

1 1 a 10-04-2015 9:08am 25.0 Martin 17 Low

2 2 c 10-04-2015 10:03am 28.7 Mike 29 Low

3 2 d 10-04-2015 11:32am 29.8 Mylos 16 Medium

4 1 b 10-04-2015 2:01pm 25.5 Silvia 15 Low

5 1 c 10-04-2015 7:06pm 25.7 George 14 Low

6 1 d 10-04-2015 9:08pm 25.3 Peter 17 Medium

7 2 a 10-04-2015 10:28pm 30.0 George 19 Low

8 2 b 10-04-2015 10:40pm 29.5 Peter 22 Low

9 3 b 11-04-2015 9:08am 22.5 Mike 31 High

10 4 d 11-04-2015 10:03am 22.0 Mylos 33 High

11 4 c 11-04-2015 11:32am 23.2 Martin 35 High

12 3 a 11-04-2015 2:01pm 23.5 Silvia 40 Medium

13 3 d 11-04-2015 7:06pm 28.8 Mike 43 High

14 3 c 11-04-2015 9:08pm 22.9 Silvia 45 Medium

15 4 b 11-04-2015 10:28pm 23.0 Silvia 50 High

16 4 a 11-04-2015 10:40pm 23.1 Peter 35 Medium

Table 1: An example event log

that is the underlying traces are {abcd, cdab, badc, dcba} and they correspond to ‘case IDs’ 1, 2, 3,
and 4, respectively. We assume that the set of attributes is fixed and the function attr maps pairs
of events and attributes to the corresponding values. For each event e the log contains the case ID
case(e), the activity name act(e), and the set of attributes defined for e, e.g., attr(e, timestamp).
For instance, for the event log in Table 1, case(e7) = 2, act(e7) = a, attr(e7, timestamp) = “10-
04-2015 10:28pm”, and attr(e7, cost) = 19. Given a set of events E, an event log L ∈ B(E∗) is a
multiset of traces E∗ of events.

Process mining techniques use event logs containing footprints of real process executions for
discovering, analysing and extending formal process models, which reveal real processes in a sys-
tem [26]. The process mining field has risen around a decade ago, and since then it has evolved
in several directions, with process discovery being perhaps the most difficult challenge, as demon-
strated by the large number of techniques available for it today. What makes process discovery hard
is the fact that derived process models are expected to be good across four quality metrics, which
are often mutually exclusive:

– fitness: the ability of the model to reproduce the traces in the event log (i.e., not too many
traces are lost),

– precision: the precision of the model in representing the behavior in the log (i.e., not too many
new traces are introduced),

– generalisation: the ability of the model to generalise the behavior not covered by the log, and

– simplicity: the well-known Occam’s Razor principle that advocates for simpler models.

Although this paper does not focus on the discovery of process models, we will consider these
quality metrics when analysing the derived Conditional Partial Order Graphs, which are formally
described in the next section.

20

4 Conditional Partial Order Graphs

Conditional Partial Order Graphs (CPOGs) were introduced for the compact specification of concur-
rent systems comprised from multiple behavioural scenarios [17]. CPOGs are particularly effective
when scenarios of the system share common patterns, which can be exploited for the automated
derivation of a compact combined representation of the system’s behaviour. CPOGs have been used
for the design of asynchronous circuits [20] and for optimal encoding of processor instructions [18].
In this paper we demonstrate how CPOGs can be employed in process mining.

4.1 Basic definitions

A CPOG is a directed graph (V,E), whose vertices V and arcs E ⊆ V × V are labelled with
Boolean functions, or conditions, φ : V ∪ E → ({0, 1}X → {0, 1}), where {0, 1}X → {0, 1} stands
for a Boolean function defined on Boolean variables X.

Figure 3: Example of a Conditional Partial Order Graph and the associated family of graphs

Fig. 3 (the top left box) shows an example of a CPOG H containing 4 vertices V = {a, b, c, d},
6 arcs and 2 variables X = {x, y}. Vertex d is labelled with condition x+ y (that is, ‘x OR y’), arcs
(b, c) and (c, b) are labelled with conditions x and y, respectively. All other vertices and arcs are
labelled with trivial conditions 1 (trivial conditions are not shown for clarity); we call such vertices
and arcs unconditional.

There are 2|X| possible assignments of variables X, called codes. Each code induces a subgraph
of the CPOG, whereby all the vertices and arcs, whose conditions evaluate to 0 are removed. For

21

example, by assigning x = y = 0 one obtains graph H00 shown in the bottom right box in Fig. 3;
vertex d and arcs (b, c) and (c, b) have been removed from the graph, because their conditions are
equal to 0 when x = y = 0. Different codes can produce different graphs, therefore a CPOG with |X|
variables can potentially specify a family of 2|X| graphs. Fig. 3 shows two other members of the
family specified by CPOG H: H01 and H10, corresponding to codes 01 and 10, respectively, which
differ only in the direction of the arc between vertices b and c.

It is often useful to focus only on a subset C ⊆ {0, 1}X of codes, which are meaningful in some
sense. For example, code 11 applied to CPOG H in Fig. 3 produces a graph with a loop between
vertices b and c, which is undesirable if arcs are interpreted as causality. We use a Boolean restriction
function ρ : {0, 1}X → {0, 1} to compactly specify the set C = {x | ρ(x) = 1} and its complement
DC = {x | ρ(x) = 0}, which are often referred to as the care and don’t care sets [8]. By setting
ρ = xy one can disallow code x = 11, thereby restricting the family of graphs specified by CPOG H
to three members only, which are all shown in Fig. 3.

The size |H| of a CPOG H = (V,E,X, φ, ρ) is defined as:

|H| = |V |+ |E|+ |X|+

∣∣∣∣∣ ⋃
z∈V ∪E

φ(z) ∪ ρ

∣∣∣∣∣ ,
where |{f1, f2, . . . , fn}| stands for the size of the smallest circuit [30] that computes all Boolean
functions in set {f1, f2, . . . , fn}.

4.2 Families of partial orders

A CPOG H = (V,E,X, φ, ρ) is well-formed if every allowed code x produces an acyclic graph Hx.
By computing the transitive closure H∗x one can obtain a strict partial order, an irreflexive and
transitive relation on the set of events corresponding to vertices of Hx.

We can therefore interpret a well-formed CPOG as a specification of a family of partial orders.
We use the term family instead of the more general term set to emphasise the fact that partial
orders are encoded, that is each partial order H∗x is paired with the corresponding code x. For
example, the CPOG shown in Fig. 3 specifies the family comprising the partial order H∗00, where
event a precedes concurrent events b and c, and two total orders H∗01 and H∗10 corresponding to
sequences acbd and abcd, respectively.

The language L(H) of a CPOG H is the set of all possible linearisations of partial orders con-
tained in it. For example, the language of the CPOG shown in Fig. 3 is L(H) = {abc, acb, abcd, acbd}.
One of the limitations of the CPOG model is that it can only describe finite languages. However,
this limitation is irrelevant for the purposes of this paper since event logs are always finite.

It has been demonstrated in [14] that CPOGs are a very efficient model for representing families
of partial orders. In particular, they can be exponentially more compact than Labelled Event Struc-
tures [21] and Petri Net unfoldings [15]. Furthermore, for some applications CPOGs provide more
comprehensible models than other widely used formalisms, such as Finite State Machines and Petri
Nets, as has been shown in [17] and [20]. This motivated the authors to investigate the applicability
of CPOGs to process mining.

4.3 Synthesis

In the previous sections we have demonstrated how one can extract partial orders from a given
CPOG. However, the opposite problem is more interesting: derive the smallest CPOG description

22

for a given a set of partial orders. This problem is called CPOG synthesis and it is an essential step
in the proposed CPOG-based approach to process mining.

A number of CPOG synthesis methods have been proposed to date. In this paper we will rely on
the one based on graph colouring [17], which produces CPOGs with all conditions having at most
one literal. Having at most one literal per condition is a serious limitation for many applications,
but we found that the method works well for process mining. A more sophisticated approach, which
produces CPOGs with more complex conditions has been proposed in [18], however, it has poor
scalability and cannot be applied to large process mining instances. Both methods are implemented
in open-source Workcraft framework [1], which we used in our experiments.

In general, the CPOG synthesis problem is still under active development and new approximate
methods are currently being studied, e.g., see [7]. Another promising direction for overcoming this
challenge is based on reducing the CPOG synthesis problem to the problem of Finite State Machine
synthesis [29].

5 From Event Logs to CPOGs

When visualising behaviour of an event log, it is difficult to identify a single technique that per-
forms well for any given log due to the representational bias exhibited by existing process dis-
covery algorithms. For example, if the event log describes a simple workflow behaviour, then the
α-algorithm [27] is usually the best choice. However, if non-local dependencies are present in the
behaviour, the α-algorithm will not be able to find them, and then other approaches, e.g. based
on the theory of regions [4][24][28], may deliver best results. The latter techniques in turn are not
tailored for dealing with noise, and alternative approaches such as [9][31] should be considered.
There are event logs for which none of the existing process discovery techniques seem to provide a
satisfactory result according to the quality metrics presented in Section 3; see the simple event log
shown in Section 2 as an example.

In this section we describe two approaches for translating a given event log L into a compact
CPOG representation H. The first approach, which we call the exact CPOG mining, treats each
trace as a totally ordered sequence of events and produces CPOGH such that L = L(H). The second
approach attempts to extract concurrency between the events, hence we call it the concurrency-
aware CPOG mining. The former approach does not introduce any new behaviours, while the latter
one may in fact introduce new behaviours, which could be interpreted as new possible interleavings
of the traces contained in the given log, hence producing CPOG H such that L ⊆ L(H).

5.1 Exact CPOG mining

The problem of the exact CPOG mining is formulated as follows: given an event log L, derive a
CPOG H such that L = L(H). This can be trivially reduced to the CPOG synthesis problem.
Indeed, each trace t = e1e2 · · · em can be considered a total order of events e1 ≺ e2 ≺ · · · ≺ em.
Therefore, a log L = {t1, t2, · · · , tn} can be considered a set of n total orders and its CPOG
representation can be readily obtained via CPOG synthesis. Note that the solution always exists,
although it is not unique. If uniqueness is desirable one can fix the assignment of codes to traces,
in which case the result of synthesis can be presented in so-called canonical form [19].

For example, given event log L = {abcd, cdab, badc, dcba} described in Section 2, the exact
mining approach produces the CPOG shown in Fig. 1. As has already been discussed in Section 2,

23

the resulting CPOG is very compact and provides a more comprehensible representation of the
event log compared to conventional models used in process mining, such as Petri Nets or BPMNs.

When a given event log contains concurrency, the exact CPOG mining approach may lead
to suboptimal results. For example, consider a simple event log L = {abcd, acbd}. If we directly
synthesise a CPOG by considering each trace of this log a total order, we will obtain the CPOG H
shown in Fig. 4 (left). Although L = L(H) as required, the CPOG uses a redundant variable x to
distinguish between the two total orders even though they are just two possible linearisations of
the same partial order, where a ≺ b, a ≺ c, b ≺ d, and c ≺ d. It is therefore desirable to recognise
and extract the concurrency between events b and c in this event log and use the information for
simplifying the derived CPOG, as shown in Fig. 4 (right). Note that the simplified CPOG H ′ still
preserves the language equality, i.e. L = L(H ′).

Figure 4: CPOG mining from event log L = {abcd, acbd}

5.2 Concurrency-aware CPOG mining

This section presents an algorithm for extracting concurrency from a given event log and using
this information for simplifying the result of the CPOG mining. Classic process mining techniques
generally follow the same principle; in particular, the α-algorithm [26] is often used to extract
concurrency in the context of process mining based on Petri Nets. We introduce a new concurrency
extraction algorithm, which is more conservative than the α-algorithm: it uses stronger restrictions
when declaring two events concurrent, which leads to higher accuracy of process mining. This
method works particularly well in combination with CPOGs due to their compactness, however, we
believe that it can also be useful in combination with other formalisms.

First, let us introduce convenient operations for extracting subsets of traces from a given event
log L. Given an event e, the subset of L’s traces containing e will be denoted as L|e, while the
subset of L’s traces not containing e will be denoted as L|e. Clearly, L|e ∪ L|e = L. Similarly,
given two events e and f , the subset of L’s traces containing both e and f with e occurring before
f will be denoted as L|e→f . Note that L|e ∩ L|f = L|e→f ∪ L|f→e, i.e., if two events appear in
a trace, they must be ordered one way or another. For instance, if L = {abcd, acbd, abce} then
Le = {abce}, La = ∅, La→b = L, and La→d = {abcd, acbd}. An event e is conditional if L|e 6= ∅
and L|e 6= L, otherwise it is unconditional. A conditional event will necessarily have a non-trivial
condition (neither 0 nor 1) in the mined CPOG. Similarly, a pair of events e and f is conditionally
ordered if L|e→f 6= ∅ and L|e→f 6= L. Otherwise, e and f are unconditionally ordered.

24

We say that a conditional event r indicates the order between events e and f in an event log L
if one of the following criteria holds:

– L|r ⊆ L|e→f

– L|r ⊆ L|f→e

– L|r ⊆ L|e→f

– L|r ⊆ L|f→e

In other words, the existence or non-existence of the event r can be used as an indicator of the
order between the events e and f . For example, if L = {abcd, acbd, abce}, then e indicates the order
between b and c. Indeed, whenever we observe event e in a trace we can be sure that b occurs before
c in that trace: L|e ⊆ L|b→c.

Similarly, we say that a conditionally ordered pair of events r and s indicates the order between
events e and f in an event log L if one of the following criteria holds:

– L|r→s ⊆ L|e→f

– L|r→s ⊆ L|f→e

– L|s→r ⊆ L|e→f

– L|s→r ⊆ L|f→e

In other words, the order between the events r and s can be used as an indicator of the order
between the events e and f . For example, if L = {abcd, cdab, badc, dcba}, then the order between
events a and b indicates the order between events c and d (and vice versa). Indeed, whenever a
occurs before b in a trace, we know that c occurs before d: L|a→b = L|c→d.

The indicates relation has been inspired by and is somewhat similar to the reveals relation
introduced in [10].

We are now equipped to describe the algorithm for concurrency-aware CPOG mining. The
algorithm takes an event log L as input and produces a CPOG H such that L ⊆ L(H).

1. Extract concurrency: find all conditionally ordered pairs of events e and f such that the order
between them is not indicated by any other events or pairs of events. Call the resulting set of
pairs C.

2. Convert each trace t ∈ L into a partial order p by relaxing the corresponding total order
according to the set of concurrent pairs C. Call the resulting set of partial orders P .

3. Perform the CPOG synthesis on the obtained set of partial orders P to produce the resulting
CPOG H.

Note that the resulting CPOG H indeed satisfies the condition L ⊆ L(H), since we can only add
new linearisations into H in step (2) of the algorithm, when we relax a total order corresponding
to a particular trace by discarding some of the order relations.

Let us apply the algorithm to the previous examples. Given log L = {abcd, cdab, badc, dcba} from
Section 2, the algorithm does not find any concurrent pairs, because the order between each pair of
events is indicated by the order between the complementary pair of events (e.g., L|a→b = L|c→d).
Hence, C = ∅ and the result of the algorithm coincides with the exact CPOG mining, as shown in
Section 2. Given log L = {abcd, acbd} from Section 5.1, the algorithm finds one pair of concurrent
events, namely {b, c}, which results in collapsing of both traces of L into the same partial order
with trivial CPOG representation shown in Fig. 4 (right).

25

6 From Control Flow to Data

As demonstrated in the previous section, one can derive a compact CPOG representation from
a given event log using CPOG mining techniques. The obtained representations however rely on
opaque Boolean variables, which make the result difficult to comprehend. For example, Fig. 1(a)
provides no intuition on how a particular variable assignment can be interpreted with respect to
the process under observation. The goal of this section is to present a method for the automated
extraction of useful data labels from a given event log (in particular from available event attributes)
and using these labels for constructing ‘transparent’ and easy-to-comprehend predicates, which can
substitute the opaque Boolean variables. This is similar to the application of conventional machine
learning techniques for learning ‘decision points’ in process models or in general for the automated
enhancement of a given model by leveraging the available data present in the event log [26].

More formally, given an event log L and the corresponding mined CPOG H our goal is to explain
how a particular condition f can be interpreted using data available in the log L. Note that the
condition f can be as simple as just a single literal x ∈ X (e.g., the arc a → b in Fig. 1(a)), in
which case our goal is to explain a particular Boolean variable; however, the technique introduced
in this section is applicable to any Boolean function of the CPOG variables f : {0, 1}X → {0, 1}, in
particular, one can use the technique for explaining what the restriction function ρ corresponds to
in the process, effectively discovering the process invariants. We achieve the goal by constructing
an appropriate instance of the classification problem [16].

Let n = |E| be the number of different events in L, and k be the number of different event
attributes available in L. Remember that attributes of an event e can be accessed via function
attr(e), see Section 3. Hence, every event e in the log defines a feature vector ê of dimension k
where the value at i-th position corresponds to the value of the i-th attribute of e3. For instance, the
feature vector ê1 corresponding to the event e1 in the log shown in Table 1 is (“10-04-2015 9:08am”,
25.0, “Martin”, 17, Low). Some of the features, e.g. timestamp, may need to be abstracted before
applying the technique described below in order to produce better results. For example, timestamps
can be mapped to five discrete classes morning, noon, afternoon, evening and night.

The key observation for the proposed method is that all traces in the log L can be split into two
disjoint sets, or classes, with respect to the given function f : i) set L|f , containing the traces where
f evaluates to 1, and ii) set L|f containing the traces where f evaluates to 0. This immediately leads
to an instance of the binary classification problem on n feature vectors, as illustrated in Table 2.

Feature vectors Class

{ê|e ∈ σ ∧ σ ∈ L|f} True

{ê|e ∈ σ ∧ σ ∈ L|f} False

Table 2: Binary classification problem for function f and event log L.

In other words, every event belonging to a trace where the function evaluates to 1 is considered
to belong to the class we learn, that is, the class labelled as True in Table 2 (the remaining events do
not belong to this class). Several methods can be applied to solve this problem, including decision

3 We assume a total order on the set of event attributes.

26

Risk

TemperatureTrue False

False

= medium= low = high

≤ 23.5> 23.5

True
Positive
instances

Negative
instances

Figure 5: Decision tree built for function f = x in the CPOG of Fig. 1(a).

trees [23], support vector machines [6], and others. In this work we focus on decision trees as they
provide a convenient way to extract predicates defined on event attributes, which can be directly
used for substituting opaque CPOG conditions. The method is best explained by way of an example.

Consider the event log shown in Table 1, which contains a number of data attributes for each
event. The traces underlying the log are {abcd, cdab, badc, dcba}. Fig. 1(a) shows the corresponding
CPOG produced by the CPOG mining techniques presented in the previous section. Let us try
to find an interpretation of the variable x by applying the above procedure with f = x. The set
L|f equals to L|a→b, i.e. it contains traces 1 and 2, wherein event a occurs before event b and
therefore f = 1. Therefore, feature vectors ê1-ê8 provide the positive instances of the class to learn
(the first eight events of the log belong to traces 1 and 2), while feature vectors ê9-ê16 provide the
negative ones. The decision tree shown in Fig. 5 is a possible classifier for this function, which has
been derived automatically using machine learning software Weka [11]. By combining the paths in
the tree that lead to positively classified instances, one can derive the following predicate for f :
risk = low ∨ (risk = medium ∧ temperature > 23.5). This predicate can be used to substitute the
opaque variable x in the mined CPOG.

One can use the same procedure for deriving the explanation for all variables and/or conditions
in the mined CPOG, thereby providing a much more comprehensible representation for the event
log. Note that for complementary functions, taking the negation of the classification description
will suffice, e.g., conditions x in Fig. 1(a) can be substituted with predicate risk 6= low ∧ (risk 6=
medium ∨ temperature ≤ 23.5). Alternatively, one can derive the predicate for a complementary
function by combining paths leading to the negative instances; for example, for f = x the resulting
predicate is risk = high ∨ (risk = medium ∧ temperature ≤ 23.5).

The learned classifier can be tested for evaluating the quality of representation of the learned
concept. If the quality is unacceptable then the corresponding condition may be left unexplained
in the CPOG. Therefore in general the data extraction procedure may lead to partial results when
the process contains concepts which are ‘difficult to learn’. For example, in the discussed case study
the condition f = y could not be classified exactly.

27

A coarse-grain alternative to the technique discussed in this section is to focus on case attributes
instead of event attributes. Case attributes are attributes associated with a case (i.e., a trace) as
a whole instead to individual events [26]. Furthermore, the two approaches can be combined with
the aim of improving the quality of obtained classifiers.

7 Discussion

The techniques presented in this paper are currently being implemented as part of the Workcraft
framework [1][22], and the next step is to evaluate them on real-life event logs containing data
attributes. Several challenges need to be faced, e.g., the complexity of the concurrency extraction
algorithm (the first step in the algorithm presented in Section 5.2), the fine-tuning of parameters
of the machine learning techniques, and some others.

Due to the inability of CPOGs to directly represent cyclic behavior, we currently only focus on
using CPOGs for visualisation and as an intermediate representation of event logs, which can be
further transformed into an appropriate process mining formalism, such as Petri Nets or BPMNs.
Although some syntactic transformations already exist to transform CPOGs into contextual Petri
nets [22], we believe that finding new methods for discovery of process mining models from CPOGs
is an interesting direction for future research.

Another research direction is to consider CPOGs as compact algebraic objects that can be used
to efficiently manipulate and compare event logs [19]. Since a CPOG corresponding to an event log
can be exponentially smaller, this may help to alleviate the memory requirements bottleneck for
current process mining tools that store ‘unpacked’ event logs in memory.

Event logs are not the only suitable input for the techniques presented in this paper: we see an
interesting link with the work on discovery of frequent episodes, e.g., as reported recently in [12].
Episodes are partially ordered collections of events (not activities), and as such they can also be
represented by CPOGs. This may help to compress the information provided by frequent episodes,
especially if one takes into account the fact that current algorithms may extract a large number of
episodes, which then need to be visualised for human understanding.

8 Conclusions

This paper describes the first steps towards the use of CPOGs in the field of process mining. In
particular, the paper presented the automatic derivation of the control flow part of the CPOG
representation from a given event log, and then the incorporation of meta data contained in the
log as conditions of the CPOG vertices and arcs. We have implemented some of the reported
techniques, in particular the extraction of a CPOG from an event log as described in Section 5, and
some preliminary experiments have been carried out.

The future work includes addressing the challenges described in the previous section, as well as a
thorough practical evaluation of the algorithms described in this paper. The developed software tool
may then be used within a more general framework such as ProM [2], Workcraft [1] or PMLAB [5].

Acknowledgments. The authors would like to thank various organisations that supported this
research work. Andrey Mokhov was supported by Royal Society Research Grant ‘Computation
Alive’ and EPSRC project UNCOVER (EP/K001698/1). Josep Carmona was partially supported by
funds from the Spanish Ministry for Economy and Competitiveness (MINECO) and the European
Union (FEDER funds) under grant COMMAS (ref. TIN2013-46181-C2-1-R).

28

References

1. The Workcraft framework homepage. http://www.workcraft.org/, 2009.
2. The ProM framework homepage. http://www.promtools.org/, 2010.
3. Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. A genetic algorithm

for discovering process trees. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC
2012, Brisbane, Australia, June 10-15, 2012, pages 1–8, 2012.

4. Josep Carmona, Jordi Cortadella, and Michael Kishinevsky. New region-based algorithms for deriving
bounded Petri nets. IEEE Trans. Computers, 59(3):371–384, 2010.

5. Josep Carmona and Marc Solé. PMLAB: an scripting environment for process mining. In Proceedings
of the BPM Demo Sessions 2014 Co-located with the 12th International Conference on Business Process
Management (BPM 2014), Eindhoven, The Netherlands, September 10, 2014., pages 16 – 21, 2014.

6. Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,
1995.

7. A. de Gennaro, P. Stankaitis, and A. Mokhov. A heuristic algorithm for deriving compact models
of processor instruction sets. In International Conference on Application of Concurrency to System
Design (ACSD), 2015.

8. G. de Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher Education, 1994.
9. Christian W. Günther and Wil M. P. van der Aalst. Fuzzy mining - adaptive process simplification

based on multi-perspective metrics. In Gustavo Alonso, Peter Dadam, and Michael Rosemann, editors,
BPM, volume 4714 of Lecture Notes in Computer Science, pages 328–343. Springer, 2007.

10. Stefan Haar, Christian Kern, and Stefan Schwoon. Computing the reveals relation in occurrence nets.
Theor. Comput. Sci., 493:66–79, 2013.

11. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H Witten.
The WEKA data mining software: an update. ACM SIGKDD explorations newsletter, 11(1):10–18,
2009.

12. Maikel Leemans and Wil M. P. van der Aalst. Discovery of frequent episodes in event logs. In Proceedings
of the 4th International Symposium on Data-driven Process Discovery and Analysis (SIMPDA 2014),
Milan, Italy, November 19-21, 2014., pages 31–45, 2014.

13. Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Discovering block-structured
process models from event logs - A constructive approach. In Application and Theory of Petri Nets
and Concurrency - 34th International Conference, PETRI NETS 2013, Milan, Italy, June 24-28, 2013.
Proceedings, pages 311–329, 2013.

14. H. Ponce De Leon and A. Mokhov. Building bridges between sets of partial orders. In International
Conference on Language and Automata Theory and Applications (LATA), 2015.

15. KL McMillan. Using unfoldings to avoid the state explosion problem in the verification of asynchronous
circuits. In Proceedings of Computer Aided Verification conference (CAV), volume 663, page 164, 1992.

16. Tom M. Mitchell. Machine learning. McGraw Hill series in computer science. McGraw-Hill, 1997.
17. A. Mokhov. Conditional Partial Order Graphs. PhD thesis, Newcastle University, 2009.
18. A. Mokhov, A. Alekseyev, and A. Yakovlev. Encoding of processor instruction sets with explicit con-

currency control. Computers & Digital Techniques, IET, 5(6):427–439, 2011.
19. A. Mokhov and V. Khomenko. Algebra of Parameterised Graphs. ACM Transactions on Embedded

Computing Systems (TECS), 13(4s):143, 2014.
20. A. Mokhov and A. Yakovlev. Conditional Partial Order Graphs: Model, Synthesis, and Application.

IEEE Transactions on Computers, 59(11):1480–1493, 2010.
21. M. Nielsen, G. D. Plotkin, and G. Winskel. Petri nets, event structures and domains, part I. Theoretical

Computer Science, 13:85–108, 1981.
22. Ivan Poliakov, Danil Sokolov, and Andrey Mokhov. Workcraft: a static data flow structure editing,

visualisation and analysis tool. In Petri Nets and Other Models of Concurrency–ICATPN 2007, pages
505–514. Springer, 2007.

23. J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

29

24. Marc Solé and Josep Carmona. Light region-based techniques for process discovery. Fundam. Inform.,
113(3-4):343–376, 2011.

25. Minseok Song and Wil MP van der Aalst. Supporting process mining by showing events at a glance.
Proceedings of the 17th Annual Workshop on Information Technologies and Systems (WITS), pages
139–145, 2007.

26. Wil van der Aalst. Process Mining: Discovery, Conformance and Enhancement of Business Processes.
Springer, 2011.

27. Wil M. P. van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining: Discovering process
models from event logs. IEEE TKDE, 16(9):1128–1142, 2004.

28. Jan Martijn E. M. van der Werf, Boudewijn F. van Dongen, Cor A. J. Hurkens, and Alexander
Serebrenik. Process discovery using integer linear programming. In ATPN, pages 368–387, 2008.

29. Tiziano Villa, Timothy Kam, Robert K Brayton, and Alberto L Sangiovanni-Vincentelli. Synthesis of
finite state machines: logic optimization. Springer Publishing Company, Incorporated, 2012.

30. Ingo Wegener. The Complexity of Boolean Functions. Johann Wolfgang Goethe-Universitat, 1987.
31. A.J.M.M. Weijters, W.M.P. van der Aalst, and A.K. Alves de Medeiros. Process mining with the heur-

istics miner-algorithm. Technical Report WP 166, BETA Working Paper Series, Eindhoven University
of Technology, 2006.

30

Discovery of Personal Processes from Labeled
Sensor Data – An Application of Process Mining

to Personalized Health Care

Timo Sztyler1, Johanna Völker1, Josep Carmona2,
Oliver Meier1, Heiner Stuckenschmidt1

1University of Mannheim, Germany
{timo,johanna,heiner}@informatik.uni-mannheim.de

2Universitat Politècnica de Catalunya, Spain
jcarmona@cs.upc.edu

Abstract. Currently, there is a trend to promote personalized health care
in order to prevent diseases or to have a healthier life. Using current devices
such as smart-phones and smart-watches, an individual can easily record
detailed data from her daily life. Yet, this data has been mainly used for
self-tracking in order to enable personalized health care. In this paper,
we provide ideas on how process mining can be used as a fine-grained
evolution of traditional self-tracking. We have applied the ideas of the
paper on recorded data from a set of individuals, and present interesting
conclusions and challenges.

1 Introduction

Physical inactivity is a major risk factor for certain types of diseases. Indeed,
physical activity does not only prevent or relieve diseases, but also improves public
health and well being [2]. In this context, personalized health solutions and lifestyle
monitoring can help to ensure that people doing the right activity at the right
time. However, the regular use of such methods is critical to achieve the desired
result. Hence, barriers for the adoption must be low, and using both software and
devices should be as comfortable as possible.

Thanks to the technological progress in the development of wearable devices,
sensor technology, and communication, we are nowadays able to setup a body
sensor network based on smart-phones, smart-watches, and wristbands which does
not affect people during their daily routine. In contrast, most of the available
software requires substantial user input to specify, e.g., the current activity or
even vital parameters like the heart rate or blood pressure.

We want to develop an application which monitors the personal lifestyle of
the users and provides appropriate visualizations. However, this still needs a suf-
ficient acceptance because the user has to view and interpret the visualizations.
Therefore, we also want to provide automatically generated recommendations re-
sulting from the monitoring data and, e.g., references (practical guidance). In
the long term, we also have to automatically recognize a person’s daily activities

31

such as different types of sports and desk work. This is necessary to ensure that
the required user input is a minimum which also is a requirement to make the
application practical.

Due to the fact that the activities of a user can be seen as process instances,
process mining can help us to elicit and analyze these processes. It allows discover-
ing a process model from an event log focused on personal activity, and combined
with, e.g., conformance checking, to explore deviations with respect to reference
models. The results could be useful in the context of monitoring to provide a
meaningful feedback but also to create recommendations.

In this paper, we present the data set we created for our first experiments (see
Section 2), and we outline initial ideas about how process mining could help us
to address our main use cases (see Sections 3, 4, and 5):

Monitoring We want to help users to monitor their personal behavior by pre-
senting them a daily or weekly visual summary of their personal processes.
This summary could highlight behavior which is unknown or unconscious to
the user. As a result, the user could correct the behavior.

Deviations We want compare their personal processes with reference processes
to detect deviations. This allows making suggestions regarding the procedure
of certain activities, and point out missing activities. As a result, the user
learns to optimize the daily routine in respect of a healthy lifestyle.

Operational Support Historical data that combines both activity and environ-
mental data (e.g., geographic position) can then be used for the operational
support based on individual’s process models, enabling predictions and rec-
ommendations in order to accomplish certain goals.

We do not deal with activity recognition but address succeeding problems. The
created data set is a training data set with manually labeled data. Commonly,
machine learning techniques are used for activity recognition [9]. Therefore, the
data set can be used to build or evaluate activity recognition systems, but in the
following we want to use the result of such a system in combination with process
mining to create personal processes by using the manually created activity labels.
The resulting personal process models should allow to benefit the users health by
making visualizations, recommendations, and predictions.

2 Data Gathering

This section provides the details of the data set used in this paper. The data set
can be obtained by contacting us.

General Settings. Seven individuals (age 23.1±1.81, height 179.0±9.09, weight
80.6±9.41, seven males) collected Accelerometer, Orientation, and GPS sensor
data and labeled this data simultaneously (see Table 1). The data was collected
using a smart-phone and smart-watch combined with a self-developed sensor data
collector and labeling framework (see Figure 1). The subjects were not supervised
but got an introduction and guidelines. The subject group covers five students, a
worker, and a researcher.

32

Fig. 1. Collector and labeling framework: Wear App (smart-watch, 1) and Hand App
(smart-phone, 2). The positions of the devices may vary.

Setup

Subjects 7 males
Devices Smart-phone (2) and Smart-watch (1)
Sensors Acceleration (50Hz), Orientation (50Hz), GPS (every 10 min.)
Labels Activity, Device Position, Environment, Posture
Storage Local Database, SD-Card
Duration 10 hours a day, 12 days

Table 1. Equipment and Settings of the data gathering.

Devices and Labeling. The framework consists of a Wear (1) and Hand (2) appli-
cation which interact with each other via Bluetooth. The Wear application allows
updating the parameters (see Table 1) immediately where the Hand application
manages the settings of the sensors and the storing of the data. The sampling rate
(50Hz) was chosen with consideration of battery life as well as with reference to
previous studies [12,19]. Table 1 summaries the equipment and settings.

The individuals should collect data during their daily routine and it was up
to them to decide where the device should be positioned on the body. We focused
on the activity, device position, environment, and the posture which occur during
the daily routine. The values for these parameter were predefined (see Tables 2
and 3) and could not be changed or extended.

Activities. The activity labels allow recording the daily routine. We focused on
food intake, sport, different type of movements, but also (house) work so that we
can compare the daily routine of several individuals to detect common activity

33

Parameter Values

Device Position Chest, Hand, Head, Hip, Forearm, Shin, Thigh, Upper Arm, Waist
Environment Building, Home, Office, Street, Transportation
Posture Climbing, Jumping, Lay, Running, Sitting, Standing, Walking

Table 2. Labeling parameters that were updated immediately when the device position,
environment, or posture had changed.

Activity Sub-Activity

Desk Work1 n/a
Eating/Drinking Breakfast, Brunch, Coffee Break, Dinner, Lunch, Snack
Housework Cleaning, Tidying Up
Meal Preparation1 n/a
Movement Go for a Walk, Go Home, Go to Work
Personal Grooming1 n/a
Relaxing Playing, Listen to Music, Watching TV
Shopping1 n/a
Socializing Bar/Disco, Cinema at Home
Sleeping1 n/a

Sport
Basketball, Bicycling, Dancing, Gym, Gymnastics, Ice Hockey,
Jogging, Soccer

Transportation Bicycle, Bus, Car, Motorcycle, Scooter, Skateboard, Train, Tram
Table 3. Activity and sub-activity labels. The subjects had to select at least one of
these activity labels to specify their current action. The selection of a sub-activity is
optional but allows to be more precise. 1Please note, that there are activities without
sub-activities.

patterns but also to analyze the different behaviors. The set of activity labels
was minimized and structured to decrease the time which the individual needs
to decide and choose a suitable label. Thus, there are 12 activities and 32 sub-
activities where an activity could be “Eating/Drinking” and a corresponding sub-
activity “Breakfast”1. It is possible to select several activity labels at the same
time to record the current situation with a high accuracy (e.g., “Movement -
go to Work”, “Transportation - Train”, and “Sleeping”). Thus, the individual can
describe the current situation from several points of view.

To keep the set of activity labels as small as possible, we provided some generic
labels such as “Desk Work”. This label should be used if the individual works in
an office (worker), attends a lecture or class room (student), or visits a school
(pupil). During the introduction phase, we explained this to the individuals to
avoid that they choose different labels in the same situation.

1 Please note: So far, we do not consider the sub-activities in the presented use-cases.

34

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

D
22

D
23

S1
S2
S3
S4
S5
S6
S7

Table 4. Timetable. Overview of how many and which days where recorded for each
individual. The X-axis represents the [D]ays whereas the Y-axis illustrates the [S]ubjects.
The grey colored day labels (D[0-9]+) are weekend days. The grey squares indicate that
data was recorded.

Profiling. We recorded 74 cases which cover 1, 386 events. A case is represented by
one individual in one particular day and has an average duration of 12.1 hours.
The events comprise the activities and sub-activities which were performed by
the individuals. Table 4 describes when and how long each individual recorded
data. Tables 5 and 6 illustrate the related recorded data. The number of records of
acceleration and orientation differs, because one subject selected a lower frequency
for the orientation sensor. The high standard deviation of the numbers of postures
results from the different behavior of the individuals. Hence, some individuals
move a lot (e.g., walking, standing, walking) while others label the posture less
accurate (e.g., standing just for a second).

Labels Records
(avg±sd)

Activities 20± 7

Postures 80± 62

Environment 16± 4

Dev. Position 8± 6

Table 5. Annotated labels per day and
individual.

Raw Data Records
(absolute)

Acceleration 2.7 ∗ 106

Orientation 2.3 ∗ 106

geo. Location 70

Table 6. Number of recorded values per
day and individual.

3 Use Case 1: Monitor Personal Behavior

Since a picture is worth a thousand words, the deployment of graphical represen-
tations of event data may open the door to a precise awareness of the activities
carried out by an individual. We believe graphs are a strong visualization aid to
understand aggregated behavior, and thus consider this direction as the first use
case for understanding personal activity data.

Interesting information a user can get periodically (every day or week) is the
personal process model that describes the main activities and their dependencies.

35

In this process model, one can find frequent sequences of activities, alternatives,
concurrency (moving while eating) and so on. This deviates from the typical infor-
mation that is provided by current tools for self-tracking individuals. In general,
such tools focus only on showing correlations between the tracked variables (e.g.,
eating vs. sport) or the evolution of single variables (weight over the week). In this
section, we take the training data that were described in the previous section and
illustrate how traditional process discovery techniques can be used to elicit the
personal process model of an individual. The preliminary conclusions reported in
this section should not be considered as a general rule but instead are meant to
illustrate the capabilities of process discovery techniques in providing a fresh look
for self-tracking.

3.1 Focusing on the Frequent Paths

Due to the variability in personal activity data, there is not a simple process
model that represents all possible paths for an individual, even for the reduced
number of individuals monitored in this paper. In this section, we focus on the
most frequent paths taken by each individual. To this end, the discovery of fuzzy
models [8] using the Disco tool [4] is considered. The reason for using a frequency-
based discovery technique is to handle the variability and noise of a self-tracking
log. Alternative techniques like the heuristic miner [18] or the inductive miner [10]
which can be applied in this scenario may be considered as well.

To illustrate the potential of a personal process model with respect to analyzing
tons of raw data, we focus on two simple aspects: the difference in activity between
work and weekend days on the one hand, and the differences across the individuals
on the other hand.

During the week vs. weekend. Figures A.1 and A.2 (see Appendix), show the
main activity models during the working week and the weekend, respectively.
The process models depicted in the figures have a very different structure. This
clearly denotes a variation in the personal activity during the week and weekend,
when considering the main activity by individuals. For instance, while in the week
days the main behavior is centered towards “Desk Work” which is also the most
frequent activity, the frequency of paths and activities is more balanced in the
weekends. This tendency is also satisfied in the average duration of activities (not
shown in the process models).

Personal activity across users. Figure A.3 (see Appendix) shows each individual’s
main activity models. As it was explained in the previous section, three types of
individuals were monitored: student (5 instances), researcher (1 instance) and
worker (1 instance). Although the details of the models are not visible in this fig-
ure, one can see significant differences across individuals. Commonalities between
students are also elicited in the models, for example, the global tendency to struc-
ture the model around “Desk Work” and the well-structured relation between the
activities for most of the students.

36

Fig. 2. Main personal activity for an individual including geographical position data:
numbers correspond to different activities, and arcs denote control-flow relations ex-
tracted from the activity data.

3.2 Model Enhancement Using Personal Data

As shown in Section 2, not only activity data is stored from individuals but also
important data like the geographical position, acceleration and, orientation of the
device. In the following, as an example, we explain how to combine the control-
flow process models (e.g., see Figure A.1) with the geographical position data
to derive personal activity-position maps. This kind of map illustrates geographi-
cally the control-flow with respect to the real geographical position of activities.
Figure 2 depicts an example of such a map for the data gathered from one of
the individuals. The computation of personal activity-position maps can be done
by simply aligning the timing information (start, end) recorded for each activity
event with the one obtained from the geographical position of individuals. This
way, for every activity, its geographical position in a case will be extracted. Events
corresponding to the activity name will be then analyzed to compute a set of lo-
cations that represents the different locations where the activity has been carried
out. For instance, in Figure 2, activity 2 (“Socializing”) has four different nodes
in the graph. Ideally, to have a simpler graph, only one location per activity is
desired. The locations for an activity can be computed by clustering the set of
locations with a fixed radius of k meters and selecting the centroids, or by using
the frequency of locations, or a combination of both. Finally, the nodes corre-

37

sponding to each activity in a certain location are displayed on top of a real map,
the area of which corresponds to the minimal enclosing box that includes all loca-
tions depicted. Arcs from the control-flow are then routed from the corresponding
locations in the map.

The personal activity-position maps are strongly related to trajectory pattern
mining [20]. A trajectory pattern consists of chronologically ordered geographical
locations combined with the duration. The provided algorithms allow to detect
frequent behaviors in space and time (daily, weekly), and in this context to ag-
gregate movement behavior of a person [7] or a group [14] [11] to keep track on
specific movements. This facilitates to discover highly frequented places as well as
underlying patterns in movements which might be related to other persons, and
can help to identify semantic relations between persons [11]. Related to this, a
previous work [13] explored the principle limitations of predicting human dynam-
ics based on mobility patterns of smart-phone users.
Concerning our scenario, we focus on the daily routine of a person and the related
activities which means that we have to connect the spatiotemporal information
explicitly with the activity information. If we can combine this information and
apply the mentioned techniques then it could help to influence the daily routine
of a person in terms of achieving a healthier life by optimizing specific kind of
patterns. Considering health care, the kind of transportation between locations
might be also important in the context of energy consumption but this is not
covered by the mentioned techniques (see [7]).

4 Use Case 2: Deviations from Reference Models

Self-tracking may be a meaningful way to verify if certain requirements with
respect to reference quantities are accomplished. For instance, many associations
advise to do at least 30 minutes of moderate physical activity per day or eat fish at
least twice a week. Those guidelines for a good lifestyle offer a rough description for
individuals, mainly concerning about quantities and frequencies. However, some
ways of satisfying these guidelines are probably less healthy than others, e.g., it
may not be the best decision to eat fish while doing physical activity.

Hence, there may be reference models that describe precisely how activities
should be carried out in order to satisfy a guideline. Thus, the reference model
has to provide the opportunity to describe certain actions in a specific order (e.g.,
“Sport” should be followed by “Personal Grooming”), should allow explicit choices
(e.g., after “Desk Work” only “Eating/Drinking”, “Socializing”, or “Transporta-
tion” are expected actions) and should also consider concurrency actions. (e.g.,
“Transportation” and “Movement” may be overlapping activities).

Reference models can be obtained in several ways. One possibility would be
to ask a domain expert to create manually the desired reference model for a given
goal. A second option would be to collect event logs from successful individuals.
These logs can be combined with the introduced techniques of the previous section
to discover a reference model. Finally, a third option would be to translate the
3 http://www.promtools.org

38

http://www.promtools.org

Fig. 3. Example of fitness analysis in ProM3of an individual with respect to a reference
model: places with yellow background (X) represent situations where the individual
deviates from the process model. Transitions without a label denote silent events not
appearing in the event log.

textual guidelines into process models, using recent techniques that apply natural
language processing to elicit process models [6].

When a reference model is available, conformance checking techniques can be
applied to assess the adequacy of the reference process model in representing the
traces of individuals [15]. Since the reference model describes the ideal behavior,
it is meaningful to focus the analysis on the fitness of the reference model with
respect to the traces of individuals. A process model fits a given trace if it can
reproduce it. An example of such analysis can be seen in Figure 3 where an indi-
vidual is analyzed with respect to an invented process model meant to represent
a healthy behavior.

Fitness checking can also be extended to consider other perspectives, i.e., costs
or quantities for additional event data [5]. For instance, one typical advice on
dietary guidelines is to eat as many calories as one burns [1]. These kind of checks
can be incorporated into the reference model by using the data conformance
approach from [5]. Therefore, deviations on quantities can also be verified with
respect to the reference model.

If reference models are not available, simple rules can be used which should
be satisfy by individuals on their daily routine. These rules may describe pat-
terns that should satisfy an individual, e.g., “taking medicines” should be followed
by “eating”. This can be formally specified with Linear Temporal Logic (LTL)
formulas to be satisfied by the event log of activities [17].

39

5 Use Case 3: Operational Support

Historical data of an individual is a rich source of information which may be crucial
to influence the daily routine in order to reach a particular goal. In this context,
process models can be enhanced and used at each decision point to assess the
influence of the next step in satisfying the targeted goal. For instance, following the
guideline of the previous section that advice to eat as many calories as one burns,
activities can be annotated with respect to calorie levels (e.g., “Eating/Drinking”
produces an amount of calories while “Movement” takes an amount of calories).
Then, historical activity data can be aggregated with this information to learn for
all decision points the impact of the decision regarding the likelihood of satisfying
the targeted goal, e.g., the balanced consumption of calories. Figure 4 shows an
example for the case of the balance of calories in a diet, i.e., states (nodes) are
labeled with the probability of reaching a balanced diet at the end of the day.

Eating/Drinking

Movement

Sleep

0.6

0.8

....

....

0.5

Fig. 4. Excerpt of a state-based prediction model for balance of calories. The nodes
illustrate the probability for reaching the balance.

Thus, when an individual is about to start a new activity, recommendations
can be provided on the basis on the model’s aggregated data corresponding to the
current state. This deviates from current prediction and recommendation practices
that do not consider the current state of the model explicitly.

The precision of the prediction may vary due to the fact that the available
information can have a different granularity. Hence, events can carry informa-
tion such as the amount of calories but also only cover complete cases with the
resulting label (e.g., good, satisfactory, medium, bad). In such a case, standard
techniques [15] for the operational support of process models can be applied to
predict and recommend the next steps.

6 Future Work

In the following, we outline a few general directions of future work and possible
next steps.

When process mining is applied, e.g., to identify and visualize the most fre-
quent paths, it should take into account a given hierarchy of activities and sub-
activities. Such a hierarchy could facilitate, for instance, the aggregation of col-
lected data on different levels of abstraction.

40

Fig. 5. Example of discovered trace cluster: letters in the bottom denote activities with
high consensus. The Y-axis represents seven different traces where the X-axis illustrates
the different events per traces.

Future applications of process mining might also require dealing with uncertain
data. In particular, the data generated by classification-based methods for activ-
ity recognition will most probably be uncertain, since these methods are never
a hundred percent accurate. However, provenance information such as explicit
uncertain values will be available in most cases, and might serve as an additional
input to process mining methods.
Further directions include the investigation of more expressive process models.
For example, reference models, which describe an ideal sequence of daily routines,
should include information about frequencies, time and locations.
Finally, we would like to bootstrap activity recognition by creating and leveraging
synergies between activity recognition and process mining techniques. A possible
bootstrapping approach would generate process models from automatically rec-
ognized activities, and use the resulting process models to improve the accuracy
of the activity recognition.

More concrete ideas that we would like to investigate are the following:

Exploring the log via trace alignment. Section 3.1 focused on the main activity
paths followed by individuals, thus ignoring less frequent behavior that may mis-
lead the conclusions. An alternative will be to preprocess the log with the goal of
extracting patterns, and then transform the log accordingly, either by introducing
hierarchy, or by ignoring outlier activities not following the learned patterns. For
this purpose, Trace alignment techniques from [3] can be applied. For instance, in
Figure 5 seven traces have been aligned together from the log of workdays.

Process Cubes. Recently, process cubes have been proposed also as a means to ap-
ply process mining in a exploratory manner, similar to online analytical processing
(OLAP) techniques [16]. The intuitive idea is to mine event logs by restricting
events under a particular perspective. For example, extracting a process model for
activity in a bank, focusing only on clients from a given region that got married
within the last three years. With the data available in a personal activity context,
process cubes can be a promising way to slice the data and mine particular con-
texts. For instance, one can be interested in process models where “Desk Work”
is mainly situated in a given location.

41

7 Conclusions

This paper discusses challenges and opportunities for process mining in the area
of personalized health care. We described the acquisition of a real-world data set
consisting of manually labeled sensor data from smart-phones, and outlined inter-
esting use cases. We then took a look at existing methods for eliciting, analyzing
and monitoring individuals’ daily routines, and described the results of our pre-
liminary experiments. We presented our ideas on future directions and challenges
in this application context which may require significant advances with respect to
algorithmic support for process mining.

Acknowledgments. This work as been partially supported by funds from the
Spanish Ministry for Economy and Competitiveness (MINECO) and the Euro-
pean Union (FEDER funds) under grant COMMAS (ref. TIN2013-46181-C2-1-R).

42

A Appendix

7

19 34

6

26

11

13

12

3

23

11

2

27

7

3

3

5
26

4

11

13

P
er

so
na

lG
ro

om
in

g

12
0

D
es

kW
or

k

20
4

S
oc

ia
liz

in
g

10
6

E
at

in
gD

rin
ki

ng

14
5

M
ov

em
en

t

11
8

S
ho

pp
in

g

25

H
ou

se
w

or
k

98

M
ea

lp
re

pa
ra

tio
n

47

T
ra

ns
po

rt
at

io
n

13
4

R
el

ax
in

g

67

S
po

rt

13

S
le

ep
in

g

9

Fig.A.1. Main personal activity for all the users during the working week days (57
cases).

43

8

10

5

15

5

6
16

2

2
2

6
3

3

2
1 5

3

5

1

5

8

3

3

3

8

E
at

in
gD

rin
ki

ng

45

H
ou

se
w

or
k

26

P
er

so
na

lG
ro

om
in

g

34

S
oc

ia
liz

in
g

30

R
el

ax
in

g

39

D
es

kW
or

k

41

M
ov

em
en

t

28

T
ra

ns
po

rt
at

io
n

24

M
ea

lp
re

pa
ra

tio
n

21

S
ho

pp
in

g

4

S
po

rt

6

S
le

ep
in

g

1

Fig.A.2. Main personal activity for all the users during the weekend days (17 cases).

44

6

3

4

3

4

8

5

6

3

4

3

1

1

1

5

4

4

4

4

Housework

11

PersonalGrooming

20

Transportation

28

DeskWork

22

Relaxing

17

Movement

16

Mealpreparation

9

EatingDrinking

23

Socializing

7

Sleeping

1

Shopping

4

(a) User 1 (student).

11

6 2

7

2

3

2

7

3

1

6

14

8

2

1

1

7 1

4

1

3

8

6

Transportation

34

Movement

23

DeskWork

14

PersonalGrooming

35

Socializing

11

Relaxing

4

Sleeping

6

EatingDrinking

13

Housework

4

Shopping

4

Sport

3

Mealpreparation

1

(b) User 2 (researcher).

13

9

4

10

2

22

1

6

1

8

121

10

3

4

2

6

5

DeskWork

50

EatingDrinking

39

Movement

51

Sleeping

2

PersonalGrooming

34

Socializing

35

Shopping

10

Housework

30

Relaxing

22

Sport

6

Mealpreparation

12

(c) User 3 (student).

15

1

4

712

5

1

9

2

6

1

9

5

1

2

1

5

5

2

1

7

4

4

4

DeskWork

53

EatingDrinking

41

Transportation

37

Movement

2

Relaxing

26

PersonalGrooming

19

Socializing

35

Housework

9

Mealpreparation

11

Sleeping

1

Shopping

5

Sport

1

(d) User 4 (student).

42

6

21

3

13

9

4

5

1

6

912

7

2

4

3

3

3

PersonalGrooming

42

DeskWork

68

Socializing

47

EatingDrinking

43

Movement

26

Shopping

6

Housework

65

Mealpreparation

29

Transportation

38

Relaxing

18

Sport

4

(e) User 5 (student).

1

4

1

1

2

6

4

2

11

1

1

1

1

DeskWork

6

Movement

10

Transportation

5

Housework

1

Sport

1

Mealpreparation

1

(f) User 6 (student).

4

49

2

8

2

3

1

1

8 1

1 10

1

3

2

4

8

1

EatingDrinking

29

PersonalGrooming

4

Movement

17

Transportation

16

DeskWork

32

Sport

4

Relaxing

19

Mealpreparation

6

Housework

4

Socializing

1

(g) User 7 (worker).

Fig.A.3. Main personal activity by users.

45

References

1. American Heart Association. http://www.heart.org. Last Access: 29.04.2015.
2. Steven N Blair and Tim S Church. The fitness, obesity, and health equation: is

physical activity the common denominator? Jama, 292(10):1232–1234, 2004.
3. RP J. C. Bose and Wil MP van der Aalst. Process diagnostics using trace alignment:

Opportunities, issues, and challenges. Inf. Syst., 37(2):117–141, 2012.
4. Disco by Fluxicon. https://fluxicon.com/disco/. Last Access: 29.04.2015.
5. M. De Leoni and W.M.P. van der Aalst. Aligning event logs and process models

for multi-perspective conformance checking: An approach based on integer linear
programming. In Business Process Management, China, pages 113–129, 2013.

6. F. Friedrich, J. Mendling, and F. Puhlmann. Process model generation from natural
language text. In Advanced Information Systems Engineering - 23rd International
Conference, CAiSE 2011, London, UK, 2011. Proceedings, pages 482–496, 2011.

7. Fosca Giannotti, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi. Trajectory pat-
tern mining. In Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 330–339. ACM, 2007.

8. C.W. Günther and W.M.P. van der Aalst. Fuzzy mining - adaptive process simpli-
fication based on multi-perspective metrics. In BPM, pages 328–343, 2007.

9. O.D. Lara and M.A. Labrador. A survey on human activity recognition using wear-
able sensors. Communications Surveys & Tutorials, IEEE, 15(3):1192–1209, 2013.

10. Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Discovering
block-structured process models from event logs containing infrequent behaviour.
In Business Process Management Workshops - BPM 2013 International Workshops,
Beijing, China, August 26, 2013, Revised Papers, pages 66–78, 2013.

11. Zhenhui Li. Spatiotemporal pattern mining: Algorithms and applications. In Fre-
quent Pattern Mining, pages 283–306. Springer, 2014.

12. Nishkam Ravi, Nikhil Dandekar, Preetham Mysore, and Michael L Littman. Activity
recognition from accelerometer data. In AAAI, volume 5, pages 1541–1546, 2005.

13. Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László Barabási. Limits of
predictability in human mobility. Science, 327(5968):1018–1021, 2010.

14. Hsiao-Ping Tsai, De-Nian Yang, and Ming-Syan Chen. Mining group movement
patterns for tracking moving objects efficiently. Knowledge and Data Engineering,
IEEE Transactions on, 23(2):266–281, 2011.

15. Wil M. P. van der Aalst. Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer, 2011.

16. Wil M. P. van der Aalst. Process cubes: Slicing, dicing, rolling up and drilling
down event data for process mining. In Asia Pacific Business Process Management,
Beijing, China, pages 1–22, 2013.

17. Wil M. P. van der Aalst, H. T. de Beer, and Boudewijn F. van Dongen. Process
mining and verification of properties: An approach based on temporal logic. In
CoopIS, Cyprus, pages 130–147, 2005.

18. A.J.M.M. Weijters, W.M.P. van der Aalst, and A.K. Alves de Medeiros. Process min-
ing with the heuristics miner-algorithm. Technical Report WP 166, BETA Working
Paper Series, Eindhoven University of Technology, 2006.

19. A.Y. Yang, S. Iyengar, S. Sastry, R. Bajcsy, P. Kuryloski, and R. Jafari. Distributed
segmentation and classification of human actions using a wearable motion sensor net-
work. In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08.
IEEE Computer Society Conference on, pages 1–8. IEEE, 2008.

20. Yu Zheng. Trajectory data mining: an overview. ACM Transactions on Intelligent
Systems and Technology (TIST), 6(3):29, 2015.

46

ILP-Based Process Discovery Using Hybrid Regions

S.J. van Zelst, B.F. van Dongen, and W.M.P. van der Aalst

Department of Mathematics and Computer Science
Eindhoven University of Technology, The Netherlands

{s.j.v.zelst,b.f.v.dongen,w.m.p.v.d.aalst}@tue.nl

Abstract. The language-based theory of regions, stemming from the area of
Petri net synthesis, forms a fundamental basis for Integer Linear Programming
(ILP)-based process discovery. Based on example behavior in an event log, a pro-
cess model is derived that aims to describe the observed behavior. Building on
top of the existing ILP-formulation, we present a new ILP-based process discov-
ery formulation that unifies two existing types of language-based regions and,
additionally, we present a generalized ILP objective function that captures both
region-types and helps us to find suitable process discovery results.

Keywords: Process mining, process discovery, integer linear programming, re-
gion theory

1 Introduction

Process Mining [1] forms the connecting element between business process modeling
and data analysis. Its main aim is to extract knowledge from business process execution
data originating from a variety of data sources, e.g., enterprise information systems, so-
cial media, embedded systems etc. Within process mining, three main branches are dis-
tinguished being process discovery, conformance checking and process enhancement.
Within process discovery the aim is to, given an event log, reconstruct a process model.
Within conformance checking the aim is to assess, given a process model and an event
log, the conformance of the event log to the process model. Within process enhance-
ment the aim is to further improve and/or align existing process models by combin-
ing the two aforementioned disciplines, e.g., identification and removal of bottlenecks
within business processes.

The area of Petri net synthesis [2] is concerned with deciding whether there exists
a Petri net that exactly describes a given sequential behavioral system description. A
subclass of synthesis techniques is the area of region theory which is both defined on
transition systems, known as state-based region theory, and on languages, known as
language-based region theory.

Language-based region theory forms a fundamental basis for ILP-based process
discovery [3]. Within process discovery however, a process model is typically valued
w.r.t. four essential process mining quality dimensions being replay-fitness, precision,
generalization and simplicity [4]. Applying traditional Petri net synthesis techniques
in a process discovery context will result in models that have perfect replay-fitness,
maximal precision, low generalization and often low simplicity.

47

In this paper we propose a unified approach w.r.t. ILP-based process discovery,
based on the newly introduced concept of hybrid variable-based regions. Hybrid variable-
based regions unite two existing language-based region definitions and allow us to vary
the number of variables used within the ILP problems being solved. Therefore, we as-
sess the impact of using a different number of variables on the average computation
time of solving ILPs during ILP-based process discovery. Additionally we present a
new generalized ILP objective function that supports hybrid variable-based regions and
show that the objective function yields correct process discovery results.

The outline of this paper is as follows. In Section 2 we present basic preliminaries.
In Section 3 we present language-based regions. In Section 4 we show how to adopt
language-based regions within process discovery using ILP. In Section 5 we present
a brief evaluation of the performance of the approach. Section 6 covers related work.
Section 7 concludes the paper.

2 Preliminaries

2.1 Bags, Sequences and Vectors

Let Z denote the set of integers, let N denote the set of positive integers including 0
and let N+ denote the set of positive integers excluding 0. Let R denote the set of real
numbers and let R+ denote the set of positive real numbers excluding 0.

Let S denote a set. Let us define a bag B as a function B : S → N. Notation-wise
we write a bag as [en1

1 , en2
2 , ..., en3

3], where ei ∈ S, ni ∈ N+ and eni
i ≡ B(ei) = ni. If

for some element e, B(e) = 1, we omit its superscript. An empty bag is denoted as ∅.
As an example let S1 = {a, b, c, d} and let B1 denote a bag consisting of 3 a’s, 5 b’s,
1 c and 0 d’s, i.e. B1 = [a3, b5, c]. Element inclusion applies to bags as well, i.e. given
e ∈ S and B(e) > 0 then also e ∈ B. Thus we have a ∈ B1 whereas d /∈ B1.

A sequence σ is a function relating positions to elements e ∈ S, i.e. σ : {1, 2, ...,
k} → S. An empty sequence is denoted as ε. We write every non-empty sequence as
〈e1, e2, ..., ek〉. The set of all possible sequences over a set S is denoted as S∗. We define
concatenation of sequences σ1 and σ2 as σ1 · σ2, e.g., 〈a, b〉 · 〈c, d〉 = 〈a, b, c, d〉. If we
are given a set X of sequences over S, i.e., X ⊆ S∗, we define X’s prefix-closure as
X = {σ1 ∈ S∗|∃σ2∈S∗(σ1 · σ2 ∈ X)}. Let X ⊆ S∗, X is prefix-closed if X = X . Let
X ⊆ S∗ and letBX : X → N be a bag, we defineBX ’s prefix closure asBX : X → N

BX(σ) = B(σ) +
∑

σ·〈e〉∈X

BX(σ · 〈e〉)

Thus, for set X1 = {〈a, b〉, 〈a, c〉} we have X1 = {ε, 〈a〉, 〈a, b〉, 〈a, c〉} whereas for
bag B2 = [〈a, b〉5, 〈a, c〉3] we have B2 = [ε8, 〈a〉8, 〈a, b〉5, 〈a, c〉3].

Let S be a set on which we can pose some total order and let R ⊆ R be a range
of values. Vectors are denoted as ~z ∈ R|S|, where ~z(e) ∈ R and e ∈ S. A vector
~z represents a column vector. For vector multiplication we assume vectors to agree
on their indices. Thus, given a totally ordered set S = {e1, e2, ..., en} and ~z1, ~z2 ∈
R|S| we have ~zᵀ1~z2 =

∑
i∈{1,2,...,n} ~z1(ei)~z2(ei). Parikh vectors represent the number

of occurrences of a certain element within a sequence. A Parikh vector is a function

48

~p : S∗ → N|S| with ~p(σ) = (σ�e1 , σ�e2 , ..., σ�en) where σ�ei = |{j | 1 ≤ j ≤ |σ|,
σ(j) = ei}|. As an example consider S = {a, b, c, d}, σ1 = 〈a, b, d〉 and σ2 = 〈a, c, d〉.
We have ~p(σ1)ᵀ = (1, 1, 0, 1) and ~p(σ2)ᵀ = (1, 0, 1, 1). Note that σ1�b = 1 whereas
σ2�b = 0. Given a Parikh vector ~p : S∗ → N|S| and a set Q ⊆ S, we define ~pQ : S∗ →
N|Q|. Thus given S = {a, b, c, d} and σ1 = 〈a, b, d〉 we have ~p{a,c,d}(σ1)ᵀ = (1, 0, 1).

2.2 Event Logs and Petri Nets

The main goal of process discovery is to describe the observed behavior within an
event log by means of a process model. Thus, event logs act as the input of process
discovery whereas some process model acts as the output of process discovery. An
abstract example of an event log is presented in Table 1. Often more data attributes are
available in an event log, e.g., customer id, credit balance etc. In this paper we focus on
the sequential ordering of activities w.r.t. cases, i.e. the control-flow perspective.

Definition 1 (Event log). Let A be a set of activities, an event log L is a bag of se-
quences over A, i.e., L : A∗ → N.1

A sequence of activities σ ∈ L is referred to as a trace. We assume that any given set
of activities A is totally ordered (or we are able to trivially pose a total ordering on A).

We consider Petri nets to describe process models. A Petri net is a bipartite graph
consisting of a set of vertices called places and a set of vertices called transitions. Arcs
(directed edges) are connecting places and transitions and have an associated positive
weight.

Definition 2 (Petri net). A Petri net is a 3-tuple N = (P, T,W), where P is a set of
places and T is a set of transitions with P ∩ T = ∅. W is the weighted flow relation of
N , W : (P × T) ∪ (T × P)→ N.

For a given node x ∈ P ∪ T , the pre-set of x in N is defined as •x = {y | W (y,
x) > 0}. Correspondingly x• = {y | W (x, y) > 0} denotes the post-set of x in
N . Graphically we represent places as circles and transitions as boxes. For every (x,
y) ∈ (P ×T)∪ (T ×P) withW (x, y) > 0 we draw an arc from x to y. IfW (x, y) > 1

Table 1: An abstract example of an event log.

Case id Activity id Resource id Time-stamp
c1 a Lucy 2015-01-05T09:13:37+00:00
c2 a John 2015-01-05T13:37:25+00:00
c2 b Pete 2015-01-06T13:14:15+00:00
c2 d Lucy 2015-01-06T15:27:18+00:00
c1 c Pete 2015-01-07T14:28:56+00:00
c1 d John 2015-01-07T15:30:00+00:00
...

...
...

...

1In practice we extract an event log L from some information system. Consequently A is
implicitly defined by the event log, i.e., A only consists of events that are actually present L.

49

we denote the arc’s weight W (x, y) on top of the arc from x to y. A Petri net is pure
if it does not contain self-loops, i.e., if W (x, y) > 0 then W (y, x) = 0. An example
(pure) Petri net is depicted in Figure 1.

Definition 3 (Marked Petri net). Let N = (P, T,W) be a Petri net. A marking of N
is a bag over N ’s places, i.e. M : P → N. A marked Petri net is a pair (N,M0), where
M0 represents N ’s initial marking.

Let N = (P, T,W) be a Petri net and let M be a marking of N . A transition t ∈ T
is enabled, denoted (N,M)[t〉, if and only if ∀p∈•t(M(p) ≥ W (p, t)). Graphically
we represent a marking by drawing exactly a place’s marking-multiplicity number of
dots inside the place (e.g. p1 in Figure 1 with M0 = [p1]). If a transition t is enabled
in (N,M), t may fire, resulting in a new marking M ′. When t fires, denoted as (N,
M)[t〉(N,M ′), we have ∀p∈P (M ′(p) = M(p)−W (p, t) +W (t, p)). For example in
Figure 1 we have (N1, [p1])[a〉(N1, [p2]).

Definition 4 (Firing sequences). Let N = (P, T,W) be a Petri net and let (N,M0)
be a corresponding marked Petri net. Sequence σ = 〈t1, t2, ..., tn〉 ∈ T ∗ is a firing
sequence of (N,M0), written as (N,M0)[σ〉(N,Mn) if and only if for n = |σ| there
exist markings M0,M1,M2, ...,Mn such that (N,M0)[t1〉(N,M1), (N,M1)[t2〉(N,
M2), ..., (N,Mn−1)[tn〉(N,Mn).

Note that infinitely many firing sequences can exist given a Petri net. Some example
firing sequences of the Petri net depicted in Figure 1 are: (N1, [p1])[〈a〉〉(N1, [p2]),
(N1, [p1])[〈a, b〉〉(N1, [p3]) and (N1, [p1])[〈a, c, d, e, f, e, f, e, g〉〉(N1, ∅). The set of all
possible firing sequences in a Petri net N is called N ′s language, i.e., all sequences
σ ∈ T ∗ s.t. (N,M0)[σ〉(N,Mi). N ’s language is denoted as L(N) ⊆ T ∗ and is prefix-
closed.

Consider Figure 1 and event log L1 = [〈a, b, d, e, g〉10, 〈a, c, d, e, g〉9, 〈a, b, d, e,
f, e, g〉11, 〈a, c, d, e, f, e, g〉8] over A1 = {a, b, c, d, e, f, g}. Clearly we have L1 ⊂
L(N1), and thus replay-fitness of L1 on N1 is perfect. We will use N1, A1 and L1

throughout the paper as a running-example.

3 Regions

The concept of regions forms the basis of region theory within Petri net synthesis. Given
an event log L over a set of activities A, language-based regions are used to represent

p1

a

p2

b

c

p3

d

p4

e

f

p5

g

Fig. 1: A pure Petri net N1 = (P1, T1,W1) with P1 = {p1, p2, ..., p5}, T1 = {a, b, ...,
g} and W1(p1, a) =W1(a, p2) = ... =W1(p5, g) = 1.

50

places in a resulting Petri net N = (P,A,W). A language-based region maps every
a ∈ A to an integer representing arc-weight. For such mapping over A to be a region
we pose the restriction that the corresponding place p ∈ P should not block any σ ∈ L,
i.e., σ ∈ L ⇒ σ ∈ L(N). We identify two basic definitions of language-based regions
which we classify as single variable-based regions and dual variable-based regions.
The main difference is the number of variables used to define a region.

Definition 5 (Single variable-based regions). Let L be an event log over a set of ac-
tivities A. Let m ∈ N and let ~v ∈ Z|A|. A pair r = (m,~v) is a single variable-based
region iff:

∀σ∈L(m+ ~p(σ)ᵀ~v ≥ 0) (3.1)

LetRs(L) denote the set of all possible single variable-based regions ofL. Equation 3.1
generates a set of linear inequalities, i.e. applying Equation 3.1 on L1 yields:

m ≥ 0 ε
m+ ~v(a) ≥ 0 〈a〉

m+ ~v(a) + ~v(b) ≥ 0 〈a, b〉
...

...
...

m+ ~v(a) + ~v(b) + ~v(d) + 2~v(e) + ~v(f) + ~v(g) ≥ 0 〈a, b, d, e, f, e, g〉
m+ ~v(a) + ~v(c) + ~v(d) + 2~v(e) + ~v(f) + ~v(g) ≥ 0 〈a, c, d, e, f, e, g〉

Single variable-based regions use one single decision variable for each a ∈ A,
represented by ~v ∈ Z|A|. Expressing a single variable-based region r = (m,~v) as
a place p ∈ P in a marked net (N,M0) with N = (P,A,W) is straightforward.
We have M0(p) = m, if ~v(a) > 0 then W (a, p) = ~v(a), if ~v(a) < 0 then W (p,
a) = −~v(a) and if ~v(a) = 0 then W (a, p) =W (p, a) = 0. Consider place p2 depicted
in Figure 1 which can be represented as a single variable-based region r = (m, (~v(a),
~v(b), ..., ~v(g))) = (0, (1,−1,−1, 0, 0, 0, 0)). Note that for each inequality generated by
Equation 3.1, place p2 has a value of at least 0 and hence is a member of Rs(L).

Single variable-based regions only allow us to synthesize/discover pure Petri nets.
As a consequence we can not find self-loops, i.e. we can not find a place p in a resulting
netN = (P,A,W) s.t. p ∈ •a∩a•, for any a ∈ A. A lot of workflow patterns [5] in fact
exhibit places that include self-loops, e.g. milestone patterns, mutual-exclusion patterns,
priority patterns etc. Hence, we define dual variable-based regions which explicitly
allow us to distinguish between incoming and outgoing arcs.

Definition 6 (Dual variable-based regions). Let L be an event log over a set of activ-
ities A. Let m ∈ N and ~x, ~y ∈ N|A|. A triple r = (m,~x, ~y) is a dual variable-based
region iff:

∀σ=σ′·〈a〉∈L(m+ ~p(σ′)ᵀ~x− ~p(σ)ᵀ~y ≥ 0) (3.2)

Let Rd(L) denote the set of all possible dual variable-based regions of L. Like Defini-
tion 5, Definition 6 generates a set of linear inequalities. Applying Definition 6 on L1

yields:
m− ~y(a) ≥ 0 〈a〉

m− ~y(a) + ~x(a)− ~y(b) ≥ 0 〈a, b〉
m− ~y(a) + ~x(a)− ~y(c) ≥ 0 〈a, c〉

...
...

...
m− ~y(a) + ~x(a)− ~y(b) + ~x(b)− ~y(d) + ~x(d)− 2~y(e) + 2~x(e)− ~y(f) + ~x(f)− ~y(g) ≥ 0 〈a, b, d, e, f, e, g〉
m− ~y(a) + ~x(a)− ~y(c) + ~x(c)− ~y(d) + ~x(d)− 2~y(e) + 2~x(e)− ~y(f) + ~x(f)− ~y(g) ≥ 0 〈a, c, d, e, f, e, g〉

51

Dual variable-based regions use two decision variables per a ∈ A, represented by
~x, ~y ∈ N|A|. The variables allow us to distinguish between incoming arcs and outgoing
arcs when translating regions to Petri nets. Expressing a dual variable-based region
r = (m,~x, ~y) as a place p ∈ P in marked net (N,M0) with N = (P,A,W) is again
straightforward. We have M0(p) = m, W (a, p) = ~x(a) and W (p, a) = ~y(a). Again
consider place p2 depicted in Figure 1 which can be represented as a dual variable-based
region r = (m, (~x(a), ~x(b), ..., ~x(g)), (~y(a), ~y(b), ..., ~y(g))) = (0, (1, 0, 0, 0, 0, 0, 0),
(0, 1, 1, 0, 0, 0, 0)). Verify that for each linear in-equality generated by Definition 6,
place p2 has a value of at least 0 and hence is a member of Rd(L).

4 Hybrid Variable-Based Regions in Process Discovery

Using dual variable-based regions allows us to express non-pure places, i.e, self-loops,
milestones etc. However, this type of regions uses roughly twice as many variables
compared with single variable-based regions. To balance the number of variables used,
though still enhance the possibility of finding non-pure Petri net structures, we intro-
duce the new concept of hybrid regions, capturing both single and dual variable-based
regions.

Definition 7 (Hybrid variable-based regions). Let L be an event log over a set of
activitiesA. LetAs, Ad ⊆ A be two sets of activities withAs∪Ad = A andAs∩Ad =
∅. Let m ∈ N, ~v ∈ Z|As| and ~x, ~y ∈ N|Ad|. A quadruple r = (m,~v, ~x, ~y) is a hybrid
variable-based region iff:

∀σ=σ′·〈a〉∈L(m+ ~pAs
(σ)ᵀ~v + ~pAd

(σ′)ᵀ~x− ~pAd
(σ)ᵀ~y ≥ 0) (4.1)

Given a set of activities A and two sets of activities As, Ad ⊆ A with As∪Ad = A and
As ∩ Ad = ∅, we refer to a hybrid partition of A. If we choose Ad = A, Equation 4.1
is equal to Equation 3.2. If we choose As = A, Equation 4.1 can be reformulated as:

∀σ∈L\{ε}(m+ ~p(σ)ᵀ~v ≥ 0) (4.2)

Equation 4.2 does not equal Equation 3.1, however, as ~p(ε) = ~0 and m ∈ N, the
equations are equivalent in this context.

Note that the set of hybrid variable-based regions, i.e. the set of variable assignments
that adhere to Definition 7 depends on the hybrid partition of A into As and Ad. There-
fore, we let As act as a parameter for the set of feasible hybrid variable-based regions.
Let RhAs

(L) denote the set of all possible hybrid variable-based regions of L where As
represent a hybrid partition of A. Note RhA(L) = Rs(L) and Rh∅(L) = Rd(L). Region
r = (0,~0,~0,~0) is deemed the trivial region.

All three language-based region definitions, i.e. single, dual and hybrid variable-
based regions, provide means to accept and/or reject potential places in a to be con-
structed Petri net. In classical Petri net synthesis approaches, one keeps looking for
feasible places until either L = L(N), or if this is impossible, L(N) \ L is minimized.
Unfortunately, most models returned by classical Petri net synthesis techniques result
in models that are unusable from a process discovery perspective. Hence, we need to
relax the strict formal requirements posed on the relation between L and L(N).

52

Definition 8 (Hybrid variable-based process discovery ILP-formulation). Let L be
an event log over a set of activities A and let As, Ad ⊆ A be a hybrid partition. Let
Ms,Md,M

′
d be three matrices where Ms is an |L| \ {ε} × As matrix with Ms(σ,

a) = ~p(σ)(a) and Md, M′d are two |L| \ {ε} ×Ad matrices with Md(σ, a) = ~p(σ)(a)
and M′d(σ, a) = ~p(σ′)(a) (where σ = σ′ · 〈a′〉 ∈ L). Let cm ∈ R, ~cv ∈ R|As| and
~cx, ~cy ∈ R|Ad|. The hybrid variable-based process discovery ILP-formulation, denoted
ILPh

L
, is defined as:

minimize z = cmm+ ~cv
ᵀ~v + ~cx

ᵀ~x+ ~cy
ᵀ~y objective function

such that m~1 +Ms~v +M′d~x−Md~y ≥ ~0 hybrid variable-based region
and ~−1 ≤ ~v ≤ ~1 i.e. ~v ∈ {−1, 0, 1}|As|

~0 ≤ ~x ≤ ~1 i.e. ~x ∈ {0, 1}|Ad|

~0 ≤ ~y ≤ ~1 i.e. ~y ∈ {0, 1}|Ad|

0 ≤ m ≤ 1 i.e. m ∈ {0, 1}

The ILP-fromulation presented in Definition 8 uses the set of linear in-equalities
generated by Equation 4.1 within its constraint body. The formulation however binds
~v to {−1, 0, 1}|As| and ~x, ~y to {0, 1}|Ad|, i.e. the formulation only allows for discover-
ing Petri nets with arc weights restricted to {0, 1}. Additionally it defines an objective
function, i.e. z = cmm + ~cv

ᵀ~v + ~cx
ᵀ~x + ~cy

ᵀ~y, that maps each region to a real value,
i.e. z : RhAs

(L) → R. In general we are free to choose whatever objective function
we like, however, using different objective functions will lead to different process dis-
covery results. Choosing cm = 0 and ~cv = ~cx = ~cy = ~1 leads to arc minimization
whereas maximizing the same objective leads to arc maximization, resulting in differ-
ent places/regions found by the underlying ILP solver. The objective function proposed
in [3], being a minimization function, tries to minimize the number of incoming arcs
and maximize the number of outgoing arcs. The objective function can be defined in
terms of cm, ~cv, ~cx and ~cy as cm = |L|, ~cv =

∑
σ∈L ~pAs

(σ), ~cx =
∑
σ∈L ~pAd

(σ) and
~cy = −~cx, i.e.:

z(r) =
∑
σ∈L

(m+ ~pAs
(σ)ᵀ~v + ~pAd

(σ)ᵀ(~x− ~y)) (4.3)

4.1 Optimizing Token Throughput

The objective function used within [3], i.e. Equation 4.3 is less generic as the one pro-
posed in Definition 8. As shown in [3], it favors minimal regions. A minimal region is
a region that is not expressible as the sum of two other regions. The objective function
is solely based on the set-representation of the prefix-closure of an event log. However,
an event log is a bag of traces and thus consists of information on trace frequency. We
propose a generalized prefix-closure-based objective function that incorporates a word-
based scaling function β. The scaling function β is required to map all sequences in the
prefix-closure of the event log to some positive real value. The actual implementation
is up to the user, although we present an instantiation of β that works well for process
discovery. We show that the proposed generalized weighted prefix-closure-based hybrid
region objective function favors minimal regions, given any scaling function β.

53

Definition 9 (Generalized weighted prefix-closure-based hybrid region objective
function). Let L be an event log over a set of activities A and let As, Ad ⊆ A be a
hybrid partition. Let r = (m,~v, ~x, ~y) ∈ RhAs

(L) be a hybrid variable-based region and
let β be a scaling function over L, i.e. β : L → R+. The generalized weighted prefix-
closure-based hybrid region objective function is instantiated as cm =

∑
σ∈L β(σ),

~cv =
∑
σ∈L β(σ)~pAs(σ), ~cx =

∑
σ∈L β(σ)~pAd

(σ) and ~cy = −~cx, i.e.:

zβ(r) =
∑
σ∈L

β(σ)(m+ ~pAs(σ)
ᵀ~v + ~pAd

(σ)ᵀ(~x− ~y)) (4.4)

Note that if we choose β(σ) = 1 for all σ ∈ L, denoted β1, we instantiate the gen-
eralized objective function as the objective function proposed in [3]. We denote this
objective function as z1, i.e. Equation 4.3.

To relate the behavior in a given event log to the objective function defined in Defi-
nition 9 we instantiate the scaling function β making use of the frequencies of the traces
present in the event log, i.e. we let β(σ) = L(σ) leading to:

zL(r) =
∑
σ∈L

L(σ)(m+ ~pAs
(σ)ᵀ~v + ~pAd

(σ)ᵀ(~x− ~y)) (4.5)

To assess the difference between z1 and the newly proposed objective function zL,
consider the Petri net depicted in Figure 2. Assume we are given some event log L =
[〈a, b, d〉5, 〈a, c, d〉3]. Let r1 denote the hybrid variable-based region corresponding to
place p1, let r2 correspond to p2 and let r3 correspond to p3. In this case we have
z1(r1) = 1, z1(r2) = 1 and z1(r3) = 2. On the other hand we have zL(r1) = zL(r2) =
zL(r3) = 5+3 = 8. Thus, using zβL

leads to more intuitive objective values compared
to using z1 as zL evaluates to the absolute number of discrete time-steps a token would
remain in the corresponding place when replaying log L w.r.t. the place.

In [3] it is shown that the objective function used favors minimal regions. The proof
cannot directly be adapted to hold for hybrid variable-based regions. Moreover it does
not provide means to show that any arbitrary instantiation of zβ favors minimal hy-
brid variable-based regions. Here we show that any instantiation of the generalized
weighted prefix-closure-based hybrid region objective function with some scaling func-
tion β : L → R+ favors minimal hybrid variable-based regions. We first show that the
objective value of a non-minimal hybrid region equals the sum of the two minimal re-
gions defining it after which we show that the given objective function maps each region
to some positive real value, i.e. rng(zβ) ⊆ R+.

p1

a

p2

b

c
p3

d

Fig. 2: A simple Petri net N with L(N) = {ε, 〈a〉, 〈a, b〉, 〈a, c〉〈a, b, d〉, 〈a, c, d〉}.

54

Lemma 1 (Objective value composition of non-minimal regions). Let L be an event
log over a set of activities A and let As, Ad ⊆ A be a hybrid partition. Let r1 = (m1,
~v1, ~x1, ~y1), r2 = (m2, ~v2, ~x2, ~y2) and r3 = (m1+m2, ~v1+~v2, ~x1+~x2, ~y1+~y2) with r1,
r2, r3 ∈ RhAs

(L). Let zβ : RhAs
(L)→ R where zβ is an instantiation of the generalized

weighted objective function as defined in Definition 9, then zβ(r3) = zβ(r1) + zβ(r2).

Proof (By definition of zβ). Let us denote zβ(r3):∑
σ∈L

β(σ)((m1 +m2) + ~pAs
(σ)ᵀ(~v1 + ~v2) + ~pAd

(σ)ᵀ((~x1 + ~x2)− (~y1 + ~y2)))

∑
σ∈L

β(σ)(m1+~pAs(σ)
ᵀ ~v1+~pAd

(σ)ᵀ(~x1− ~y1)+m2+~pAs(σ)
ᵀ ~v2+~pAd

(σ)ᵀ(~x2− ~y2))

∑
σ∈L

β(σ)(m1 + ~pAs(σ)
ᵀ ~v1 + ~pAd

(σ)ᵀ(~x1 − ~y1)) +

∑
σ∈L

β(σ)(m2 + ~pAs
(σ)ᵀ ~v2 + ~pAd

(σ)ᵀ(~x2 − ~y2))

Clearly zβ(r3) = zβ(r1) + zβ(r2). �

Lemma 1 shows that the value of zβ for a non-minimal region equals the sum of the
zβ values of the two regions it is composed of. If we additionally show that zβ can
only evaluate to positive values, we show that zβ favors minimal hybrid variable-based
regions.

Lemma 2 (Range of zβ is strictly positive). Let L be an event log over a set of activ-
ities A and let As, Ad ⊆ A be a hybrid partition. Let r = (m,~v, ~x, ~y) be a non-trivial
region, i.e., r ∈ RhAs

(L). If we let zβ be any instantiation of the generalized weighted
objective function as defined in Definition 9, then zβ : RhAs

(L)→ R+.

Proof (By showing zβ(r) > 0,∀r ∈ RhAs
(L)). Let r = (m,~v, ~x, ~y) be a non-trivial

hybrid variable-based region, i.e. r ∈ RhAs
(L). Because r ∈ RhAs

(L) we have

∀σ=σ′·〈a〉∈L\{ε}(m+ ~pAs(σ)
ᵀ~v + ~pAd

(σ′)ᵀ~x− ~pAd
(σ)ᵀ~y ≥ 0) (4.6)

Note that each Parikh value of an activity a ∈ A given a sequence σ, i.e. ~p(σ)(a),
is greater or equal than the Parikh value of a, given σ’s prefix, i.e.,:

∀σ=σ′·〈a′〉∈L,a∈A(~p(σ)(a) ≥ ~p(σ
′)(a)) (4.7)

Using Equation 4.7 we can substitute ~pAd
(σ′)ᵀ~x with ~pAd

(σ)ᵀ~x in Equation 4.6:

∀σ=σ′·〈a〉∈L\{ε}(m+ ~pAs(σ)
ᵀ~v + ~pAd

(σ)ᵀ(~x− ~y) ≥ 0) (4.8)

Combining rng(β) ⊆ R+, ~p(ε) = ~0 and m ∈ N with Equation 4.8 we find zβ(r) ≥ 0:∑
σ∈L

β(σ)(m+ ~pAs(σ)
ᵀ~v + ~pAd

(σ)ᵀ(~x− ~y)) ≥ 0 (4.9)

55

Ifm > 0 then β(ε)(m+~pAs
(ε)ᵀ~v+~pAd

(ε)ᵀ(~x−~y)) > 0. Combined with Equations 4.8
and 4.9 leads to zβ(r) > 0.

Observe that if m = 0 then for r to be a non-trivial hybrid variable-based region,
i.e. r ∈ RhAs

(L), either (I). ∃a ∈ As s.t. ~v(a) > 0 or (II). ∃a ∈ Ad s.t. ~x(a) > 0.
(I). Let m = 0 and a ∈ As s.t. ~v(a) > 0. We know ∃σ = σ′ · 〈a〉 ∈ L. Because

r ∈ RhAs
(L) (using Equation 4.8) we have:

m+ ~pAs
(σ)ᵀ~v + ~pAd

(σ)ᵀ(~x− ~y) ≥ 0

If σ′ = ε, we have ~pAd
(σ) = ~0 and ~pAs

(σ)ᵀ~v = ~v(a) hence we deduce:

m+ ~pAs
(σ)ᵀ~v + ~pAd

(σ)ᵀ(~x− ~y) > 0

Combining this with Equations 4.8 and 4.9 yields zβ(r) > 0.
If σ′ 6= ε we have (using Equation 4.8):

m+ ~pAs
(σ′)ᵀ~v + ~pAd

(σ′)ᵀ(~x− ~y) ≥ 0

Observe that ~pAs
(σ)ᵀ~v = ~pAs

(σ′)ᵀ~v+~v(a), together with ~pAd
(σ′) = ~pAd

(σ) leads us
to reformulate this to:

m+ ~pAs(σ)
ᵀ~v − ~v(a) + ~pAd

(σ)ᵀ(~x− ~y) ≥ 0

m+ ~pAs(σ)
ᵀ~v + ~pAd

(σ)ᵀ(~x− ~y) ≥ ~v(a)

Combining this with Equations 4.8 and 4.9 yields zβ(r) > 0.
(II) Let m = 0 and a ∈ Ad s.t. ~x(a) > 0. We know ∃σ = σ′ · 〈a〉 ∈ L. Because

r ∈ RhAs
(L) (using Equation 4.6) we have:

m+ ~pAs
(σ)ᵀ~v + ~pAd

(σ′)ᵀ~x− ~pAd
(σ)ᵀ~y ≥ 0

Observe that ~pAd
(σ)ᵀ~x = ~pAd

(σ′)ᵀ~x+ ~x(a) and thus:

m+ ~pAs(σ)
ᵀ~v + ~pAd

(σ)ᵀ(~x− ~y) ≥ ~x(a)

Combining this with Equations 4.8 and 4.9 yields zβ(r) > 0. �

By combining Lemma 1 and Lemma 2 we can easily show that any instantiation of
zβ favors minimal regions.

Theorem 1 (Any instantiation of zβ favors minimal regions). Let L be an event log
over a set of activities A and let As, Ad ⊆ A be a hybrid partition. Let r1 = (m1,
~v1, ~x1, ~y1), r2 = (m2, ~v2, ~x2, ~y2) and r3 = (m1 +m2, ~v1 + ~v2, ~x1 + ~x2, ~y1 + ~y2) be
three non-trivial regions, i.e., r1, r2, r3 ∈ RhAs

(L). For any zβ : RhAs
(L)→ R being an

instantiation of the generalized weighted objective function as defined in Definition 9:
zβ(r3) > zβ(r1) and zβ(r3) > zβ(r2).

Proof (By composition of Lemma 1 and Lemma 2). By Lemma 1 we know zβ(r3) =
zβ(r1) + zβ(r2). By Lemma 2 we know that zβ(r1) > 0, zβ(r2) > 0 and zβ(r3) > 0.
Thus we deduce zβ(r3) > zβ(r1) and zβ(r3) > zβ(r2). Consequently, any instantiation
of the objective function as defined in Definition 9 favors minimal regions. �

56

Both objective functions presented, i.e.z1 and zL, are expressible in terms of the more
general objective function zβ as presented in Definition 9. As we have seen the two
objective functions may favors different regions. Combining an objective function with
the ILP-formulation presented in Definition 8 establishes means to find Petri net places.
However, solving one ILP only yields one solution and hence we need means to find a
set of places, which together form a Petri net that represents the input event log L.

4.2 Finding Several Places

The most apparent technique to find multiple places is the use of causal relations within
an event log. Within the context of this paper we define a causal relation as follows.

Definition 10 (Causal relation). Let L be an event log over a set of activities A. A
causal relation γL is a function γL : A× A→ R where γL(a, b) denotes the causality
between activity a and b exhibited in L.

Several approaches exist to compute causalities hence we refer to [6] for an overview of
the use of causalities within different process discovery approaches. As a consequence,
γL(a, b) can have different meanings w.r.t. the causality between a and b. Some ap-
proaches limit rng(γL) to {0, 1} where γL(a, b) = 1 means that there is a causal
relation between a and b whereas γL((a, b)) = 0 means there is no causal relation from
a to b. Other approaches map rng(γL) to the real-valued domain (−1, 1) where a high
positive γL(a, b) value (close to 1) indicates a strong causal relation from a to b and a
low negative value (close to −1) indicates a strong causal relation from b to a.

When adopting a causal-based ILP process discovery strategy, we try to find places
which will be added in the resulting Petri net, each representing a causality found. A
first step is to compute γL values given some causal definition. Depending on the actual
meaning of the γL, whenever we find a causal relation from a to b (possibly because
γL(a, b) ≥ δ, where δ is some threshold value), we enrich the constraint body for the
given causal constraint as follows:

m = 0 and ~v(a) = 1 and ~v(b) = −1, if a, b ∈ As

m = 0 and ~x(a) = 1 and ~v(b) = −1, if a ∈ Ad, b ∈ As
m = 0 and ~v(a) = 1 and ~y(b) = 1, if a ∈ As, b ∈ Ad
m = 0 and ~x(a) = 1 and ~y(b) = 1, if a, b ∈ Ad

After the constraint body is enriched, we solve the ILP yielding a place having an opti-
mal value for the specific objective function chosen. We repeat the procedure for every
causal relation yielding a Petri net.

5 Performance

The hybrid variable-based ILP-formulation is implemented as a plug-in in the ProM-
Framework (http://www.promtools.org) [7]2. The plug-in allows the user to

2The source-code is available at https://svn.win.tue.nl/repos/prom/
Packages/HybridILPMiner/Trunk

57

http://www.promtools.org
https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/Trunk
https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/Trunk

specify parameters of ILP-based process discovery, e.g. several different objective func-
tions, additional constraints and causality based mining.

To test the performance of hybrid variable-based ILP process discovery we have
used the basic implementation within an experimentation framework3. The framework
allows for generating random process models and from these models generate event
logs. We have generated 40 models containing a minimum of 2 activities and a maxi-
mum of 12 activities. For each model we have generated 10 event logs, each containing
5000 traces. For each log we ran three different instantiations of the process discovery
formulation, one purely single variable-based, one hybrid variant and one purely dual
variable-based. The distribution of event classes in A over As and Ad is depicted in
Table 2. For the hybrid variant the size of As was kept constant and independent of the
number of activities in A (as of |A| ≥ 3). We ran each instantiation 10 times per log
using causal relations as a process discovery strategy. For each run of an instantiation
we calculated the total time spend in solving all ILPs based on the causalities present
in the event log. These times have been aggregated based on the number of activities
present in an event log. The results of the experiment, plotted on a logarithmic scale,
are depicted in Figure 34.

As shown in Figure 3, the average time to solve the hybrid formulation is in-between
the single and dual formulation. We additionally note the hybrid formulation to get
slightly closer to the dual formulation when |A| increases. This is as expected as the
number of single variables within the hybrid formulation is constant and hence the av-
erage time of solving the ILPs within the formulation increases with respect to the single
variable formulation. Figure 3 shows that reducing the number of variables used within
the ILP-formulation has an impact on the average time of solving ILPs. The differences
are however marginal, which is to be expected as solving ILPs is exponential by nature.
Therefore the experiments show that using ILPs for the aim of process discovery in

Table 2: Different settings used in performance measurements of the hybrid variable-
based ILP-formulation.

|A| 2 3 4 5 6 7 8 9 10 11 12
Purely single variable-based variant
|As| 2 3 4 5 6 7 8 9 10 11 12
|Ad| 0 0 0 0 0 0 0 0 0 0 0
Hybrid variable-based variant
|As| 2 3 3 3 3 3 3 3 3 3 3
|Ad| 0 0 1 2 3 4 5 6 7 8 9
Purely dual variable-based variant
|As| 0 0 0 0 0 0 0 0 0 0 0
|Ad| 2 3 4 5 6 7 8 9 10 11 12

3All framework files and results can be found at https://svn.win.tue.nl/repos/
prom/Packages/HybridILPMiner/Tags/papers/source_files/hybrid_
ilp_runtime_experiments.tar.gz

4The experiments where distributed over four servers (Dell PowerEdge R520, Intel Xeon E5-
2407 v2 2.40GHz, 10M Cache, 8 × 8GB RDIMM, 1600MT/s Memory), on each server a total
of 10 models and corresponding logs where generated.

58

https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/Tags/papers/source_files/hybrid_ilp_runtime_experiments.tar.gz
https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/Tags/papers/source_files/hybrid_ilp_runtime_experiments.tar.gz
https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/Tags/papers/source_files/hybrid_ilp_runtime_experiments.tar.gz

2 3 4 5 6 7 8 9 10 11 12

10−1

102

105

|A|A
vg

.t
im

e
of

so
lv

in
g
I
L
P
′ s

(m
s.

)
Pure single

Hybrid
Pure dual

Fig. 3: Average time in milliseconds to solve the three ILP-based process discovery
variants plotted on a logarithmic scale against the number of activities in the log.

a practical setting might need incorporation of more advanced techniques in order to
reduce the average time of solving the ILPs significantly.

6 Related Work

The concept of hybrid variable-based regions originates from language-based region
theory, which in turn originates from the area of Petri net synthesis. We identify two
main branches of language-based region theory within Petri net synthesis being the
separating regions approach [8–10] and the minimal linear basis approach [11, 12]. In
the separating regions approach, which uses single-variable based regions, behavior not
seen in a given prefix closed language is specified as being undesired. In the minimal
linear basis approach, given a prefix closed language, a polyhedral cone of integer points
is constructed based on dual variable-based regions. Using the cone a minimal basis of
the set of regions is calculated which defines a minimal set of places to be synthesized.
Both approaches try to minimize L(N) \ L, where N represents the resulting Petri
net and L is a prefix-closed language. The approaches lead to Petri nets with perfect
replay-fitness. Moreover precision is maximized. A side effect of this property is the
fact that the synthesized net N scores low on both the generalization and the simplicity
dimension.

In [3] a first design of an ILP-formulation was presented based on the concept of
dual variable-based regions. The work presents objective function z1 which we have
further developed in this work to zL, and more generally, zβ . The work also focuses on
formulation of several different net-types in terms of linear in-equalities which even go
beyond classical Petri nets, e.g. reset- and inhibitor arcs.

An alternative approach is to use the concept of state-based regions for the purpose
of process discovery [13, 14]. Within this approach an abstraction of the event log is
computed in the form of a transition system. Regions are computed within the transition
system where, like in language-based region theory, each region corresponds to a place
in the resulting Petri net.

59

In [15] a process discovery algorithm is proposed based on the concept of numer-
ical abstract domains using Parikh vectors as a basis. Based on an event log, a prefix-
closed language is computed of which a convex polyhedron is approximated by means
of calculating a convex hull. The convex hull is then used to compute causalities within
the input log, by deducing a set of linear inequalities which represent places. The for-
mulation used to calculate these causalities is in essence based the concept of single
variable-based regions. The approach allows for finding pure Petri nets with arc weights
and multiple marked places.

A multitude of other Petri net-based process discovery approaches exist. For a de-
tailed description of these approaches we refer to [6].

7 Conclusion

We presented a new breed of language-based regions, i.e. hybrid variable-based regions,
that captures the two existing region types being single and dual variable-based regions.
Hybrid variable-based regions allow us to decide whether we want to use one or two
variables for an activity present in the input event log. This allows us to achieve gains
in terms of performance whilst maintaining the possibility to find complex (workflow)
patterns. We have shown that within the hybrid variable-based ILP process discovery
formulation, using only one variable per activity a ∈ A performs optimal in terms of
the average time spent in solving the ILPs constructed.

We presented a generalized weighted objective function and showed that any in-
stantiation of the objective function leads to ILPs that favor minimal regions. As a
result, practitioners may vary the scaling function within the objective function under
the guarantee that the objective function favors minimal regions. We presented a log-
based scaling function that exploits trace frequencies available in the input log. Using
the log based scaling function within the objective function assigns an objective value
to each region equal to the token throughput of the corresponding place, given the event
log. Hence, as we have shown using the new objective function leads to more intuitive
objective values.

As an interesting direction for future work we identify the assessment of the impact
of filtering, either a-priori or within the ILP itself, on the quality dimensions of the
resulting nets, i.e. are we able to leverage the perfect repaly-fitness property? Also,
an assessment of the impact of decomposition techniques [16] on the performance of
ILP-based approaches is an interesting direction for future work.

References

1. Aalst, W.M.P.v.d.: Process Mining: Discovery, Conformance and Enhancement of Business
Processes. 1st edn. Springer Publishing Company, Incorporated (2011)

2. Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta Inf. 33(4) (1996) 297–315
3. Werf, J.M.E.M.v.d., Dongen, B.F.v., Hurkens, C.A.J., Serebrenik, A.: Process discovery

using integer linear programming. Fundamenta Informaticae 94(3) (2009) 387–412
4. Buijs, J.C.A.M., Dongen, B.F.v., Aalst, W.M.P.v.d.: On the role of fitness, precision, gen-

eralization and simplicity in process discovery. In Meersman, R., Panetto, H., Dillon, T.,

60

Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F.,
eds.: On the Move to Meaningful Internet Systems: OTM 2012. Volume 7565 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2012) 305–322

5. Aalst, W.M.P.v.d., Hofstede, A.H.M.t., Kiepuszewski, B., Barros, A.: Workflow patterns.
Distributed and Parallel Databases 14(1) (2003) 5–51

6. Dongen, B.F.v., Medeiros, A.K.A.d., Wen, L.: Process mining: Overview and outlook of
Petri net discovery algorithms. T. Petri Nets and Other Models of Concurrency 2 (2009)
225–242

7. Dongen, B.F.v., Medeiros, A.K.A.d., Verbeek, H.M.W., Weijters, A.J.M.M., Aalst,
W.M.P.v.d.: The ProM framework: A new era in process mining tool support. In Ciardo,
G., Darondeau, P., eds.: Applications and Theory of Petri Nets 2005. Volume 3536 of Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg (2005) 444–454

8. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the synthesis of
bounded nets. In Mosses, P.D., Nielsen, M., Schwartzbach, M.I., eds.: TAPSOFT ’95: Theory
and Practice of Software Development. Volume 915 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (1995) 364–378

9. Badouel, E., Darondeau, P.: Theory of regions. In Reisig, W., Rozenberg, G., eds.: Lectures
on Petri Nets I: Basic Models. Volume 1491 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (1998) 529–586

10. Darondeau, P.: Deriving unbounded Petri nets from formal languages. In Sangiorgi, D.,
Simone, R.d., eds.: CONCUR’98 Concurrency Theory. Volume 1466 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg (1998) 533–548

11. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions of
languages. In Alonso, G., Dadam, P., Rosemann, M., eds.: Business Process Management.
Volume 4714 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2007)
375–383

12. Lorenz, R., Mauser, S., Juhas, G.: How to synthesize nets from languages - a survey. In:
Simulation Conference, 2007 Winter. (Dec 2007) 637–647

13. Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Applications and
Theory of Petri Nets, 31st International Conference, PETRI NETS 2010, Braga, Portugal,
June 21-25, 2010. Proceedings. (2010) 226–245

14. Aalst, W.M.P.v.d., Rubin, V., Verbeek, H.M.W., Dongen, B.F.v., Kindler, E., Günther, C.W.:
Process mining: a two-step approach to balance between underfitting and overfitting. Soft-
ware and System Modeling 9(1) (2010) 87–111

15. Carmona, J., Cortadella, J.: Process discovery algorithms using numerical abstract domains.
IEEE Trans. Knowl. Data Eng. 26(12) (2014) 3064–3076

16. Aalst, W.M.P.v.d.: Decomposing Petri nets for process mining: A generic approach. Dis-
tributed and Parallel Databases 31(4) (2013) 471–507

61

Folding Example Runs to a Workflow Net

Robin Bergenthum, Thomas Irgang, Benjamin Meis

Department of Software Engineering,
FernUniversität in Hagen

{firstname.lastname}@fernuni-hagen.de

Abstract. We present a folding algorithm to construct a business process model
from a specification. The process model is a workflow net, i.e. a Petri net with
explicit split- and join-transitions and the specification is a set of example runs.
Each example run is a labeled partial order of events, and each event relates to
the occurrence of an activity of the underlying business process. In contrast to
sequentially ordered runs, a partially ordered run includes information about de-
pendencies and independencies of events. Consequently, such a run is a precise
and intuitive specification of an execution of a business process [5, 11].
The folding algorithm is based on the algorithm introduced in [1]. This algo-
rithm constructs a process model which is able to execute all example runs of the
specification, but may introduce a significant amount of not specified behavior to
the business process model. We show how to improve this folding procedure, by
adapting ideas known from the theory of regions, in order to restrict additional
and not specified behavior of the process model whenever possible.

1 Introduction

Business process management [2–4] aims to identify, supervise and improve business
processes within companies. It is essential to adapt existing processes to rapidly chang-
ing requirements in order to increase and guarantee corporate success. The basis for
every business process management activity is a valid and faithful model of the busi-
ness process; yet constructing such a model is a challenge.

It is particularly challenging to build a complex process model from scratch. For
most applications it is easier to first explore single example runs and set up a formal
specification before building a complex model [5–7]. In the literature there are many
different approaches to automatically generating a process model from a specification.
According to the requirements, several approaches exist using different types of speci-
fications, process modeling languages, and model generation strategies.

Process mining algorithms (see [8] for an overview) provide very good runtime,
construct readable models, and take into account that recorded or specified behavior
can be incomplete or even faulty. Synthesis algorithms (see for example [9–11]) as-
sume a complete and valid specification and construct a process model representing
the specification as precisely as possible. Synthesis algorithms are only applicable for
medium-size models, but provide excellent control of the produced model and its be-
havior. In this paper, we present a process mining algorithm and use strategies common
in the area of synthesis to improve the construction of the process model. We will show

62

that our new algorithm is fast and able to provide perfect control of the constructed
model.

We consider a specification to be a set of labeled partial orders. A labeled partial
order is a partially ordered set of events. An event and its label relate to the occurrence
of an activity in the business process. In contrast to a sequence of events, a partial order
can express dependencies and independencies of events. A set of labeled partial orders
is a precise and intuitive specification of a business process [5, 11].

As an example we consider our coffee brewing process. Figure 1 and Figure 2 depict
two labeled partial orders (we omit transitive arcs) specifying two different runs of this
process. In Figure 1, we grind beans and switch off the coffee machine. We unlock the
machine once it is turned off. We fill the strainer as soon as it is empty. We fetch water
from the kitchen using the coffee-pot. This pot is only available after the machine is
unlocked. Once the strainer is filled and the water is fetched, we assemble the coffee
machine. In Figure 2, we use a glass-pot (instead of the coffee-pot) to fetch water from
the kitchen. This activity does not depend on unlocking the coffee machine. We can
fetch the water right at the beginning of the process. Figure 1 and Figure 2 depict a
complete and intuitive specification of our coffee brewing process.

Fig. 1. A Coffee brewing process.

Fig. 2. Another coffee brewing process.

We present an algorithm to construct a workflow net from a specification. As stated
above, a specification is a set of labeled partial orders. A workflow net is a Petri net
with explicit split- and join-connectors. and-splits and and-joins duplicate and merge
the control flow of a workflow net if actions of the business process occur concurrently.

63

xor-splits and xor-joins act like switches and steer the course of the control flow of a
workflow net if activities of the business process are in conflict.

The new algorithm is based on the folding algorithm presented in [1]. This algo-
rithm adds an initial and a final event to every labeled partial order of the specification
and builds a workflow net so that the specification is enabled in this net, i.e. all step
sequences of the labeled partial orders of the specification are enabled. The unique start
and final events are only necessary for technical purposes and are removed after the
folding which leads to a workflow net with a unique start and final place. To build such
a net, every labeled partial order is reduced to its underlying Hasse-diagram. A Hasse-
diagram of a labeled partial order is the set of events together with the smallest relation
so that its transitive closure equals the original partial order. In other words, all tran-
sitive arcs are removed to receive a compact and easy to handle representation of the
specified example run. We use the Hasse-diagrams of the specification to analyze the
neighborhood relation on activities of the business process. For every activity there is
a set of equally labeled events. According to the specification, each of these events is
enabled by the set of events in its direct preset. Of course, equally labeled events can
occur in different contexts. Folding is to arrange actions using splits and joins accord-
ing to the neighborhood relation present in the Hasse-diagrams of the specification. An
xor-split (×) marks exactly one place of its postset, an xor-join (×) needs only one
marked place in its preset to be enabled. and-connectors (∧) use the common Petri net
transition semantics.

Folding the specification depicted in Figure 1 and Figure 2 results in the workflow
net depicted in Figure 3. Both labeled partial orders of the specification are enabled in
this net. For simplification, we omit places between transitions.

Fig. 3. A business process model of our coffee brewing process.

Folding labeled partial orders is an elegant approach to generating a business pro-
cess model from a specification. Folding constructs well readable results in very good
runtime. Every labeled partial order of the specification is enabled in the generated pro-
cess model. Unfortunately, folding algorithms tend to introduce additional, not speci-
fied behavior to the business process model. Such additional behavior is either a suitable
completion of the specification or an inadequate extension yielding an inaccurate busi-

64

ness process model. The risk of creating an unfaithful model is due to the fact that the
basis for folding is the neighborhood relation introduced by the Hasse-diagrams. Some
of the causal structure of the business process may be hidden in the transitive closure of
the specified example runs. Transitive dependencies are not considered by the folding
algorithm.

Fig. 4. A run of the business process model depicted in Figure 3.

Figure 4 illustrates additional behavior enabled in the workflow net depicted in Fig-
ure 3. In compliance with the diagram in Figure 1, we grind beans, turn the machine
off, and get water using the glass-pot right at the beginning. We also unlock the coffee
machine and fetch water using the coffee-pot. This behavior is possible in the workflow
net, because the alternative between using the glass- and coffee-pot is not reflected by
any neighborhood relation of the diagrams depicted in Figure 1 and Figure 2.

In this paper we present a revised folding algorithm. We fold the Hasse-diagrams
of the specification into a workflow net. If the workflow net contains additional and
inadequate behavior, the revised folding algorithm proceeds to exclude this behavior by
changing the workflow net. Nevertheless, all changes lead to a new model which is still
able to perform the specified behavior. To improve the model, we use methods known
from the theory of synthesis. Each non-specified run of a workflow net has a maximal,
specified (not necessarily unique) prefix. Any event ordered after this specified part
should not occur at this point. Such specified prefix together with such an event is called
a wrong continuation of the workflow net. To eliminate such a wrong continuation from
our workflow net, we modify the Hasse-diagrams of our specification. We add a set of
transitive arcs to the Hasse-diagrams, so that folding regarding these updated diagrams
leads to a workflow net without the wrong continuation. Note, we only add arcs of the
transitive closure of the Hasse-diagrams. Thereby, the initial specified behavior is not
changed. A more detailed neighborhood relation yields a more restrictive workflow net.
We stop if we can not get a more restrictive workflow net by adding transitive arcs. This
solution is not unique. It depends on the unfolding and the selected arcs.

We will present the theory and implementation of this revised folding algorithm
and we will show that it constructs well readable models. The main advantage of such
a folding procedure is that it provides good control of the behavior of the constructed
business process model. In an interactive version of our algorithm, it is even possible
to distinguish two sets of wrong continuations. The first set is not specified but valid

65

process behavior and extends the specification, the second set is excluded from the
model.

The paper is organized as follows: Section 2 defines workflow nets and labeled
partial orders. Section 3 presents a folding algorithm. Section 4 presents our new revised
folding algorithm and outlines its implementation. Section 5 concludes the paper.

2 Workflow Nets and Labeled Partial Orders

In this paper, a workflow net is a Petri net with additional connector nodes. We consider
a special class of these nets where transitions and places do not branch. This class of
nets has a very intuitive semantics and is built with elements present in almost every
other process modeling language. A workflow net can easily be translated into any
business process modeling language such as place/transition nets [12], Event-driven
Process Chains (EPCs) [13], Business Process Model and Notation (BPMN) [14], Yet
Another Workflow Language (YAWL) [15] or Activity Diagrams (a part of the Unified
Modeling Language (UML) [16, 17]).

Definition 1. A workflow net structure is a tuple wn = (T, P,Cxor, Cand, F) where T
is a finite set of transitions, P is a finite set of places, Cxor resp. Cand are finite sets of
xor- resp. and-connectors, and F ⊆ ((T∪Cxor∪Cand)×P)∪(P×(T∪Cxor∪Cand))
is a set of directed arcs connecting transitions and connectors to places and vice versa.
A workflow net structure is a workflow net if:

(i) There is one place, called initial place, having one outgoing and no incoming arc.
There is one place, called final place, having one incoming and no outgoing arc.
All other places have one incoming and one outgoing arc.

(ii) Transitions have one incoming and one outgoing arc.
(iii) Connectors have either one incoming and multiple outgoing arcs, or multiple in-

coming and one outgoing arc.

Figure 3 depicts a workflow net. For the sake of clarity, places are hidden in this
figure. Let n ∈ {T ∪ Cxor ∪ Cand} be a node. We call •n := {p ∈ P | (p, n) ∈ F}
the preset of n. We call n• := {p ∈ P | (n, p) ∈ F} the postset of n. A marking of a
workflow net assigns tokens to places.

Definition 2. Let w = (T, P,Cxor, Cand, F) be a workflow net. A marking of w is a
function m : P → N0. A pair (w,m) is called marked workflow net. A place p ∈ P
is called marked if m(p) > 0, marked by one if m(p) = 1 and unmarked if m(p) = 0
holds. The initial marking m0 of a workflow net is defined as follows: The initial place
is marked by one and all other places are unmarked.

There is a simple firing rule for workflow nets. A node is enabled to fire if every
place in its preset is marked. An xor-join is also enabled if there is at least one marked
place in its preset.

Definition 3. Let wn = (T, P,Cxor, Cand, F,m) be a marked workflow net. A node
n ∈ {T ∪Cand} is enabled if every place in •n is marked. A node n ∈ Cxor is enabled

66

if there is a marked place in •n. If a node is enabled, it can fire, changing the marking
of the workflow net. Firing n ∈ (T ∪ Cand) leads to the marking m′ defined by:

m′(p) =

m(p)− 1, p ∈ •n \ n•
m(p) + 1, p ∈ n • \ • n
m(p) else.

If a node n ∈ Cxor is enabled, choose a marked place pin ∈ •n and a place
pout ∈ n•. Firing n leads to the marking m′ defined by:

m′(p) =

m(p)− 1, pin = p 6= pout
m(p) + 1, pout = p 6= pin
m(p) else.

If an enabled node n fires and changes m to m′, we write m[n〉m′.

A set of nodes is called a step. In a workflow net there are no conflicts regarding
the consumption of tokens. Consequently, a step is enabled if each node of the step is
enabled. Firing a step leads to the same marking as firing all nodes.

Definition 4. LetN ⊆ {T ∪Cxor∪Cand} be a step andm be a marking.N is enabled
in m if each n ∈ N is enabled in m. If an enabled step N fires and changes m to m′,
we write m[N〉m′. Firing N = {n1, . . . , nn} leads to the same marking as firing all
n ∈ N , i.e. m[n1〉m1[n2〉 . . . [nn〉m′.

Let σ = N1N2 . . . Nn be a sequence of steps. The sequence σ is enabled in m if
there are m1,m2, . . . ,mn, so that m[N1〉m1[N2〉 . . . [Nn〉mn holds. If σ is enabled,
we define σ∅T = (N1 ∩ T) (N2 ∩ T) . . . (Nn ∩ T). We omit all empty sets in σ∅T to
define σT . We call σT the transition step sequence of σ.

We call a step N a transition step if N ⊆ T . A sequence of transition steps τ is
enabled in m if there is an enabled sequence of steps σ′ so that τ = σ′T holds.

In Figure 3, the transition step sequence {grind beans, turn off}{unlock}{empty
strainer, get water using coffee-pot}{fill strainer}{assemble and turn on} is enabled in
the initial marking. We use transition step sequences to define enabled labeled partial
orders [18, 19].

Definition 5. Let T be a set of labels, a labeled partial order is a triple lpo = (V,<, l),
where V is a finite set of events, < is an irreflexive and transitive binary relation over
V , and l : V → T is a labeling function. We consider labeled partial orders without
autoconcurrency, i.e. e, e′ ∈ V, e 6= e′, e 6< e′, e′ 6< e⇒ l(e) 6= l(e′).

The Hasse-diagram of a labeled partial order is lpo/ = (V, /, l), where / is the set
of skeleton arcs, i.e. / = {(v, v′) | v < v′ ∧ @v′′ : v < v′′ < v′}.

Let lpo = (V,<, l) and lpo′ = (V,<′, l) be labeled partial orders. If <⊆<′ holds,
lpo′ is a sequentialisation of lpo. If V = V1 ∪̇ . . . ∪̇Vn and <′=

⋃
i<j Vi×Vj hold, we

call the sequence l(V1) . . . l(Vn) a transition step sequence of lpo.

The sequence {grind beans, turn off}{unlock}{empty strainer, get water using
coffee-pot}{fill strainer}{assemble and turn on} is a transition step sequence of the
labeled partial order of Figure 1.

67

Definition 6. Let wn be a marked workflow net. A labeled partial order lpo is enabled
in wn if all transition step sequences of lpo are enabled in the initial marking of wn.

Figure 1, Figure 2, and Figure 4 depict Hasse-diagrams of labeled partial orders
enabled in the initial marking of the workflow net depicted in Figure 3.

3 Folding Algorithm

We introduce a folding algorithm to construct a workflow net from a specification which
is a set of labeled partial orders. Each partial order corresponds to a run of the busi-
ness process. Events model occurrences of activities, arcs model dependencies between
events, and unordered events can occur concurrently. Our revised folding algorithm is
based on the folding algorithm presented in [1]. We add an initial and a final event to ev-
ery labeled partial order, before reducing every order to its Hasse-diagram. From these
we deduce a neighborhood relation on the set of labels. We define a set of preceding
and succeeding label sets for each label. Every label of the specification can, of course,
occur multiple times, even in one labeled partial order.

Definition 7. Let lpo = (V,<, l) be a labeled partial order, let (V, /, l) be its Hasse-
diagram, and let T be a set of labels with l(V) ⊂ T . Let e ∈ V be an event, denote
pred(e) = {l(e′)|e′ /e} the set of preceding labels, and denote succ(e) = {l(e′)|e/e′}
the set of succeeding labels.

Let L be a set of labeled partial orders. Let t ∈ T be a label, denote predset(t) =
{pred(e)|(V,<, l) ∈ L, e ∈ V, l(e) = t} the set of preceding label sets, and denote
succset(t) = {succ(e)|(V,<, l) ∈ L, e ∈ V, l(e) = t} the set of succeeding label sets.

To construct a workflow net from a specification, we construct a transition for every
label and connect transitions according to the corresponding preceding and succeeding
label sets. For every transition we will define a so called building block. The center of
each building block is the transition, surrounded by three layers of connectors. Next to
the transition is a layer of two xor-connectors, because each transition can have multiple
preceding and multiple succeeding label sets. For each of these sets, there is an and-
connector on the second layer, because each set can have multiple labels. If succeeding
or preceding label sets share labels, there is a xor-connector on the third layer. We define
a building block as follows:

Definition 8. Let L be a set of labeled partial orders and T be its set of labels. For
each label t ∈ T we define a workflow net structure wnt = ({t}, P t, Ct

xor, C
t
and, F

t)
called building block of t. The sets P t, Ct

xor, and Ct
and are defined as follows:

Ct
xor = {xortpre, xortpost}∪ {xortpre,t′ |t′ ∈ X,X ∈ predset(t)}∪

{xortpost,t′ |t′ ∈ X,X ∈ succset(t)},

Ct
and = {andtpre,X |X ∈ predset(t)}∪ {andtpost,X |X ∈ succset(t)},

P t = {ptpre, ptpost}∪
{ptpre,X |X ∈ predset(t)}∪ {ptpost,X |X ∈ succset(t)}∪
{ptpre,t′,X |t′ ∈ X,X ∈ predset(t)}∪ {ptpost,X,t′ |t′ ∈ X,X ∈ succset(t)}∪
{ptpre,t′ |t′ ∈ X,X ∈ predset(t)}∪ {ptpost,t′ |t′ ∈ X,X ∈ succset(t)}.

68

The set of arcs F t is defined as follows:

F t = {(xortpre, ptpre), (ptpre, t), (t, ptpost), (ptpost, xortpost)}∪
{(andtpre,X , ptpre,X)|X ∈ predset(t)}∪
{(ptpre,X , xortpre)|X ∈ predset(t)}∪
{(xortpost, ptpost,X)|X ∈ succset(t)}∪
{(ptpost,X , andtpost,X |X ∈ succset(t)}∪
{(xortpre,t′ , ptpre,t′,X)|t′ ∈ X,X ∈ predset(t)}∪
{(ptpre,t′,X , andtpre,X)|t′ ∈ X,X ∈ predset(t)}∪
{(andtpost,X , ptpost,X,t′)|t′ ∈ X,X ∈ succset(t)}∪
{(ptpost,X,t′ , xor

t
post,t′)|t′ ∈ X,X ∈ succset(t)}∪

{(ptpre,t′ , xortpre,t′)|t′ ∈ X,X ∈ predset(t)}∪
{(xortpost,t′ , ptpost,t′)|t′ ∈ X,X ∈ succset(t)}.

Figure 5 depicts the building block of label unlock. There are two events labeled by
unlock in Figure 1 and Figure 2. Both events have the same set of preceding labels, i.e.
{turn off}, but have different sets of succeeding labels. According to these sets there is
one xor-connector and two and-connectors right behind transition unlock. Since both
sets share the label empty strainer, the control flow is joined with xorunlockpost, empty strainer

in front of the outgoing interface place punlockpost, empty strainer.

Fig. 5. The building block of label unlock.

We call a building block a compressed building block if all superfluous connectors
and the corresponding places are removed. A connector is superfluous if it has one
ingoing and one outgoing arc. As an example, Figure 6 depicts the set of compressed
building blocks of our coffee brewing process. Note that, before building these blocks,
an event labeled with start, and an event labeled with stop, are added to every labeled
partial order. In this figure, we depict transition start by a big black dot, transition stop
by a circle with a dot. We hide most places and only sketch interface places by small dots
labeled by the corresponding preceding or succeeding labels. On the top left of Figure
6, we depict the building block of label start. Next to this block, there is the compressed
version of the building block depicted in Figure 5. We merge all compressed building
blocks depicted in Figure 6 to get the workflow net depicted in Figure 3.

69

Fig. 6. Compressed building blocks.

Algorithm 1 Folding
1: input: Specification L
2: L← add an initial event labeled start to every lpo ∈ L
3: L← add a final event labeled stop to every lpo ∈ L
4: H ← Hasse-diagrams of L
5: T ← Labels of L
6: B← Building blocks of T
7: wn←Merge all building blocks at matching interface places
8: wn← Delete superfluous connectors from wn by merging the preset and postset places
9: wn← Remove place pstartpre and transition start

10: wn←Mark pstartpost by one token
11: wn← Remove place pstoppost and transition stop
12: return wn

Algorithm 1 implements the folding procedure. The input is a set of labeled partial
orders. In Line 2 and Line 3 we add two additional events, one labeled start and one
labeled stop, to every labeled partial order. We extend each partial order so that the start
events are earlier than every other event of their partial order and the stop events are
later than every other event of their partial order. These new events will result in two
additional building blocks responsible for starting and ending runs of the workflow net
model. In Line 4, we reduce the specifications to Hasse-diagrams and collect the set
of labels (including start and stop). In Line 6, according to Definition 8, we build a
building block for every label and in Line 7, we merge all building blocks at matching
interface places, i.e. for every pair of labels we merge all places ptpost,t′ and pt

′

pre,t. In
Line 8, we delete superfluous connectors. In addition, we remove the xor-connector in
front of transition start and the xor-connector right behind transition stop. We remove
connectors by merging preset and postset places and we also delete corresponding arcs.

70

In Line 9, we delete transition start and place pstartpre in its preset. Thereby, place pstartpre

becomes the initial place of the workflow net and we mark this place by one token. In
Line 11, we remove transition stop and place pstoppost in its preset to get the final result
of the folding procedure. Altogether, Algorithm 1 constructs a workflow net enabled to
execute every labeled partial order of the specification. For the proof we refer the reader
to [1] but state the following theorem.

Theorem 1. Let L be a set of labeled partial orders and construct a workflow net wn
from L using Algorithm 1. Each labeled partial order lpo ∈ L is enabled in wn.

4 Revised Folding Algorithm

In this section we will introduce a revised folding algorithm to construct a workflow
net from a specification. Folding is very efficient and generates an intuitive workflow
net, but for most examples the workflow net is able to execute additional runs. This is
reasonable if the specification is incomplete. However, if we assume that the specifi-
cation is complete, additional behavior should not be included in the business process
model. In the following, we detect and deal with additional behavior introduced within
the folding procedure.

During the folding procedure, Hasse-diagrams define sets of preceding and suc-
ceeding transitions but sometimes, considering only these dependencies is insufficient.
In a business process an early decision can easily determine later alternatives.

We consider Figure 1 and Figure 2 as an example. There is only one event labeled
get water using coffee-pot. The building block of get water using coffee-pot has one
preceding label set, i.e. {unlock}. According to Figure 2, the transitions get water using
glass-pot, turn off, and unlock can occur. This prefix enables get water using coffee-pot
by the occurrence of unlock. This results in the Hasse-diagram depicted in Figure 4.

As stated above, the Hasse-diagrams of the specification define preceding and suc-
ceeding label sets to construct building blocks. Considering these sets defined by the
transitive relation of the labeled partial orders constructs a workflow net with minimal
additional behavior. The occurrence of any transition in this net is conditioned by the
occurrence of all transitions corresponding to the complete history of a correspond-
ing event. Obviously, this leads to an unreadable workflow net with a huge number of
connectors and arcs.

Our aim is to identify so-called dependency diagrams, a compromise between the
Hasse-diagrams and the partial orders, in order to modify the specification thus that
additional behavior of a folded model is restricted as far as possible. The fewer depen-
dencies we add, the smaller is the constructed workflow net.

Definition 9. Let (V,<, l) be a labeled partial order, let (V, /, l) be its Hasse-diagram,
and denote T the set of labels. Let (D,E) be a pair of sets of labels, we denote /[D,E] =
/ ∪ {(e, e′)|e < e′, l(e) ∈ D, l(e′) ∈ E} the dependency relation of < with regard
to (D,E). We call (V, /[D,E], l) the dependency diagram of (V,<, l) with regard to
(D,E).

Of course, /[∅,∅] = / and /[T,T] =<, i.e. every dependency diagram is some tradeoff
between the Hasse-diagram and the labeled partial order.

71

Our revised folding algorithm starts by constructing a workflow net from a set of
Hasse-diagrams. If this workflow net contains additional behavior, an enabled but not
specified partial order is generated. We modify the set of Hasse-diagrams to get a set of
dependency diagrams so that folding these diagrams leads to a net that does not enable
the additional partial order. We repeat this procedure to get a workflow net that has no
additional behavior if such a workflow net exists. Let us now take a closer look at every
step of the revised folding algorithm.

We construct the initial workflow net using Algorithm 1. We generate the behavior
of this model by an unfolding procedure. We calculate a so-called branching process
[21, 20, 22] describing all enabled labeled partial orders. It is easy to calculate such
branching processes for workflow nets because they only branch at xor-splits. More-
over, we do not calculate the complete (maybe infinite) behavior of the workflow net
but stop generating the behavior as soon as we construct not specified behavior. If there
is not specified behavior, there is at least one so-called wrong continuation. A wrong
continuation is a labeled partial order enabled in the workflow net and not part of the
specification. Removing one event from a wrong continuation yields a specified partial
order. Wrong continuations were originally defined in the area of synthesis of Petri nets
from step sequences [9] and for synthesizing Petri nets from partial orders [11].

Definition 10. Let L be a specification and let T be the set of labels. A labeled partial
order (V,<, l) 6∈ L is called a wrong continuation if there is an event e ∈ V so that
(V \{e}, < |(V \{e})×(V \{e}), l|V \{e}) ∈ L holds.

We consider Figure 4 as an example. The events grind beans, turn off, unlock, get
water using coffee-pot, and get water using glass-pot form a wrong continuation.

In the last step of the revised folding algorithm, we modify the specification to
exclude a wrong continuation. The main idea is to extend the preceding and succeeding
label sets appropriately, before restarting the folding procedure.

Definition 11. Let L = {(V1, <1, l1), . . . , (Vn, <n, ln)} be a specification and L/ =
{(V1, /1, l1), . . . , (Vn, /n, ln)} be its set of Hasse-diagrams. Denote T the set of labels.
Let (Vw, <w, lw) be a wrong continuation and (Vw, /w, lw) be its Hasse-diagram.

Let (D,E) be a pair of label sets and let l, l′ be two labels. We call l dependent on l′

if for all (V,<, l) ∈ L, v ∈ V, l(v) = l: l′ ∈ {l(v′)|v′ /[D,E] v}. We denote M [D,E](l′)
the set of all labels that depend on l′.

(D,E) is called disabling pair of (Vw, <w, lw) if one of the following conditions
holds:

(a) There is an e′ ∈ Vw so that there is no (Vi, <i, li) ∈ L, e ∈ Vi, li(e) = lw(e
′):

{li(v)|v /[D,E]
i e} ⊆ {lw(v)|v <w e′} holds.

(b) There is an e′ ∈ Vw so that there is no (Vi, <i, li) ∈ L, e ∈ Vi, li(e) = lw(e
′):

{li(v)|e /[D,E]
i v} ⊇ {lw(v)|e′ /[D,E]

w v} ∩M [D,E](lw(e
′)) holds.

A disabling pair (D,E) defines a modification of a specification. This modification
yields a set of dependency diagrams. Every dependency diagram includes the Hasse-
diagram and extends this diagram by all transitive arcs leading from labels in D to
labels in E. We denote the resulting specification by L[D,E].

72

Theorem 2. Let L be a specification, lpow be a wrong continuation, and (D,E) be
a disabling pair of lpow. If we construct a workflow net wn from L[D,E] using Algo-
rithm 1, lpow is not enabled in wn.

Proof. Either (a) or (b) of Definition 11 holds.
If (a) holds, there is an event e′ ∈ Vw for which no event e ∈ Vi, (Vi, <i, li) ∈ L,

li(e) = lw(e
′) exists so that {li(v)|v /[D,E]

i e} ⊆ {lw(v)|v <w e′} holds.
Algorithm 1 will build and-connectors related to preceding label sets in the building

block of l(e′). For every and-connector there is a choice of e ∈ Vi, (Vi, <i, li) ∈ L,
li(e) = lw(e

′) so that the and-connector is related to {li(v)|v /[D,E]
i e}. {li(v)|v /[D,E]

i

e} is not included in {lw(v)|v <w e′}. After the occurrence of {lw(v)|v <w e′} the
and-connector is not enabled. The same holds for every other preceding and-connector
of the building block of lw(e′). e′ can not occur after the occurrence of its prefix. lpow
is not enabled in wn.

If (b) holds, there is an event e′ ∈ Vw for which no event e ∈ Vi, (Vi, <i, li) ∈ L,
li(e) = lw(e

′) exists so that {li(v)|e /[D,E]
i v} ⊇ {lw(v)|e′ /[D,E]

w v}∩M [D,E](lw(e
′))

holds.
Algorithm 1 will build and-connectors related to succeeding label sets in the build-

ing block of l(e′). For every and-connector there is a choice of e ∈ Vi, (Vi, <i, li) ∈ L,
li(e) = lw(e

′) so that the and-connector is related to {li(v)|e/[D,E]
i v}. {lw(v)|e′/[D,E]

w

v} ∩M [D,E](lw(e
′)) is not included in {li(v)|e /[D,E]

i v}. The occurrence of this and-
connector will not enable all actions in {lw(v)|e′ /[D,E]

w v}∩M [D,E](lw(e
′)), but every

such action depends on the occurrence of l(e′). The same holds for every other and-
connector of the building block l(e′). When executing lpow in wn there is at least one
action missing a token from the building block l(e′). lpow is not enabled in wn.

Both conditions (a) and (b) suppress the executability of a wrong continuation in a
workflow net representing the dependencies introduced from the disabling pair. As an
example, we consider the wrong continuation depicted in Figure 4. A disabling pair of
label sets is ({start}, {get water using coffee-pot}). In the Hasse-diagram depicted in
Figure 1, the succeeding label set B1 of start according to this disabling pair is {grind
beans, turn off, get water using coffee-pot}. In other words, get water using coffee-pot
is added to the original succeeding label set. The succeeding label set B2 of start of
Figure 2 stays unchanged. In Figure 4 the succeeding label set W of start according to
the disabling pair is {grind beans, turn off, get water using glass-pot, get water using
coffee-pot}. This setW is not covered byB1 orB2 so that condition (b) of Definition 11
holds. The wrong continuation is not enabled if the additional dependency between start
and get water using coffee-pot is considered when constructing corresponding building
blocks. Altogether, if we add one transitive arc to the Hasse-diagram depicted in Figure
1 (from start to get water using coffee-pot) and apply Algorithm 1, we construct a
workflow net which is not able to execute the Hasse-diagram depicted in Figure 4.
In this example, the resulting workflow net (depicted in Figure 7) behaves exactly as
specified.

Algorithm 2 implements the revised folding procedure. The input is a set of labeled
partial orders. In Line 3 and Line 4, we invoke Algorithm 1. While the result of Al-
gorithm 1 has additional behavior, we calculate a wrong continuation in Line 6. We

73

Fig. 7. A business process model of our coffee brewing process.

Algorithm 2 Revised Folding
1: input: Specification L
2: W ← ∅
3: H ← Hasse-diagrams of L
4: wn← Folding of H
5: while L(wn) ⊃ (L ∪W) do
6: w← a wrong continuation of wn
7: if there is a disabling pair (D,E) of w then
8: H ← expand H by all arcs of L in (D × E)
9: wn← Folding of H

10: else
11: W ←W ∪ {w}
12: return wn

construct a disabling pair (if such a pair exists) or add the wrong continuation to a set
W . W contains all wrong continuations which cannot be excluded from a workflow
net including the specified behavior. In Line 8, we update the set of Hasse-diagrams by
constructing a set of dependency diagrams. We fold again to get a new workflow net
still including the specified behavior (and W), but excluding the wrong continuations
(Line 9). Just like Algorithm 1, Algorithm 2 constructs a workflow net able to execute
every labeled partial order of the specification. Furthermore, Algorithm 2 excludes not
specified behavior whenever possible.

The runtime of the new algorithm consists of three parts. It is the sum of the run-
time of the folding procedures, the runtime of the unfolding procedures (to check for
wrong continuations), and the runtime of the calculations of disabling pairs. Every fold-
ing procedure is fast. For every event we compute the preceding and succeeding labels
and build the corresponding connectors in the workflow net. The worst case complex-
ity of the unfolding procedure is in exponential time. However, the average runtime,
where a workflow net has a reasonable level of concurrent activities, is still fast and is
determined by the number of xor-split connectors. The most time consuming part is to
find a disabling pair. Altogether, the presented algorithm can be slow, especially if the
workflow net has a lot of wrong behavior and describes a lot of concurrency. But in this

74

case, it is possible to stop the algorithm after each iteration and still have a reasonable
result.

Fig. 8. Screenshot of folding results in MoPeBs

The presented revised folding approach is implemented and available in our tool
called MoPeBs Cheetah. MoPeBs Cheetah is a lightweight editor showcasing the re-
vised folding algorithm plug-in of our tool set VipTool [23]. VipTool supports various
algorithms related to partially ordered behavior of Petri nets [24, 25]. Figure 8 depicts
a screenshot of MoPeBs Cheetah. MoPeBs Cheetah (including examples for the fold-
ing algorithm and the revised folding algorithm) is available at https://www.fernuni-
hagen.de/sttp/forschung/mopebs.shtml.

5 Conclusion

We recapitulated a folding algorithm to generate a workflow net from a specification.
The specification is a set of labeled partial orders. The presented algorithm generates
an intuitive model by representing the direct dependencies included in the specification.
The generated workflow net is able to execute all specified runs. Moreover, this algo-
rithm usually rounds off the specification, i.e. additional runs which are similar to the

75

specified labeled partial orders are executable in the generated workflow net as well.
This is reasonable in cases where the specification is considered to be incomplete.

Reusing the folding algorithm, we introduced a revised folding approach. Starting
with an initial model, this iterative approach is able to discover transitive dependencies
in the specification which yield a more precise process model. The size of the generated
model heavily depends on the number of wrong continuations but for most examples,
the generated results are readable as well. The generated workflow net can easily be
translated into an EPC, BMPN-model, YAWL-model or an Activity Diagram. These are
often used for practical applications. Using an interactive version of the revised folding
approach, it is easy to validate the specification while generating a process model. We
can add reasonable wrong continuations to the specification while excluding unwanted
behavior. All in all, in contrast to other process mining algorithms, the revised folding
approach provides perfect control over the language of the generated business process
model.

References

[1] Bergenthum, R.; Mauser, S.: Folding Partially Ordered Runs. Proc. of workshop Application
of Region Theory (ART) 2011 (Desel, J.; Yakovlev, A. eds.), CEUR 725, 52–62

[2] Mayr, H. C.; Kop, C.; Esberger, D.: Business Process Modeling and Requirements Modeling.
Proc. of International Conference on the Digital Society (ICDS) 2007, IEEE, Los Alamitos

[3] Oestereich, B.: Objektorientierte Geschäftsprozessmodellierung und modellgetriebene Soft-
wareentwicklung. HMD-Praxis Wirtschaftsinformatik 241, dpunkt.verlag, 27–33

[4] Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer,
Berlin, 2012

[5] Glinz, M.: Improving the quality of requirements with scenarios. Proc. of World Congress
on Software Quality 2000, JUSE, Yokohama, 55–60

[6] Mayr, H. C.; Kop, C.: A User Centered Approach to Requirements Modeling. Proc. of
Modellierung 2002, (Glinz, M.; Müller-Luschnat, G. eds.), LNI P-12, 75–86

[7] Desel, J.: From Human Knowledge to Process Models. Information Systems and e-Business
Technologies 2008, (Kaschek, R.; Kop, C.; Steinberger, C.; Fliedl, G. eds.) LNBIP 5, 84–95

[8] van der Aalst, W. M. P.; van Dongen, B. F.; Herbst, J.; Maruster, L.; Schimm, G.; Weijters,
A. J. M. M.: Workflow Mining: A Survey of Issues and Approaches. Data & Knowledge
Engineering 47(2), (Chen, P. P. ed.), Elsevier, 2003, Philadelphia, 237–267

[9] Darondeau, P.: Region Based Synthesis of P/T-Nets and its Potential Applications. Proc. of
Petri Nets 2000, (Nielsen, M.; Simpson, D. eds.), LNCS 1825, 16–23

[10] Badouel, E.; Darondeau, P.: Theory of regions. Lectures on Petri Nets I: Basic Models,
(Reisig, W.; Rozenberg G. eds.), LNCS 1491, 529–586

[11] Bergenthum, R.; Desel, J.; Lorenz, R.; Mauser, S.: Synthesis of Petri Nets from Term Based
Representations of Infinite Partial Languages. Fundamenta Informaticae (95), 187–217

[12] Reisig, W.: Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien. Leitfäden der
Informatik, Vieweg+Teubner 2010

[13] Scheer, A.-W.: ARIS – Vom Geschäftsprozess zum Anwendungssystem. Springer, Berlin,
2002

[14] White, S. A.: Introduction to BPMN. IBM Cooperation, 2004
[15] van der Aalst, W. M. P.; ter Hofstede, A. H. M.: YAWL: Yet Another Workflow Language.

(Shasha, D.; Vossen, G. eds.) Information Systems 30(4), Elsevier, 2005, 245–275

76

[16] International Organization for Standardization: Information technology – Object Manage-
ment Group Unified Modeling Language – Part 1: Infrastructure, ISO 19505-1:2012, 2012

[17] International Organization for Standardization: Information technology – Object Manage-
ment Group Unified Modeling Language – Part 2: Superstructure, ISO 19505-2:2012, 2012

[18] Kiehn, A.: On the Interrelation Between Synchronized and Non-Synchronized Behaviour of
Petri Nets. (Dassow, J.; Reichel, B. eds.) Journal of Information Processing and Cybernetics
24(1-2), Otto von Guericke Universität, 1988, 3–18

[19] Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets. LNCS 625,
1992

[20] Goltz, U.; Reisig, W.: Processes of Place/Transition-Nets. (Diaz, J. ed.) Automata, Lan-
guages and Programming, LNCS 154, 1983, 264–277

[21] Goltz, U.; Reisig, W.: The Non-Sequential Behaviour of Petri Nets. (Meyer, A. R. ed.)
Information and Control 57(2), Elsevier 154, 1983, 125–147

[22] Bergenthum, R.; Mauser, S.; Lorenz, R.; Juhás, G.: Unfolding Semantics of Petri Nets
Based on Token Flows. Information and Control 57(2), (Niwiński, D.; Son Nguyen, H.
eds.), Fundamenta Informaticae 94(3), 2009, 331–360

[23] Desel, J.; Juhás, G.; Lorenz, R.; Neumair, C.:: Modelling and Validation with VipTool.
Proc. of Business Process Management, (van der Aalst, W. M. P.; Weske, M. eds.), LNCS
2678, 2003, 380–389

[24] Bergenthum, R.; Mauser, S.: Synthesis of Petri Nets from Infinite Partial Languages with
VipTool. Proc. of workshop Algorithmen und Werkzeuge für Petrinetze 2008, (Lohmann, N.;
Wolf, K. eds.), CEUR 380, 2003, 81–86

[25] Bergenthum, R.; Desel, J.; Juhás, G.; Lorenz, R.: Can I Execute My Scenario In Your Net?
VipTool Tells You!. Proc. of Petri Nets and Other Models of Concurrency 2006, (Donatelli,
S.; Thiagarajan, P.S. eds.), LNCS 4024, 2006, 381–390

77

Mining Duplicate Tasks from Discovered
Processes

Borja Vázquez-Barreiros, Manuel Mucientes, and Manuel Lama

Centro de Investigación en Tecnolox́ıas da Información (CiTIUS)
Universidade de Santiago de Compostela, Santiago de Compostela, Spain

{borja.vazquez,manuel.mucientes,manuel.lama}@usc.es

Abstract. Including duplicate tasks in the mining process is a challenge
that hinders the process discovery as algorithms need an extra effort to
find out which events of the log belong to which transitions. To face this
problem, we propose an approach that uses the local information of the
log to enhance an already mined model by performing a local search over
the potential tasks to be duplicated. This proposal has been validated
over 36 different solutions, improving the final model in 35 out of 36 of
the cases.

Keywords: Process mining, process discovery, duplicate tasks.

1 Introduction

The notion of duplicate tasks —or activities— refers to situations in which mul-
tiple tasks in the process have the same label. This kind of behavior is useful
when i) a particular task is used in different contexts in a process and ii) to en-
hance the comprehensibility of a model. Typically, duplicate tasks are recorded
with the same label in the log and, hence, they hinders the discovery of the
model that better fits the log, as algorithms need an extra effort to find out
which events of the log belong to which transitions. There are several techniques
allowing to mine duplicate tasks [2,3,4,5,6,7], however, or the heuristics rules
used to detect the duplicate tasks are not sufficiently general for all the logs [7],
or they have to deal with a large search space, increasing the time needed for
these algorithms [3,5,6].

In this paper we present a novel proposal to tackle duplicate tasks. The
proposal starts from an already mined model without duplicate tasks, and uses
the local information of the log and the retrieved process to improve the model
through a local search over the potential duplicate tasks.

2 Local search algorithm

Algorithm 1 describes the proposed approach to tackle duplicate tasks. The first
step is the discovery of the potential duplicate activities. We used the heuristics
defined in [5] to reduce the search space by stating that two tasks with the same

78

Algorithm 1: Local search Algorithm.
input: A log L

1 ind0 ← initial solution(L) // Retrieved by a process discovery technique.
2 potentialDuplicates← ∅
3 foreach activity t in the log L do
4 if max(min(|t >L t′|, |t′ >L t|), 1) > 1 then
5 potentialDuplicates← potentialDuplicates ∪ t

6 ind0 ← localSearch (ind0, L, potentialDuplicates, true)

7 Function localSearch(ind0, L, potentialDuplicates, firstExecution)
8 indbest ← ind0

9 potentialDuplicatesL2L← ∅
10 foreach activity t in potentialDuplicates do
11 combinations ← calculateCombinations (ind0, L, t)
12 foreach combination c in combinations do
13 t′ ← activity t from ind0

14 t.inputs = (t.inputs \ c.inputs) ∪ c.sharedInputs

15 t′.inputs = c.inputs
16 t.outputs = (t.outputs \ c.outputs) ∪ c.sharedOutputs

17 t′.outputs = c.outputs

18 if (I(t′) 6= ∅ && O(t′) 6= ∅ && I(t) 6= ∅ && O(t) 6= ∅) then
19 Add task t′ to individual ind0 and update t in ind0

20 Repair ind0

21 Post-prune unused arcs
22 Evaluate ind0

23 if ind0 < indbest then
24 ind0 ← indbest

25 else
26 indbest ← ind0

27 potentialDuplicatesL2L = potentialDuplicatesL2L ∪ t′′ where

t′′ /∈ potentialDuplicates and t >L t′′

28 else
29 ind0 ← indbest

30 if firstExecution then
31 indbest ← localSearch (indbest, null, potentialDuplicatesL2L, false)

32 return indbest

label cannot share the same input and output dependencies. Within this context,
the duplicate tasks are locally identified based on the follows relation (>L),
where the upper bound for an activity t is the minimum of the number of tasks
that directly precede t in the log and the number of tasks that directly follow t.
This definition can be formalized as [5]: max(min(|t >L t′|, |t′ >L t|), 1). If for a
task t the upper bound is greater than 1, then t is considered as a potential task
for being duplicated and, hence, it is added to potentialDuplicates (Alg.1:3-5).

After finding the potential duplicates, the algorithm splits the input and out-
put dependencies of the activities of the model into multiple tasks with the same
label through the function localSearch (Alg.1:7). In this step, the algorithm calcu-
lates the input and output combinations for each activity in potentialDuplicates
(Alg. 1:10-11) through the function CalculateCombinations (Alg.2). Within this
function, the algorithm first finds all the subsequences in the log L that match
the pattern t1tt2 where t1 ∈ I(t) and t2 ∈ O(t) in the model (Alg.2:2) —being
I(t) and O(t) the inputs and outputs, respectively, of t. Then, based on these

79

Algorithm 2: Algorithm to compute the combinations of a task.
1 Function calculateCombinations(ind, L, t)

/* If the input parameter L is null, retrieve the sequences from parsing ind */
2 Retrieve all the subsequences t1tt2 where t1 ∈ I(t) and t2 ∈ O(t)
3 combinations← ∅
4 forall the subsequences t1tt2 do
5 c← ∅
6 Create a set c.inputs with the combinations that share the same t1 and add in

c.outputs their respective t2
7 Add c to combinations

8 foreach c in combinations do
9 if c.outputs = c′.outputs where c′ ∈ combinations then

10 c.inputs = c.inputs ∪ c′.inputs and c.outputs = c.outputs ∪ c′.outputs

11 combinations = combinations \ c′

12 if c.outputs shares an element e with another c′.outputs then
13 c.sharedOutputs← c.sharedOutputs ∪ e

14 if c.inputs shares an element e with another c′.inputs then
15 c.sharedInputs← c.sharedInputs ∪ e

16 return combinations

subsequences, the combinations are created following three rules (Alg.2:4-15).
First, given two subsequences t1tt2 and t3tt4, if t1 = t3, then we merge both
subsequences into a new combination (Alg.2:4-7). Later, given two different com-
binations c and c′, if they share the same output, i.e., c.output = c′.output, these
two combinations are merged (Alg.2:9-11). Finally, if the intersection between
two combinations is not the empty set, we have to record which elements are
shared by both combinations (Alg.2:12-15).

After creating all the possible combinations, for each combination c (Alg.1:12),
the algorithm creates a new task t′ equal to the original activity t of the current
model (Alg.1:13). Then, it removes from I(t) all the tasks shared with c.inputs,
but keeping the tasks that are in c.sharedInputs (Alg.1:14). On the other hand,
for the new task t′, it retains only the elements in I(t′) that are contained in
c.inputs (Alg.1:15). The same process is applied for the outputs of both t and
t′ but with c.outputs and c.sharedOutputs (Alg.1:16-1:17). If both the inputs
and outputs of these tasks are not empty (Alg.1:18), they are included in ind0
(Alg. 1:19). Otherwise the model goes back to its previous state and tries with
a new combination. If the new task is included, the model is repaired (Alg.1:20)
and the unused arcs are removed (Alg.1:21). In order to evaluate the models
(Alg.1:22), we based the quality of a solution on three criteria: fitness replay,
precision and simplicity. To measure these criteria we used the hierarchical met-
ric defined in [10]. If the new model is better, the best individual indbest is
replaced with ind0 (Alg.1:26). Otherwise the model goes back to its previous
state and repeats the process with a new combination.

The main drawback of the heuristic followed to detect the possible dupli-
cate tasks of the log (Alg.1:3 [5]) is that it does not cover all the search space,
particularly with tasks involved in a length-two-loop situation, as it breaks the
rule of two tasks sharing the same input and output dependencies. To solve this,

80

Table 1: Results for the 18 logs with the initial solutions of ProDiGen and HM.
Logs

A
lp
ha

Fo
ld
ed

L
oo

p

F
ig
6p

25

b
et
aS

im
pl
.

fl
ig
hC

ar

F
ig
5p

19

F
ig
5p

1A
N
D

F
ig
5p

1O
R

F
ig
6p

10

F
ig
6p

31

F
ig
6p

33

F
ig
6p

34

F
ig
6p

38

F
ig
6p

39

F
ig
6p

42

F
ig
6p

9

R
el
P
ro
c

ProDiGen
C 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P 0.8 0.75 0.79 0.75 0.86 0.81 0.9 0.76 0.73 0.78 0.61 0.65 0.73 0.93 0.93 0.7 0.79 0.89
S 0.3 0.3 0.29 0.29 0.3 0.29 0.3 0.29 0.29 0.29 0.26 0.28 0.29 0.31 0.3 0.28 0.3 0.30

ProDiGen

+

LS

C 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P 0.85 1.0 0.99 0.97 0.94 1.0 1.0 1.0 1.0 0.96 1.0 1.0 0.93 1.0 0.94 1.0 1.0 0.95
S 0.31 0.3 0.3 0.3 0.31 0.31 0.31 0.33 0.33 0.31 0.31 0.31 0.31 0.33 0.3 0.3 0.32 0.32

HM
C 1.0 1.0 1.0 1.0 1.0 0.32 1.0 0.67 1.0 1.0 1.0 1.0 0.41 0.0 0.0 0.07 0.21 1.0
P 0.72 0.75 0.79 0.73 0.86 0.81 0.9 0.75 0.67 0.78 0.56 0.6 0.76 0.57 0.6 0.64 0.95 0.89
S 0.3 0.3 0.29 0.28 0.31 0.29 0.31 0.33 0.31 0.29 0.26 0.27 0.29 0.28 0.29 0.28 0.32 0.30

HM

+

LS

C 1.0 1.0 1.0 1.0 1.0 0.32 1.0 0.67 1.0 1.0 1.0 1.0 0.72 1.0 0.53 0.36 0.21 1.0
P 0.81 1.0 0.99 0.94 0.93 0.82 1.0 1.0 1.0 0.96 1.0 1.0 0.98 1.0 0.94 0.95 0.95 0.95
S 0.31 0.3 0.3 0.31 0.32 0.30 0.31 0.35 0.33 0.31 0.31 0.31 0.32 0.33 0.32 0.31 0.32 0.32

we have to make all the process iterative: when for a task t, max(min(|t >L

t′|, |t′ >L t|), 1) is greater than 1, i.e, t is detected as a duplicate activity, the
upper bound for all the tasks t′ that directly follow t must be updated, because
these tasks will now have multiple tasks with the same label as input. Hence, if
a task t is correctly duplicated in the model (Alg.1:26), we add the tasks that
directly follow t —and that weren’t detected as possible duplicated tasks in the
first step— into potentialDuplicatesL2L (Alg.1:27). Therefore, the last step of
the algorithm (Alg.1:31) involves a new execution of the function localSearch
(Alg.1:7) but with potentialDuplicatesL2L instead of potentialDuplicates. In
this second and final execution, the subsequences are obtained from the process
model —note that in the first execution the subsequences were extracted from
the log. Therefore, the algorithm parses the solution, checking which one of the
activities with the same label t′ ∈ I(t) were executed just before t and which
activities t′′ ∈ O(t) were executed after t. Finally, it creates the combinations
based on this information.

3 Experimentation

The validation of the presented approach has been done with several synthetic
logs from [5,7]. We used ProDiGen [10] and HM [11] over these set of logs to re-
trieve the initial solutions. On the other hand, the quality of the models was
measured taking into account three metrics: fitness replay (C) [8], precision
(P) [1] and simplicity (S) [9] . Table 1 shows the results retrieved before ap-
plying the presented approach —the raw solutions mined with ProDiGen and
HM— and after the local search. Moreover, they show information about which
algorithm retrieves better results for each metric —highlighted in grey— and
which solutions are equal to the original model —highlighted in italics.

After applying our approach over the solutions, the proposed local search
was able to enhance the results in 35 out of 36 of the cases. More specifically,
the algorithm was able to i) significantly improve the precision, and ii) to reduce

81

the complexity of the different models by splitting the behavior of the overly
connected nodes. Furthermore, our approach was able to retrieve the original
model in 25 out of 36 cases.

4 Conclusions

We have presented an approach to tackle duplicate tasks in an already discovered
model. Our proposal takes as starting point a model without duplicate tasks and
its respective log, and based on the local information of the log and the causal
dependencies of the input mined model, it improves the comprehensibility of the
solution. The presented approach has been validated with 36 different models
with duplicate tasks. Results conclude that this local search is able to detect all
the potential duplicate tasks in the log, and enhance the comprehensibility of
the final model, by improving its fitness replay, precision and simplicity.

Acknowledgments

This work was supported by the Spanish Ministry of Economy and Compet-
itiveness under project TIN2014-56633-C3-1-R, and the Galician Ministry of
Education under the projects EM2014/012 and CN2012/151.

References

1. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Alignment based precision checking. In: BPM. (2012) 137–149

2. Broucke, S.K.V.: Advances in Process Mining. PhD thesis
3. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions in

process discovery: The importance of fitness, precision, generalization and simplic-
ity. International Journal of Cooperative Information Systems 23(1) (2014)

4. Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for dis-
covering petri nets from event logs. In: BPM. Springer (2008) 358–373

5. de Medeiros, A.: Genetic Process Mining. PhD thesis, TU/e (2006)
6. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery

with artificial negative events. The Journal of Machine Learning Research 10
(2009) 1305–1340

7. Li, J., Liu, D., Yang, B.: Process mining: Extending α-algorithm to mine dupli-
cate tasks in process logs. In: Advances in Web and Network Technologies, and
Information Management. (2007) 396–407

8. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Information Systems 33(1) (2008) 64–95

9. Sánchez-González, L., Garca, F., Mendling, J., Ruiz, F., M.Piattini: Prediction
of business process model quality based on structural metrics. In: Conceptual
Modeling ER 2010. Volume 6412. (2010) 458–463

10. Vázquez-Barreiros, B., Mucientes, M., Lama, M.: ProDiGen: Mining complete,
precise and minimal structure process models with a genetic algorithm. Information
Sciences 294 (2015) 315–333

11. Weijters, A., van der Aalst, W.M.P., de Medeiros, A.: Process mining with the
heuristics miner-algorithm. Technische Universiteit Eindhoven 166 (2006)

82

A Method for Assessing Parameter Impact on
Control-Flow Discovery Algorithms

Joel Ribeiro1 and Josep Carmona1

Universitat Politècnica de Catalunya, Spain.
{jribeiro, jcarmona}@cs.upc.edu

Abstract. Given an event log L, a control-flow discovery algorithm f ,
and a quality metric m, this paper faces the following problem: what are
the parameters in f that mostly influence its application in terms of m
when applied to L? This paper proposes a method to solve this prob-
lem, based on sensitivity analysis, a theory which has been successfully
applied in other areas. Clearly, a satisfactory solution to this problem will
be crucial to bridge the gap between process discovery algorithms and final
users. Additionally, recommendation techniques and meta-techniques like
determining the representational bias of an algorithm may benefit from
solutions to the problem considered in this paper. The method has been
evaluated over a set of logs and the flexible heuristic miner, and the prelim-
inary results witness the applicability of the general framework described
in this paper.

1 Introduction

Control-flow discovery is considered as one of the crucial features of Process Min-
ing [13]. Intuitively, discovering the control-flow of a process requires to analyze
its executions and extract the causality relations between activities which, taken
together, illustrate the structure and ordering of the process under consideration.

There are many factors that may hamper the applicability of a control-flow
discovery algorithm. On the one hand, the log characteristics may induce the use
of particular algorithms, e.g., in the presence of noise in the log it may be advisable
to consider a noise-aware algorithm. On the other hand, the representational bias
of an algorithm may hinder its applicability for elicitating the process underlying
in a log.

Even in the ideal case where the more suitable control-flow discovery algo-
rithm is used for tackling the discovery task, it may be the case that the default
algorithm’s parameters (designed to perform well over different scenarios) are not
appropriate for the log at hand. In that case, the user is left alone in the task of
configuring the best parameter values, a task which requires a knowledge of both
the algorithm and the log at hand.

In this paper we present a method to automatically assess the impact of pa-
rameters of control-flow discovery algorithms. In our approach, we use an efficient
technique from the discipline of sensitivity analysis for exploring the parameter
search space. In the next section, we charaterize this sensitivity analysis technique

83

and relate it with other work in the literature for similar purposes done in other
areas.

We consider three direct applications of the method presented in this paper:

(A) As an aid to users of control-flow discovery algorithms: given a log, an algo-
rithm and a particular quality metric the user is interested in, a method like
the one presented in this paper will indicate the parameters to consider. Then
the user will be able to influence (by assigning meaningful values to these
parameters) the discovery experiment.

(B) As an aid for recommending control-flow discovery algorithms: current recom-
mendation systems for control-flow process discovery (e.g., [9]) do not consider
the parameters of the algorithms. Using the methodology of this paper, one
may determine classes of parameters whose impact refer to the same quality
metric, and those can be offered as modes of the same algorithm tailored to
specific metrics. Hence, the recommendation task (i.e., the selection of a dis-
covery algorithm) may then be guided towards a better use of a control-flow
technique.

(C) As a new form of assessing the representational bias of an algorithm: given
a log and an algorithm, it may well be the case that the impact of most of
the algorithm’s parameters is negligible. In that case, then if additionally the
result obtained is not satisfactory, one may conclude that this is not the right
algorithm for the log at hand.

The rest of the paper is organized as follows: Section 2 illustrates the contribu-
tion and provides related work. Section 3 provides the necessary background and
main definitions. Then, Section 4 presents the main methodology of this paper,
while Section 5 provides a general discussion on its complexity. Finally, Section 6
concludes the paper.

2 Related Work and Contribution

The selection of parameters for executing control-flow algorithms is usually a
challenging issue. The uncertainty of the inputs, the lack of information about
parameters, the diversity of outputs (i.e., the different process model types), and
the difficulty of choosing a comprehensive quality measurement for assessing the
output of a control-flow algorithm make the selection of parameters a difficult
task.

The parameter optimization is one of the most effective approaches for param-
eter selection. In this approach, the parameter space is searched in order to find
the best parameters setting with respect to a specific quality measure. Besides the
aforementioned challenges, the main challenge of this approach is to select a ro-
bust strategy to search the parameter space. Grid (or exhaustive) search, random
search [2], gradient descent based search [1] and evolutionary computation [7] are
typical strategies, which have proven to be effective in optimization problems,
but they are usually computationally costly. [16,6,3] are examples of parameter
optimization applications on a control-flow algorithm. Besides the fact that only a

84

single control-flow algorithm is considered, all of these approaches rely on quality
measurements that are especially designed to work on a specific type of process
model.

A different approach, which may also be used to facilitate the parameter opti-
mization, is known as sensibility analysis [11] and consists of assessing the influ-
ence of the inputs of a mathematical model (or system) on the model’s output.
This information may help on understanding the relationship between the inputs
and the output of the model, or identifying redundant inputs in specific contexts.
Sensibility methods range from variance-based methods to screening techniques
[11]. One of the advantages of screening is that it requires a relatively low number
of evaluations when compared to other approaches. The Elementary Effect (EE)
method [8,4,5] is a screening technique for sensibility analysis that can be applied
to identify non-influential parameters of computationally costly algorithms. In
this paper, the EE method is applied to assess the impact of the parameters of
control-flow algorithms.

3 Preliminaries

This section contains the main definitions used in this paper.

3.1 Event Log and Process Model

Process data describe the execution of the different process events of a business
process over time. An event log organizes process data as a set of process instances,
where a process instance represents a sequence of events describing the execution
of activities (or tasks).

Definition 1 (Event Log). Let T be a set of events, T ∗ the set of all sequences
(i.e., process instances) that are composed of zero or more events of T , and δ ∈ T ∗
a process instance. An event log L is a set of process instances, i.e., L ∈ P(T ∗).1

A process model is an activity-centric model that describes the business pro-
cess in terms of activities and their dependency relations. Petri nets, Causal nets,
BPMN, and EPCs are examples of notations for modeling these models. For an
overview of process notations see [13]. A process model can be seen as an abstrac-
tion of how work is done in a specific business. A process model can be discovered
from process data by applying some control-flow algorithm.

3.2 Control-Flow Algorithm

A control-flow algorithm is a process discovery technique that can be used for
translating the process behavior described in an event log into a process model.
These algorithms may be driven by different discovery strategies and provide
different functionalities. Also, the execution of a control-flow algorithm may be
constrained (controlled) by some parameters.

1 P(X) denotes the powerset of some set X.

85

Definition 2 (Algorithm). Let L be an event log, P a list of parameters, and R
a process model. An (control-flow) algorithm A is defined as a function
fA : (L,P) → R that represents in R the process behavior described in L,
and it is constrained by P . The execution of fA is designated as a discovery
experiment.

3.3 Quality Measure

A measure can be defined as a measurement that evaluates the quality of the result
of an (control-flow) algorithm. A measure can be categorized as follows [13].

Simplicity measure: quantifies the results of an algorithm (i.e., a process model
mined from a specific event log) in terms of readability and comprehension.
The number of elements in the model is an example of a simplicity measure.

Fitness measure: quantifies how much behavior described in the log complies
with the behavior represented in the process model. The fitness is 100% if the
model can describe every trace in the log.

Precision measure: quantifies how much behavior represented in the process
model is described in the log. The precision is 100% if the log contains every
possible trace represented in the model.

Generalization measure: quantifies the degree of abstraction beyond observed
behavior, i.e., a general model will accept not only traces in the log, but some
others that generalize these.

Definition 3 (Measure). Let R be a process model and L an event log. A mea-
sure M is defined by

– a function gM : (R) → R that quantifies the quality of R, or
– a function gM : (R,L) → R that quantifies the quality of R according to L.

The execution of gM is designated as a conformance experiment.

3.4 Problem Definition

Given an event log L, a control-flow algorithm A constrained by the list of pa-
rameters P = [p1 = v1, ..., pk = vk], and a quality measure M : Assess the impact
of each parameter p ∈ P on the result of the execution of A over L, according to
M .

4 The Elementary Effect Method

The Elementary Effect (EE) method [8,4,5] is a technique for sensibility analysis
that can be applied to identify non-influential parameters of control-flow algo-
rithms, which usually are computationally costly for estimating other sensitivity
analysis measures (e.g., variance-based measures). Rather than quantifying the
exact importance of parameters, the EE method provides insight into the contri-
bution of parameters to the results quality.

86

One of the most efficient EE methods is based on Sobol quasi-random num-
bers [12] and a radial OAT strategy [5].2 The main idea is to analyze the parameter
space by performing experiments and assessing the impact of changing parame-
ters with respect to the results quality. A Sobol quasi-random generator is used
to determine a uniformly distributed set of points in the parameter space. Radial
OAT experiments [5] are executed over the generated points to measure the im-
pact of the parameters. This information can be used either (i) to guide on the
parameters setup by prioritizing the parameters to be tuned, or (ii) as a first step
towards parameter optimization.

4.1 Radial OAT Experiments

In this paper, an OAT experiment consists of a benchmark of some control-flow
algorithm where the algorithm’s parameters are assessed one at a time according
to some quality measure. This means that k + 1 discovery and conformance ex-
periments are conducted, the first to set a reference and the last k to compare the
impact of changing one of the k algorithm’s parameters. The parameter settings
for establishing the reference and changing the parameter’s values are defined by
a pair of points from the parameter space. OAT experiments can use different
strategies to explore these points. Figure 1 presents the most common strategies
for performing OAT experiments. In the trajectory design, the parameter change
compares to the point of the previous experiment. In the radial design, the pa-
rameter change compares always to the initial point. From these two, the radial
design has been proven to outperform the trajectory one [10].

Radial OAT experiments can be defined as follows. First, a pair of points
(α, β) is selected in the parameter space. Point α, the base point (point (1, 1, 2)
in Figure 1), is used as the reference parameter setting of the experiment. A
discovery and conformance experiment is executed with this parameters setting
to set the reference quality value. Point β, the auxiliary point (point (2, 2, 0) in
Figure 1), is used to compare the impact of changing the parameters, one at a
time, from α to β. For each parameter pi ∈ P , a discovery and conformance
experiment is executed using the parameter values defined by α for a parameter
pj ∈ P ∧ pj 6= pi and the parameter value defined by β for pi (see the example in
Figure 1b). Insight into the impact of each parameter is provided by aggregating
the results of the radial OAT experiments.

Let A be a control-flow algorithm, M a given measure, and L an event log. The
function fA·M (L,P) computes the quality of the result of A over L with respect
to M , where P = [p1 = v1, ..., pk = vk] is the list of parameters of A.

fA·M (L,P) =

 gM (fA(L,P)) if M does not depend on a log

gM (fA(L,P), L) otherwise
(1)

2 OAT stands for One (factor) At a Time.

87

p1

p2

p3

(1,1,2)

(2,2,0)

(2,1,0)

(2,1,2)

(p1,p2,p3)

(a) Trajectory.

p1

p2

p3

(1,1,2)

(1,2,2)

(1,1,0)

(2,1,2)

(p1,p2,p3)

(b) Radial.

Fig. 1: Comparison between radial and trajectory samplings for OAT experiments over
3 parameters, using the points (1, 1, 2) and (2, 2, 0). The underlined values identify the
parameter being assessed

The elementary effect of a parameter pi ∈ P on a radial OAT experiment is
defined by

EEi =
fA·M (L,α)− fA·M (L,α←↩ αi · βi)

αi − βi
, (2)

where α, β are parameter settings of P (the base and auxiliary points), αi and
βi are the ith elements of α and β, and fA·M (L,α ←↩ αi · βi) is the function
fA·M (L,α′) where α′ is α with βi replacing αi. The measure µ? for pi is defined
by

µ?
i =

∑r
j=1 |EEi|
r

, (3)

where r is the number of radial OAT experiments to be executed, typically between
10 and 50 [4]. The total number of discovery and conformance experiments is
r(k + 1), where k is the number of parameters of A.

The impact of a parameter pi ∈ P is given as the relative value of µ?
i compared

to that for the other parameters of P . A parameter pj ∈ P (j 6= i) is considered
to have more impact on the results quality than pi if µ?

j > µ?
i . The parameters

pj and pi are considered to have equal impact on the results quality if µ?
j = µ?

i .
The parameter pi is considered to have no impact on the results quality if µ?

i = 0.
This measure is sufficient to provide a reliable ranking of the parameters [4,5].

88

4.2 Sobol Numbers

Sobol quasi-random numbers (or sequences) are low-discrepancy sequences that
can be used to distribute uniformly a set of points over a multidimensional space.
These sequences are defined by n points with m dimensions. Table 1 presents an
example of a Sobol sequence containing ten points with ten dimensions.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10
x1 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

x2 0.7500 0.2500 0.2500 0.2500 0.7500 0.7500 0.2500 0.7500 0.7500 0.7500

x3 0.2500 0.7500 0.7500 0.7500 0.2500 0.2500 0.7500 0.2500 0.2500 0.2500

x4 0.3750 0.3750 0.6250 0.8750 0.3750 0.1250 0.3750 0.8750 0.8750 0.6250

x5 0.8750 0.8750 0.1250 0.3750 0.8750 0.6250 0.8750 0.3750 0.3750 0.1250

x6 0.6250 0.1250 0.8750 0.6250 0.6250 0.8750 0.1250 0.1250 0.1250 0.3750

x7 0.1250 0.6250 0.3750 0.1250 0.1250 0.3750 0.6250 0.6250 0.6250 0.8750

x8 0.1875 0.3125 0.9375 0.4375 0.5625 0.3125 0.4375 0.9375 0.9375 0.3125

x9 0.6875 0.8125 0.4375 0.9375 0.0625 0.8125 0.9375 0.4375 0.4375 0.8125

x10 0.9375 0.0625 0.6875 0.1875 0.3125 0.5625 0.1875 0.1875 0.1875 0.5625

Table 1: The first ten points of a ten-dimensional Sobol quasi-random sequence.

Each element of a point of a Sobol sequence consists of a numerical value
between zero and one (e.g., the element representing the second dimension (d2) of
point x5 is 0.8750). A collection of these values (the entire point or part of it) may
be used to identify a specific point in a parameter space. An element of a point of
a Sobol sequence can be converted into a parameter value by some normalization
process. For instance, a possible normalization process for an element e ∈ [0, 1]
to one of the n distinct values of some discrete parameter p can be defined by
be× nc, which identifies the index of the parameter value in p corresponding to e.
Notice that the parameter space must be uniformly mapped by the normalization
process (e.g., each value of a Boolean parameter must be represented by 50% of
all possible elements).

Using the approach proposed in [5], a matrix of quasi-random Sobol numbers
of dimensions (r + 4,2k) can be used to analyze the elementary effects of the k
parameters of a control-flow algorithm by executing r radial OAT experiments.
The first k dimensions of the matrix’s points define the base points, while the
last k dimensions define the auxiliary points. Given that the first points of a
Sobol sequence have the tendency to provide similar base and auxiliary points,
it is identified in [5] the need of discarding the first four points of the sequence
for the auxiliary points (i.e., the k rightmost columns should be shifted upward).
Therefore, the base and auxiliary points can be computed from a Sobol sequence
as follows. Let eji be the element corresponding to the jth dimension (dj) of the
ith point (xi) of the sequence. The ith base (αi) and auxiliary (βi) points are
defined as following.

αi = (e1i , e
2
i , ..., e

j
i) and β

i = (ej+1
i+4 , e

j+2
i+4 , ..., e

2j
i+4). (4)

89

4.3 Example: The FHM

The following example is used to illustrate the analysis of the parameter space of
an algorithm in order to assess the impact of the algorithm’s parameters on the
results quality. Let us consider an event log that is characterized by two distinct
traces: ABDEG and ACDFG. The frequency of any of these traces is high enough
to not be considered as noise. The behavior described by these traces does not
contain any kind of loop or parallelism, but it does contain two long-distance
dependencies: B ⇒ E and C ⇒ F . Let us also consider the Flexible Heuristics
Miner (FHM) [17] as the control-flow algorithm to explore the parameter space
in order to assess the impact of the FHM’s parameters on the results quality. The
parameters of the FHM are summarized in Table 2. Notice that every parameter
of the FHM is continuous, with a range between zero and one. The relative-to-best
and the long-distance thresholds are optional. The former is only considered with
the all-tasks-connected heuristic. The latter is only taken into account when the
long-distance dependencies option is activated.

Parameter Domain Optional?

Relative-to-best Threshold [0, 1] Yes
Dependency Threshold [0, 1] No
Length-one-loops Threshold [0, 1] No
Length-two-loops Threshold [0, 1] No
Long-distance Threshold [0, 1] Yes

Table 2: The parameters of the Flexible Heuristics Miner [17].

Figure 2 presents the two possible process models that can be mined with
the FHM on the aforementioned event log, using all combinations of parameter
values. Figure 2a shows the resulting Causal net where long-distance dependencies
are not taken into account. Figure 2b shows the resulting Causal net with the
long-distance dependencies. Notice that, depending on the quality measure, the
quality of these process models may differ (e.g., the precision of the model with
long-distance dependencies is higher than the other one). One may be interested
on the exploration of the FHM’s parameter space to get the process model that
fulfills best some quality requirements.

The analysis of the parameter space of the FHM starts with the generation of
the Sobol numbers. Let us consider that, for this analysis, one wants to execute
r = 30 radial OAT experiments for assessing the elementary effects of the k = 5
FHM’s parameters. So, a matrix of Sobol numbers of dimensions (30 + 4,2 × 5)
has to be generated (cf. Section 4.2). Table 1 shows the first ten points of this
matrix. Table 3 presents the first five base and auxiliary points as well as the
parameter values corresponding to these points. Notice that the parameters are
represented in the points according to the same ordering in Table 2 (i.e., the first
element of a point represents the first parameter and so on). The normalization

90

A GD

B

C

E

F

(a) The Causal net without long-distance
dependency relations.

A GD

B

C

E

F

(b) The Causal net with long-distance de-
pendency relations.

Fig. 2: The process models that can be mined with the FHM.

process in this example is defined as follows. For the non-optional parameters (cf.
Table 2), an element e ∈ [0, 1] of a point of a Sobol sequence can be directly used
to represent the value of the parameter. For the optional parameters, an element
e ∈ [0, 1] of a point of a Sobol sequence is normalized to a value e′ ∈ [0, 2], which
maps the parameter space uniformly (i.e., the value of the parameter and whether
or not the parameter is enabled). If e′ ≤ 1 then e′ is assigned as the value of the
parameter; the parameter is disabled otherwise.

Point Base Auxiliary

1 (.5000, .5000, .5000, .5000, .5000) (.6250, .8750, .3750, .3750, .1250)
2 (.7500, .2500, .2500, .2500, .7500) (.8750, .1250, .1250, .1250, .3750)
3 (.2500, .7500, .7500, .7500, .2500) (.3750, .6250, .6250, .6250, .8750)
4 (.3750, .3750, .6250, .8750, .3750) (.3125, .4375, .9375, .9375, .3125)
5 (.8750, .8750, .1250, .3750, .8750) (.8125, .9375, .4375, .4375, .8125)
...

(a) The first five base and auxiliary points.

Point Base Auxiliary

1 (–, 0.50, 0.50, 0.50, –) (–, 0.88, 0.38, 0.38, 0.25)
2 (–, 0.25, 0.25, 0.25, –) (–, 0.13, 0.13, 0.13, 0.75)
3 (0.50, 0.75, 0.75, 0.75, 0.50) (0.75, 0.63, 0.63, 0.63, –)
4 (0.75, 0.38, 0.63, 0.88, 0.75) (0.63, 0.44, 0.94, 0.94, 0.63)
5 (–, 0.88, 0.13, 0.38, –) (–, 0.94, 0.44, 0.44, –)
...

(b) The parameter values for the first five base and auxiliary points. The wildcard
value ‘–’ identifies that the parameter is disabled.

Table 3: The first five points of the Sobol numbers.

Table 4 presents the radial sampling for the first radial OAT experiment (first
point in Table 3) as well as the result of the execution of fA·M (L,P) and the
elementary effect EE for each parameter. For executing fA·M (L,P), A is the

91

FHM, M the Node Arc Degree measure3, and L the aforementioned event log.
The elementary effects are computed as described in Section 4.1.4 Notice that the
elementary effect of a parameter can only be computed when the base and auxil-
iary points provide distinct parameter values (e.g., in Table 4, the first parameter
is not assessed because it is disabled in both base and auxiliary points).

Parameter Values Result Elementary Effect
P fA·M (L,P) EEi

(–, 0.50, 0.50, 0.50, –) 2.154

(–, 0.50, 0.50, 0.50, –)
(–, 0.88, 0.50, 0.50, –) 2.154 0.0
(–, 0.50, 0.38, 0.50, –) 2.154 0.0
(–, 0.50, 0.50, 0.38, –) 2.154 0.0

(–, 0.50, 0.50, 0.50, 0.25) 2.316 0.162

Table 4: Radial sampling for the first radial OAT experiment. The first line corresponds
to the base point, while the others consist of the base point in which the element re-
garding a specific parameter is replaced by that from the auxiliary point; the underlined
values identify the replaced element and the parameter being assessed.

Table 5 presents the results of the analysis of the FHM’s parameter space.
The results identify the long-distance threshold as the only parameter to take
into account for the parameter exploration. As expected, all other parameters
have no impact on the results quality. This is explained by the fact that the log
does not contain any kind of loop or noise. Notice that the µ? absolute value does
not provide any insight into how much a parameter influences the results quality.
Instead, the µ? measurement provides insight into the impact of a parameter on
the results quality, compared to others.

Parameter µ?

Dependency Threshold 0.0
Relative-to-best Threshold 0.0
Length-one-loops Threshold 0.0
Length-two-loops Threshold 0.0
Long-distance Threshold 0.113

Table 5: The µ? values of the FHM’s parameters.

3 The Node Arc Degree measure consists of the average of incoming and outgoing arcs
of every node of the process model.

4 For computing EEi, αi−βi is considered to be 1 when the parameter is changed from
a disabled to an enabled state, or the other way around (e.g., the last parameter in
Table 4).

92

5 Application

The EE method presented in the previous section can be applied to any control-
flow algorithm constrained by many parameters, using some event log and a
measure capable of quantifying the quality of the result of the algorithm. The
presented method can be easily implemented on some framework capable of exe-
cuting discovery and conformance experiments (e.g., ProM [15] or CoBeFra [14]).
Several open-source generators of Sobol numbers are available on the web.

The computational cost of our approach can be defined as follows. Let L be
an event log, A a control-flow algorithm constrained by the list of parameters
P = [p1 = v1, ..., pk = vk], and M a quality measure. The computational cost
of a discovery experiment using A (with some parameter setting) over L is given
by CD. Considering R as the result of a discovery experiment, the computational
cost of a conformance experiment over R and L (or just R) with regard to M is
given by CC . Therefore, the computational cost of a radial OAT experiment is
given by CE = (k + 1)(CD + CC), where k is the number of parameters of A.
The computational cost of the EE method based on r radial OAT experiments is
given by C = r(k + 1)(CD + CC).

5.1 Perfomance Optimization

Considering that both discovery and conformance experiments may be computa-
tionally costly, performance may become a critical issue for the application of this
method. This issue can be partially addressed by identifying a set of potentially
irrelevant parameters, and considering those parameters as a group. Then, by ad-
justing the µ? measurement to work with groups of two or more parameters [4],
the group of parameters can be analyzed together using radial experiments that
iterate over all elements of the same group simultaneously.

Suppose, for instance, that it is known that a given log does not have loops. So,
for the FHM’s parameters, the length-one-loops and length-two-loops thresholds
may be grouped in order to avoid the execution of discovery and conformance
experiments that are not relevant for the analysis. Recalling the example presented
in Section 4.3, the radial experiments will iterate over one group of two parameters
and three indepedent parameters (i.e., the dependency, the relative-to-best, and
the long-distance thresholds). This means that, for the group of parameters, all
elements of the same group are replaced simultaneously by the corresponding
elements from the auxiliary point. Table 6 presents the adjusted radial sampling
presented in Table 4. The first line corresponds to the base point, while the others
consist of the base point in which the element(s) regarding a specific parameter (or
group of parameters) is replaced by that from the auxiliary point; the underlined
values identify the replaced element(s) and the parameter (or group of parameters)
being assessed.

93

Parameter Values

(–, 0.50, 0.50, 0.50, –)

(–, 0.50, 0.50, 0.50, –)
(–, 0.88, 0.50, 0.50, –)
(–, 0.50, 0.38, 0.38, –)

(–, 0.50, 0.50, 0.50, 0.25)

Table 6: Radial sampling for the first radial experiment considering a group of param-
eters.

The elementary effect of a group of parameters G ⊆ P on a radial experiment
is defined by

EEG =
fA·M (L,α)− fA·M (L,α←↩ αG · βG)

dist(αG, βG)
, (5)

where α, β are parameter settings of P (the base and auxiliary points), αG and
βG are the elements of G in α and β, and fA·M (L,α ←↩ αG · βG) is the function
fA·M (L,α′) where α′ is α with βG replacing αG. The function dist(A,B) computes
the distance between A and B (e.g., the Euclidean distance). The measure µ? for
G is defined by

µ?
G =

∑r
j=1 |EEG|

r
, (6)

where r is the number of radial experiments to be executed. The total number
of discovery and conformance experiments depends on the number of groups and
independent parameters being assessed.

6 Conclusions and Future Work

To the best of our knowledge, this work is the first in presenting a methodology to
assess the impact of parameters in control-flow discovery algorithms. The method
relies on a modern sensitivity analysis technique that requires considerably less
exploration than traditional ones such as genetic algorithms or variance-based
methods.

In this work, we have applied the methodology on the Flexible Heuristics Miner
algorithm using 13 event logs. The results suggest the effectiveness of the method.
We have noticed that simple conformance measures (and, thus, less computation-
ally costly) are as good as any other complex measure for assessing the parameters
influence. Nevertheless, we acknowledge that more experiments are necessary to
get a better insight.

Future work is mainly oriented towards addressing three aspects, which are
mainly addressed to apply the method of this paper to other control-flow algo-
rithms. First, we are interested in the algorithmic perspective in order to study the

94

most efficient form of assessing the impact of a parameter, with the method pre-
sented in this paper as a baseline. Second, we will try to incorporate the method-
ology described in this paper in the RS4PD, a recommender system for process
discovery [9]. Finally, the application of the presented method with other goals,
e.g., estimating the representational bias of control-flow discovery algorithms may
be explored.

Acknowledgments. This work as been partially supported by funds from the
Spanish Ministry for Economy and Competitiveness (MINECO) and the Euro-
pean Union (FEDER funds) under grant COMMAS (ref. TIN2013-46181-C2-1-R).

References

1. Y. Bengio. Gradient-Based Optimization of Hyperparameters. Neural computation,
12(8):1889–1900, 2000.

2. J. Bergstra and Y. Bengio. Random Search for Hyper-Parameter Optimization. The
Journal of Machine Learning Research, 13(1):281–305, 2012.

3. A. Burattin and A. Sperduti. Automatic Determination of Parameters’ Values for
Heuristics Miner++. In Evolutionary Computation (CEC), 2010 IEEE Congress
on, pages 1–8, July 2010.

4. F. Campolongo, J. Cariboni, and A. Saltelli. An Effective Screening Design for Sen-
sitivity Analysis of Large Models. Environmental Modelling & Software, 22(10):1509
– 1518, 2007.

5. F. Campolongo, A. Saltelli, and J. Cariboni. From Screening to Quantitative
Sensitivity Analysis. A Unified Approach. Computer Physics Communications,
182(4):978–988, 2011.

6. L. Ma. How to Evaluate the Performance of Process Discovery Algorithms: A Bench-
mark Experiment to Assess the Performance of Flexible Heuristics Miner. Master’s
thesis, Eindhoven University of Technology, Eindhoven, 2012.

7. Z. Michalewicz and M. Schoenauer. Evolutionary Algorithms for Constrained Pa-
rameter Optimization Problems. Evolutionary Computation, 4(1):1–32, March 1996.

8. M.D. Morris. Factorial Sampling Plans for Preliminary Computational Experiments.
Technometrics, 33(2):161–174, April 1991.

9. J. Ribeiro, J. Carmona, M. Misir, and M. Sebag. A Recommender System for Process
Discovery. In S. Sadiq, P. Soffer, and H. Vlzer, editors, Business Process Manage-
ment, volume 8659 of Lecture Notes in Computer Science, pages 67–83. Springer
International Publishing, 2014.

10. A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola. Vari-
ance Based Sensitivity Analysis of Model Output. Design and Estimator for the Total
Sensitivity Index. Computer Physics Communications, 181(2):259 – 270, 2010.

11. A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana,
and S. Tarantola. Global Sensitivity Analysis: The Primer. Wiley, 2008.

12. I.M. Sobol. Uniformly Distributed Sequences With an Additional Uniform Property.
USSR Computational Mathematics and Mathematical Physics, 16(5):236 – 242, 1976.

13. W.M.P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Berlin, 2011.

95

14. S. vanden Broucke, J.D. Weerdt, B. Baesens, and J. Vanthienen. A Comprehensive
Benchmarking Framework (CoBeFra) for conformance analysis between procedural
process models and event logs in ProM. In IEEE Symposium on Computational
Intelligence and Data Mining, Grand Copthorne Hotel, Singapore, 2013. IEEE.

15. H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst.
ProM 6: The Process Mining Toolkit. In Demo at the 8th International Conference
on Business Process Management, volume 615 of CEUR-WS, pages 34–39. 2010.

16. A.J.M.M. Weijters. An Optimization Framework for Process Discovery Algorithms.
In Proceedings of the International Conference on Data Mining, Las Vegas, Nevada,
USA, 2011.

17. A.J.M.M. Weijters and J.T.S. Ribeiro. Flexible Heuristics Miner (FHM). In Pro-
ceedings of the IEEE Symposium on Computational Intelligence and Data Mining,
CIDM 2011, Paris, France. IEEE, 2011.

96

Knowledge Driven Behavioural Analysis in Process
Intelligence

Antonia Azzini, Paolo Ceravolo, Ernesto Damiani, and Francesco Zavatarelli

Computer Science Department, Università degli Studi di Milano
via Bramante, 65 - 26013 - Crema, Italy

email{name}.{surname}@unimi.it

Abstract. In this paper we illustrate how the knowledge driven Behaviour Anal-
ysis, which has been used in the KITE.it process management framework, can
support the evolution of analytics from descriptive to predictive. We describe
how the methodology uses an iterative three-step process: first the descriptive
knowledge is collected, querying the knowledge base, then the prescriptive and
predictive knowledge phases allow us to evaluate business rules and objectives,
extract unexpected business patterns, and screen exceptions. The procedure is
iterative since this novel knowledge drives the definition of new descriptive an-
alytics that can be combined with business rules and objectives to increase our
level of knowledge on the combination between process behaviour and contex-
tual information.

1 Introduction

Process Intelligence (PI), i.e. the convergence of operational business intelligence [1]
and real-time application integration, has gain a lot of attention in the last years, es-
pecially around applications involving sensor networks [2]. The final aim is to provide
more accurate and fast decisions on the strategic and operational management levels.
Most of the current studies on PI focus on the analysis of the process behavior and
support performance improvement limited to this aspects [3]. But, descriptive analysis
is contextual in nature [4], its value is clarified by the knowledge you have on a pro-
cess, for instance in terms of business rules that apply and constrain a process [5]. In
particular our claim is that, to insert PI into a consistent knowledge acquisition process
[6], the level of its maturity and practical implementation has to evolve in the following
directions:

– Not limit their analysis to process behavior but enlarge the scope to any other auxil-
iary data that is connected to process execution.

– Not limit to descriptive analysis but exploit the acquired knowledge for predictive
analysis.

For this purpose, we introduced the KITE Knowledge Acquisition Process [6], a
methodology dealing with the evolution of analytics from descriptive to prescriptive,
to predictive intention. In KITE an initial set of metrics offer the initial descriptive
knowledge. Then our analytics support the evaluation of process instances based on
their consistency with policies, business rules and KPI, defined at the strategic level.

97

These constrains are refereed in general as prescriptions. Process instances violating
prescriptions offer a crucial source of knowledge acquisition as predictive analytics
can evaluate the incidence of specific variables on violations, to then derive predictive
knowledge. Indeed, predictive analytics involves searching for meaningful relationships
among variables and representing those relationships in models. There are response
variables - things we are trying to predict, in our case violations to prescriptions. There
are explanatory variables or predictors - things we observe. To generalise, as much as
possible our predictive power, predictors in our case are any data related to resource
auxiliary to process execution. Actually, in our approach, metrics measure process be-
haviour in an extended sense, as the information retrieved is not limited to the workflow,
but include data related to any resource auxiliary to the process execution, as already
discussed in [7]. Our approach differs from traditional predictive analytics because it is
centred on the knowledge provided by the organization via Business Rules and other
documentation. This approach was framed by KITE in the firm belief that it can put in
contact PI and predictive analytics with Knowledge Management.

The paper is organized as follow. Section 2 starts the discussion with the related
work. Sections 3 and 4 describe the KITE framework. Section 5 describes how KITE
knowledge acquisition process works. Section 6 deals with behavioural and predictive
analysis. Section 7 illustrate our ideas through an example. Section 8 proposes some
conclusions.

2 Related Work

Predictive analytics applied to process monitoring is often limited, or strongly de-
pended, to temporal analysis. For instance in [8] temporal logic rules are adopted to
define business constraints. The approach is then focused on the evaluation of these
constraints at execution time, to generate alerts that can prevent the development of
violations. In [9], the authors present a set of approaches based on annotated transi-
tion systems containing time information extracted from event logs. The aim is again
to check time conformance at execution time, as executions not aligned with annotated
transitions predict the remaining processing time, and recommend countermeasures to
the end users. An approach for prediction of abnormal termination of business processes
has been presented in [10]. Here, a fault detection algorithm (local outlier factor) is used
to estimate the probability of abnormal termination. Alarms are provided to early notify
probable abnormal terminations to prevent risks rather than merely reactive correction
of risk eventualities. Other approaches go beyond temporal analysis extending predic-
tive analytics to include ad-hoc contextual information. In [11], a clustering approach
on SLA properties is coupled with behavioral analysis to discovered and model perfor-
mance predictors. In [12], the authors propose an approach running statistical analysis
on process-related data, notably the activities performed, their sequence, resource avail-
ability, capabilities and interaction patterns. In [13], the authors propose an approach
for Root Cause Analysis based on classification algorithms. After enriching a log with
information like workload, occurrence of delay and involvement of resources, they use
decision trees to identify the causes of overtime faults. In such an analysis, the availabil-
ity of attributes/features that may explain the root cause of some phenomena is crucial.

98

On the side of knowledge acquisition procedures the literature presents several works
specifically oriented to the area of business process management [14]. However only a
few are really considering analytics as a key element of this process. For instance in [15]
the authors exploit the notion of knowledge maintenance process. process mining is ap-
plied to analyze the knowledge maintenance logs to discover process and then construct
a more appropriate knowledge maintenance process model. The proposed approach has
been applied in the knowledge management system.

Our work is characterized by the introduction of an extended notion of process
behavior that provide a generalized systematic approach to captures process features
beyond workflow execution. This element is the exploited within a knowledge acqui-
sition methodology that exploits prescriptive and predictive analytics to acquire novel
and unexpected knowledge.

3 The KITE Methodology

KITE.it is a project co-funded by the Italian Ministry for Economic Development,
within the “Industria 2015” Program, in the area of “New technologies for Made in
Italy” [16]. The exit from the great global crisis towards a new cycle of development
requires to move from organizational and inter-organizational models, based on a strict
definition of roles and organizational boundaries. In this context, KITE.it is aimed at
developing a business and social cooperation framework that enables interoperability
among enterprises and other knowledge workers, making available a variety of tools
and technologies developed to connect the processes of an organization to those of sup-
pliers or to involve customers in planning and assessing activities. In fact, the KITE.it
framework should be capable of supporting procedures such as i) creation, contextual-
ization and execution of metrics, ii) connection between metrics and strategic level, and
iii) inception and capitalization of the results. The final goal is driving the monitoring
process to derive previously unknown and potentially unexpected knowledge.
To circumscribe our discussion, in this paper we examine a single aspect of the KITE.it
Framework, focusing on how it was extended to cover data integration and interoper-
ability, as discussed in Section 4. Moreover, we are considering how these characteris-
tics was exploited in guiding the Knowledge Acquisition Process, as discussed in Sec
5.

4 The KITE Knowledge Base

The KITE Knowledge Base (KKB) has to integrate a variety of heterogeneous data
from the different sources composing the KITE.it Framework.

This requirement is faced adopting a graph-based model to structure and link data
according to the Web Standards, the so-called Resource Description Framework. Gener-
ally speaking, the Resource Description Framework (RDF) [17] provides a standard for
defining vocabularies, which can be adopted to generate directed labeled graphs [18],
in which entities edges and value are associated with terms of the vocabulary. For this
reason, RDF is an extremely generic data representation model that can be extended

99

easily with any domain-specific information. Moreover, RDF is a monotonic declarative
language, i.e. the acquisition of new data cannot invalidate the information previously
acquired.

The atomic elements of a RDF graph are triples1. Triples are composed by three
elements: resources, relations between resources and attributes of resources. These ele-
ments are modeled within the labelled oriented graph, as the atomic structure < s, p,o>
where s is subject, p is predicate and o is object, combined as shown in Figure 1.

Fig. 1. RDF subject-object relation.

New information is inserted into an RDF graph by adding new triples to the data set.
It is therefore easy to understand why such a representation can provide big benefits for
real time business process analysis: data can be appended ‘on the fly’ to the existing one,
and it will become part of the graph, available for any analytical application, without
the need for reconfiguration or any other data preparation steps.

Assuming pairwise disjoint infinite sets I, B, L (IRIs2, Blank nodes, RDF Literals).

Definition 1 A tuple (s, p,o) ∈ (I∪B)× I× (I∪B∪L) is called an RDF triple.

An RDF graph G is a set of RDF triples. An interesting feature of RDF standards
is that multiple graphs can be stored in a single RDF Dataset. As stated in the specifi-
cations “An RDF Dataset comprises one graph, the default graph, which does not have
a name, and zero or more named graphs, where each named graph is identified by an
IRI”.

RDF standard vocabularies allow external applications to query data through SPARQL
query language [19]. SPARQL is a standard query language for RDF graphs based on
conjunctive queries on triple patterns, identifying paths in the RDF graph. Thus, queries
can be seen as graph views. SPARQL is supported by most of the triples stores available.

If we now introduce a novel infinite set V for variables, disjoint from I, B, and L we
can define SPARQL patterns as in the following.

Definition 2 A tuple t ∈ (I ∪L∪V)× (I ∪V)× (I ∪L∪V) is called a SPARQL triple
pattern. Where the blank nodes act as non-distinguished variables in graph patterns.

Definition 3 A finite set of SPARQL triple patterns can be constructed in a Graph Pat-
tern (GP) using OPTIONAL, UNION, FILTER and JOIN. A Basic Graph Pattern is a
set of triple patterns connect by the JOIN operator.

The semantics of SPARQL is based on the notion of mapping, defined in [20] as a
partial function µ : V → (I∪L∪B). Where, if GP is a graph pattern and var(GP) denotes

1 An alternative terminology adopted in documentation is statements or eventually tuples.
2 IRIs are the RDF URI references, IRIs allow all characters beyond the US-ASCII charset.

100

the set of variables occurring in GP; given a triple pattern t and a mapping µ such that
var(t)⊆ dom(µ), µ is the triple obtained by replacing the variable in t according to µ.

In [21], the authors present a framework based on RDF for business process moni-
toring and analysis. They define an RDF model to represent a generic business process
that can be easily extended in order to describe any specific business process by only
extending the RDF vocabulary and adding new triples to the triple store. The model
is used as a reference by both monitoring applications (i.e., applications producing the
data to be analyzed) and analyzing tools. On one side, a process monitor creates and
maintains the extension of the generic business process vocabulary either at start time,
if the process is known a priori, or at runtime while capturing process execution data, if
the process is not known. Process execution data is then saved as triples with respect to
the extended model. On the other side, the analyzing tools may send SPARQL queries
to the continuously updated process execution RDF graph.

Figure 2 shows the schema of an RDF Dataset composed by the union of two graphs.
The resources describing the generic model of a business process are tagged in blue.
They can represent a sequence of different tasks, each having a start/end time and hav-
ing zero or more sub-tasks. The resources tagged in yellow represent domain-specific
concepts describing the repair and overhaul process in avionics. In this very simple ex-
tract we defined a process, in connection with its tasks, and the customer purchasing
the overhaul operations.

Once this schema is defined any process execution is stored in the KKB in terms
an RDF Dataset composed of triples conforming with the schema. For instance, in 1 a
legal dataset is presented.

av:p1 rdf:type av:Overhaul
av:p1 bpm:hasTask av:t1
av:p1 bpm:hasTask av:t2
av:t1 bpm:followedBy av:t2
av:t1 bpm:startTime "2013-06-06 10:38:45"ˆˆxsd:date
av:t1 bpm:endTime "2013-06-06 18:12:35 "ˆˆxsd:date
av:t1 rdf:type av:Inspect

(1)

5 The KITE Knowledge Acquisition Process

The methodology considers the KITE Knowledge Acquisition Process (KKAP) as an
investigation over the process executions, as registered in the KKB. In particular, this
methodology is organised in iterations over three fundamental steps.

– Descriptive Knowledge: querying triples on the process execution, or any other aux-
iliary resource, you have a descriptive summary of the process in terms of frequency,
dimension, and central tendency [22].

– Prescriptive Knowledge: evaluating the achievement of the business rules or the ob-
jectives associated to a process, as well as identifying unexpected patterns, you can
screen of process executions isolating exceptions that are violating some prescription
[23].

101

Fig. 2. RDF Representation of a generic business process.

– Predictive Knowledge: process executions screened by prescriptions can be further
investigated evaluating the incidence of specific properties on specific partitions of
the KKB. This allows to acquire novel knowledge on the process that eventually can
result in new descriptive or prescriptive knowledge.

Before providing further definitions let us clarify our purpose by a simple example
of two iterations.

5.1 First iteration

The engine maintenance is a very complex process performed by the aerospace industry.
Generally speaking, maintenance operations are needed on a regular time basis (Inspect
Only, Minor Revision or General Revision, according to the number of flown hours)
or when a part has failed (Out o f Order), as shown in table 1. The activities vary
accordingly.

Inspect Disassembly Inspect Repair Clean Assembly Bench Checkout
(I) (DA) Mod. (IM) (R) (C) (A) Test (BT) (CO)

General Rev. Yes Yes Yes Yes Yes
Minor Rev. Yes Yes Yes

Inspect Only Yes Yes
Out of Order Yes Yes Yes Yes Yes Yes Yes Yes

Table 1. Representation of the maintenance processes in the aerospace industry (simplified).

102

Suppose to focus on minor and general revision processes, and collect the dura-
tion in days of all the process executions involving the activities Inspect, Clean and
CheckOut (I � C� CO in short) in case of minor revision, or Disassembly, Inspect
Module, Clean, Assembly and CheckOut (DA� IM� C� A� CO in short) when
general revision is performed. Results can be summarised as illustrated in table 2. In
this way you have Descriptive Knowledge about the processes.

ProcessID Task Sequence Duration (days)
p12 Minor Revision 3
p31 Minor Revision 4
p33 Minor Revision 5
p39 Minor Revision 3
p11 Minor Revision 8
p05 Minor Revision 5
p101 General Revision 12
p102 General Revision 11
p103 General Revision 13
p104 General Revision 11

...

Table 2. Duration in days of process executions involving Minor and General Revision.

To acquire Prescriptive Knowledge you have to compare your data with some pre-
scriptions. By this term here we refer to any constraint or property the business pro-
cesses execution should satisfy. In the Business Process Management literature, this
function is typically associated with Business Rules [24], even if their scope is not lim-
ited at assessing the business behavior but involves the business structure as well (for
instance defining the corporate governance). Business Rules can derive from internal
objectives and strategies or from external factors such as contractual constrains or legal
requirements. However, Business Rules can also be discovered by data mining [25] or
process mining [26], for instance by identifying recurrent behavior.

Once a prescription is defined you are able to partition the dataset based on the
violations of this prescription. If the violation can be associated to an intensity the
partitions depend on a degree, otherwise the partition is binary. For instance Business
Rules could prescribe the expected duration of process executions: Duration ≤ 7 days
if Minor Revision and Duration ≤ 11 days if General Revision. Table 3 shows the
result of this operation. The prescription that have been learned from a dataset d can be
applied to other datasets D, under the assumption that d is a representative sample of D.

The notion of violation is crucial in the KITE methodology as it identify an ob-
servation that is not consistent with our expectations and we would like to avoid for
future executions. Investigating the incidence of specific resources on the sub set of the
violations we can induce additional knowledge to support explanation or resolution of
process executions violating our prescription. To draw conclusions of our example let
us introduce an additional resource in our view of the dataset, as illustrated in Table 4. If
we can observe a significant incidence of this resource to the subset of the violations we

103

ProcessID Task Sequence Duration Violation
p12 Minor Revision 3 NO
p39 Minor Revision 3 NO
p31 Minor Revision 4 NO
p33 Minor Revision 5 NO
p05 Minor Revision 5 NO
p102 General Revision 11 NO
p104 General Revision 11 NO

...
p11 Minor Revision 8 YES
p101 General Revision 12 YES
p103 General Revision 13 YES

...

Table 3. Dataset partitioned according to the prescription (business rule).

can attest the acquisition of novel knowledge that should be exploited for the definition
of a second iteration of the KKAP.

ProcessID Task Sequence Duration Violation Customer Type
p12 Minor Revision 3 NO Civil
p39 Minor Revision 3 NO Civil
p31 Minor Revision 4 NO Civil
p33 Minor Revision 5 NO Military
p05 Minor Revision 5 NO Civil
p102 General Revision 11 NO Civil
p104 General Revision 11 NO Civil

...
p11 Minor Revision 8 YES Military
p101 General Revision 12 YES Military
p103 General Revision 13 YES Military

...

Table 4. Incidence of an additional resource (customer type) on the violations.

5.2 Second iteration

As previously stated, this is an iterative process, which takes the last data as a starting
point for the second iteration, see Figure 3.

We start our second iteration as shown in table 5, where some other kind of pro-
cesses (Inspect Only and Out o f Order) are added to the dataset for a better under-
standing. We also introduce additional resources, in this case the notion whether the
activities were performed by internal company staff or outsourced to somebody else.

Defining another prescription we are able again to partition the dataset based on
the violations of the new business rule. Consider for example to define the following

104

Fig. 3. iterations

prescription: operations must not be outsourced if the engine belongs to a military cus-
tomer. Table 6 shows the result of this operation.

ProcessID Task Sequence Customer Type Staff
p11 Minor Revision Military Outsourced
p101 General Revision Military Internal
p103 General Revision Military Internal
p202 Inspect Only Military Internal
p301 Out of Order Military Outsourced

...

Table 5. Responsibility of the activities, as performed by internal staff staff or outsourced.

ProcessID Task Sequence Customer Type Staff Violating
p101 General Revision Military Internal NO
p103 General Revision Military Internal NO
p202 Inspect Only Military Internal NO

...
p11 Minor Revision Military Outsourced YES

p301 Out of Order Military Outsourced YES
...

Table 6. Violations of the second business rule.

Investigating again the incidence of a specific resource on the subset of the violation
we can induce additional knowledge and support explanation. In our case, in order to
draw conclusions we introduce an additional resource in our view of the dataset, as
illustrated in Table 7. When we observe a significant incidence of this resource to the
subset of the violations we have acquisition of novel knowledge.

105

ProcessID Task Sequence Customer Type Staff Violating Certified
p101 General Revision Military Internal NO YES
p103 General Revision Military Internal NO YES
p202 Inspect Only Military Internal NO YES

...
p11 Minor Revision Military Outsourced YES NO

p301 Out of Order Military Outsourced YES NO
...

Table 7. An additional resource can lead to novel knowledge.

6 Predictive Analytics

As illustrated in [7] we extended the notion of Behavioral Analysis as a weaker form
of classic behavior equivalence, where two compatible behaviors have to be equivalent
with respect to activities they have in common [27]. To characterise a process execution
log, for instance for detecting ordering relations among events, it is common to start by
the definition of process execution tracks, workflow trace as defined in [28]. In our ap-
proach, we extended this definition by auxiliary resources, considering any data related
to the events in a trace that are consistent with a graph pattern over the KKB.

As already mentioned the KKAP includes predictive analytics aimed at identifying
the incidence of KKB’s resources on process execution. In general, predictive analytics
encompasses a variety of statistical techniques from modeling, machine learning, and
data mining that uncovers relationships and patterns within large volumes of data that
can be used to predict behavior and events [29]. Here we adopt the term to refer to
this part of our methodology that is is forward-looking, i.e. uses past events to better
understand the process. In particular our aim is to investigate data about resources aux-
iliary to process execution, searching for incidence with those process instances that are
violating prescriptions. Now, our aim is to define how this incidence is evaluated.

The approach adopted in KITE is based on Bayesian statistics [30]. Bayesian statis-
tics offers the theoretical framework for combining experimental and extra-experimental
knowledge. In particular, Bayesian procedures, for evaluating the predictive power of
a parameter in a statistical model, take into account both experimental data and in-
formation on the parameter incorporated in the so-called prior distribution3. This is
an important point of distinction with frequentist approaches, most commonly used.
The most practical consequence is that frequentist approaches impose assumptions on
the distribution for both the random sample and the model tested. Different hypothesis
tests have different model assumptions. For many tests, the model assumptions consist
of several conditions. If any one of these conditions is not true, we do not know that the
test is valid. But these assumptions cannot be easily verified on any kind of data sets, in
particular when dealing with data flows acquired or consumed at low interval rates.

3 It is however well know that the conflict between Bayesian and frequentist procedures tends
to disappear as the sample size increases. Indeed, the discrepancies are limited when sampling
information dominates the prior distribution or pre-experimental information may influence
the estimates on prior distribution.

106

Following a Bayesian approach, we consider H an unknown hypothesis; X =
{X1, ...,Xn} is a set of independent and identically distributed observations. Let xn =
(x1, ...,xn) be an observed sample; π(H) is the prior probability of the hypothesis under
test; π(X|H) the likelihood; and the posterior distribution is defined as in equation 2.

π(H|X) =
π(X|H)π(H)

∑n π(Xn|Hn)π(Hn)
(2)

Predictive modeling involves finding good subsets of predictors or explanatory vari-
ables. Models that fit the data well are better than models that fit the data poorly. Simple
models are better than complex models. Working with a list of useful predictors, we can
fit many models to the available data, then evaluate those models by their simplicity and
by how well they fit the data.

7 A Preliminary Example

To illustrate the approach proposed in KITE.it, we now provide a running example. Let
us start from a sample business rule stating that: “On an equipment fault, operators will
visit customers premises within 12 hours from fault reporting”. Our aim is to discover
new knowledge from the information detected by monitoring the process in connection
to this policy. We then formulate a predictive analysis considering the incidence of
“previous visits to the same client by the same operator” to violations to these policies.

We start by a descriptive metrics that can be computed using a query listing the
excess time, expressed in hours and computed as the difference between visit time and
fault time, for a set of tuples extracted from specific traces identified by ProcessID.
Table 8 illustrate an sample of the results returned querying a data set.

ProcessID FaultID VisitID OpId ExcessTime
12 AF01 AEFF 1 20
31 AB00 AB07 3 3
33 A777 AA01 7 16
15 AB43 AA08 4 4
39 A605 AAB0 9 8
29 AK15 AA04 13 19
11 AG33 AA42 14 7
21 AB06 AB17 8 14
11 AG43 AA22 12 16
05 AB23 AA78 19 13

Table 8. Excess time from equipment fault to visit of an operator.

The prescription we want to apply to these traces imposes a constraint of form
excess time > 12. Filtering traces by this constraint we obtain the set of violations V :
{12,33,29,21,11,05}. This set must be compared to the set of traces ordered by the

107

the number of previous visits by same operator to clients. Another descriptive metrics
is then defined to extract these data, getting a distribution E. Table 9 illustrate an sample
of the results returned.

ClientID VisitID OpId VisitPriorToFault
C121 AEFF 1 3
C313 AB07 3 2
C236 AA01 7 6
C118 AA08 4 4
C259 AAB0 9 1
C329 AA04 13 1
C311 AA42 14 2
C111 AB17 8 4
C319 AA22 12 6
C209 AA78 19 3

Table 9. Visit prior to fault from the operators involved in visits listed in Table 8.

The predictive analysis is then executed by evaluating the incidence of different
partition E on V . More specifically, referring to the equation 2, V is the hypotheses
H we are testing and E is the observation X. We are in other words evaluating how
confident we are that observing a trace included in E this trace will also be in V .
If X is an ordinal variable we can test these incidence for each subset of the distribution
by imposing a threshold α for defining membership of the subset under consideration.

Xα = {x≥ α,∀x ∈ X} (3)

So we can straightforwardly proceed to calculate the posterior probability π(V |Eα).
For instance taking α = 3 we have six process instances in Eα, with five of them in V :
π(V |Eα) =

5
6 = 0.83. Table 10 shows the results imposing a thresholds α for each value

in E.

α Posterior Probability Prior Probability
1 0.6 0.6
2 0.625 0.6
3 0.83 0.6
4 0.75 0.6
6 1 0.6

Table 10. Incidence to violations of different α on values of “visit prior to fault”.

We find that process instances related to 3 or more “visit prior to fault time” present
high probability to violate the business rules defining the expected execs time from fault
to visit. In particular this is shaping a behavior that is potential dysfunctional, e.g. due
to a “cry wolf” effect.

108

It is important to note that in this example we used “educated guesses” to decide
the set of parameters to be used for the process behavior metrics. An exhaustive search
of the right parameter set to identifying inductive metrics would be computationally
very expensive. Clearly several not exhaustive approaches are possible. Ranging from
considering the expert intuitions to game-theoretical algorithm aimed at identifying pa-
rameter sets based on their effectiveness in the winning strategy for an attacker wishing
to fail the KPI without being caught, as explained in [31].

8 Conclusion

Most of the time, the literature has disregarded a notion of process behaviour that com-
prehensively includes alla data related to resources auxiliary to process execution. As a
consequence, the method proposed for implementing Predictive Analytics usually are
not fully integrated with a Knowledge Acquisition procedure, for instance, without pro-
viding concrete guidelines on how to move form one measurement step to another.

In this paper we put forward the idea that the full integration of PI capabilities re-
quires to introduce a notion of Extended Behaviour, as the value of the information
available in processes becomes one of the most important source for Predictive Analyt-
ics bringing to the acquisition of novel knowledge. .

Acknowledgment

This work was partly funded by the Italian Ministry of Economic Development under
the “Industria 2015” contract - KITE.IT Project.

References

1. Surajit, C., Umeshwar, D., Vivek, N.: An overview of business intelligence technology.
Commun. ACM 54(8) (2011) 88–98

2. Yoo, Y.S., Yu, J., Lee, B.B., Bang, H.C.: A study on ubiquitous business process management
for real-time open usn mash-up services. In: Information Technology Convergence, Secure
and Trust Computing, and Data Management. Springer (2012) 21–27

3. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Process intelligence. In: Fundamentals
of Business Process Management. Springer (2013) 353–383

4. Colombo, A., Damiani, E., Frati, F., Oltolina, S., Reed, K., Ruffatti, G.: The use of a meta-
model to support multi-project process measurement. In: Proceedings of 15th Asia-Pacific
software engineering conference (APSEC 2008), Beijing, China (2008) 503–510

5. Arigliano, F., Bianchini, D., Cappiello, C., Corallo, A., Ceravolo, P., Damiani, E., De An-
tonellis, V., Pernici, B., Plebani, P., Storelli, D., et al.: Monitoring business processes in the
networked enterprise. In: Data-Driven Process Discovery and Analysis. Springer (2012)
21–38

6. Azzini, A., Ceravolo, P., Damiani, E., Zavatarelli, F., Vicari, C., Savarino, V.: Driving knowl-
edge acquisition via metric life-cycle in process intelligence. In: Proceedings of the 14th In-
ternational Conference on Knowledge Technologies and Data-driven Business, ACM (2014)
26

109

7. Ceravolo, P., Zavatarelli, F.: Knowledge acquisition in process intelligence. In: Proceedings
of the International Conference on Information and Communication Technology Research.
(to be pblished)

8. Maggi, F.M., Francescomarino, C.D., Dumas, M., Ghidini, C.: Predictive monitoring of
business processes. In: CAiSE. (2014) 457–472

9. van der Aalst, W., Schonenberg, M., Song, M.: Time prediction based on process mining.
Information Systems 36(2) (2011) 450 – 475 Special Issue: Semantic Integration of Data,
Multimedia, and Services.

10. Kang, B., Kim, D., Kang, S.H.: Real-time business process monitoring method for prediction
of abnormal termination using knni-based lof prediction. Expert Syst. Appl. 39(5) (April
2012) 6061–6068

11. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting
business process performances. In: On the Move to Meaningful Internet Systems: OTM
2012. Springer (2012) 287–304

12. Pika, A., van der Aalst, W.M., Fidge, C.J., ter Hofstede, A.H., Wynn, M.T.: Predicting
deadline transgressions using event logs. In: Business Process Management Workshops,
Springer (2013) 211–216

13. Suriadi, S., Ouyang, C., van der Aalst, W.M., ter Hofstede, A.H.: Root cause analysis with
enriched process logs. In: Business Process Management Workshops, Springer (2013) 174–
186

14. Papazoglou, M., Heuvel, W.V.D.: Business process development life cycle methodology. In:
Communications of the ACM. (2007) 79–85

15. Li, M., Liu, L., Yin, L., Zhu, Y.: A process mining based approach to knowledge mainte-
nance. Information Systems Frontiers 13(3) (2011) 371–380

16. Arigliano, F., Azzini, A., Braghin, C., Caforio, A., Ceravolo, P., Damiani, E., Savarino,
V., Vicari, C., Zavatarelli, F.: Knowledge and business intelligence technologies in cross-
enterprise environments for italian advanced mechanical industry. In: Proceedings of the 3rd
International Symposium on Data-driven Process Discovery and Analysis (SIMPDA 2013),
Riva del Garda (TN), CEUR-WS.org (2013) 104–110

17. Hayes, P., McBride, B.: Resource description framework (rdf). http://www.w3.org/
standards/techs/rdf Date: 2014.

18. Carroll, J., Bizer, C., Hayes, P., Stickler, P.: Named graphs. Journal of Web Semantics 3(3)
(2005)

19. Garlik, S.H., Seaborne, A.: Sparql 1.1 query language. http://www.w3.org/TR/2013/
REC\--sparql11\--query\--20130321/ Date: 2013.

20. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of sparql. ACM Transactions
on Database Systems (TODS) 34(3) (2009) 16

21. Leida, M., Majeed, B., Colombo, M., Chu, A.: Lightweight rdf data model for business
processes analysis. Data-Driven Process Discovery and Analysis Series: Lecture Notes in
Business Information Processing 116 (2012)

22. Holsapple, C.W.: The inseparability of modern knowledge management and computer-based
technology. Journal of knowledge management 9(1) (2005) 42–52

23. Arigliano, F., Bianchini, D., Cappiello, C., Corallo, A., Ceravolo, P., Damiani, E., Antonellis,
V.D., Pernici, B., Plebani, P., Storelli, D., Vicari, C. Lecture notes in business information
processing ; 116. In: Monitoring business processes in the networked enterprise. Springer,
Berlin (2012)

24. Von Halle, B., Goldberg, L.: Business Rule Revolution (ebook): Running Business the Right
Way. Happy About (2006)

25. Taylor, J.: Decision Management Systems: A Practical Guide to Using Business Rules and
Predictive Analytics. Pearson Education (2011)

110

26. Bezerra, F., Wainer, J., van der Aalst, W.M.: Anomaly detection using process mining. In:
Enterprise, Business-Process and Information Systems Modeling. Springer (2009) 149–161

27. Wombacher, A., Li, C.: Alternative approaches for workflow similarity. In: Services Com-
puting (SCC), 2010 IEEE International Conference on, IEEE (2010) 337–345

28. Van Der Aalst, W., Van Hee, K.: Workflow management: models, methods, and systems.
MIT press (2004)

29. Fanning, K., Centers, D.P.: Intelligent business process management: Hype or reality? Jour-
nal of Corporate Accounting & Finance 24(5) (2013) 9–14

30. Lee, P.M.: Bayesian statistics: an introduction. John Wiley & Sons (2012)
31. Tomas, C.J.: Game theory methods of identifying potential key factors.

https://people.stanford.edu/calebj/content/game-theory-methods-identifying-potential-
key-factors-0 (2012)

111

Compact Regions for Place/Transition Nets

Robin Bergenthum

Department of Software Engineering and Theory of Programming,
FernUniversität in Hagen

robin.bergenthum@fernuni-hagen.de

Abstract. This paper presents compact regions to synthesize a Petri net from a
partial language. We synthesize a Petri net using the theory of regions. Let there
be a partial language, every region definition provides an inequality system and
a solution of this system is called a region. Every region defines a valid place
where a place is valid if it enables every word of the partial language. The new
compact region definition relies on compact tokenflows. Compact tokenflows are
a very efficient behavioral model for the partial language of Petri nets [3, 4]. Com-
pact regions will lead to faster synthesis algorithms computing smaller Petri nets
solving the synthesis problem.

1 Introduction

We synthesize a place/transition net (p/t-net) from a partial language, i.e. a set of labeled
partial orders (lpos) using the theory of regions [1, 2, 5]. Every type of region is based
on a behavioral model. Of course, different behavioral models result in different region
definitions, but the concepts in language based region theory are always the same [6, 7].

A place of a Petri net is valid for a specified language if it enables all words of the
language. If we execute the language in the net, the firing rule is always satisfied for
every valid place. Fix some type of behavioral model, fix a place, and fix a language:
there is an inequality system so that there is a solution of this system if and only if the
place is valid. The main idea of region theory is to consider the place as a variable in
this inequality system. All at once, we are able to solve the synthesis problem, because
we are able to calculate the set of all valid places.

The main steps of a region based synthesis algorithm are: Let there be a language
over a set of labels and build a transition for every label. Choose a behavioral model
and build the corresponding inequality system to check if an arbitrary place is valid.
Consider the place to be a variable and calculate the basis of the solution space. For ev-
ery solution in the basis add a place (and its arcs) to the set of transitions. The resulting
net solves the synthesis problem, because of two arguments: First, every place of the
constructed net is valid so that the Petri net enables all words of the language. Second,
every additional place (not in the net) is either a linear combination of added places or
is not valid. Altogether, the constructed net acts as specified or there is no such net.

In this synthesis algorithm, different behavioral models result in different inequality
systems describing valid places. The run-time, as well as the size of the calculated Petri
net, are mainly determined by the size of this inequality system. In the literature, there
are two different types of regions considering partial order behavior of Petri nets. Both

112

definitions have plenty disadvantages in most examples and applications. A transition
region [7] belongs to the behavioral model of enabled cuts [8]. A place is valid if every
set of unordered events of a specified language is enabled to occur after the occurrence
of its prefix. The enabled cuts inequality system states that every prefix (i.e. its Parikh
vector plus initial marking) produces enough tokens to enable the next maximal step.
Therefore, transition regions yield an inequality for every cut of a language. A tokenflow
region [6] belongs to the behavioral model of tokenflows [9]. A place is valid if there is a
valid distribution of tokens along the transitive order relation of the specified language.
Such a distribution of tokens needs to respect the firing rule of Petri nets. The tokenflow
inequality system demands that every event does not produce too many tokens and every
event receives enough tokens to occur. Therefore, there is a variable for every arc of the
specified language as well as two inequalities for every event.

In practical applications, partial languages have many cuts and many arcs. The en-
abled cuts inequality system as well as the tokenflow inequality system is huge. There-
fore, both existing synthesis algorithms have impracticable run-time. Paper [7] states,
the more concurrency is in the language the worse is a transition region algorithm. The
more dependency is in the language the worse is a tokenflow region algorithm.

In this short paper we present a new definition of compact region. This definition
is related to the most recent behavioral model for partial languages presented in [3, 4].
We will show that compact regions lead to much smaller region inequality systems.
The size of these systems is related to the size of the Hasse-diagrams of the specified
language. Furthermore, the reduced size leads to smaller, i.e. nicer, Petri nets.

2 Preliminaries

Let f be a function and B be a subset of its domain A. We write f |B to denote the
restriction of f to B. A function m : A → N is called a multiset. We write m =∑
a∈Am(a) · a to denote multiplicities of elements in m. Let m′ : A → N be another

multiset. We write m ≥ m′ if ∀a ∈ A : m(a) ≥ m′(a) holds. We denote the transitive
closure of an acyclic and finite relation ≺ by ≺∗. We denote the skeleton of ≺ by ≺�.
The skeleton of≺ is the smallest relation / so that /∗ =≺∗ holds. We model concurrent
or distributed systems by place/transition nets [10].

Definition 1. A place/transition net (p/t-net) is a tuple (P, T,W) where P is a finite set
of places, T is a finite set of transitions so that P ∩ T = ∅ holds, and W : (P × T) ∪
(T × P) → N is a multiset of arcs. A marking of (P, T,W) is a multiset m : P → N.
Let m0 be a marking. We call N = (P, T,W,m0) a marked p/t-net and m0 the initial
marking of N .

Let t be a transition. We denote ◦t =
∑
p∈P W (p, t) · p the weighted preset of t.

We denote t◦ =
∑
p∈P W (t, p) · p the weighted postset of t. A transition t can fire at

marking m if m ≥ ◦t holds. If t fires, m changes to m′ = m − ◦t + t◦. The most
famous behavioral model for partial order behavior of Petri nets is a process [11]. A
process is a Petri net modeling one single run of a marked p/t-net.

Definition 2. A process net is a tuple O = (C,E, F) where C is a finite set of condi-
tions, E is a finite set of events so that C ∩E = ∅ holds, and F ⊂ (C ×E)∪ (E ×C)

113

is a set of arcs. The graph (C ∪E,F) is acyclic and does not branch at conditions, i.e.
every condition has at most one predecessor and at most one successor.

Let N = (P, T,W,m0) be a marked p/t-net. A process is a pair (O, ρ) where
O = (C,E, F) is a process net and ρ : (C ∪ E) → (P ∪ T) is a labeling function.
(O, ρ) is a process of N iff the following conditions hold:

(1) ρ(C) ⊆ P , ρ(E) ⊆ T ,
(2) ∀e ∈ E : ◦ρ(e) =

∑
p∈P |{(c, e) ∈ F |ρ(c) = p}| · p,

(3) ∀e ∈ E : ρ(e)◦ =
∑
p∈P |{(e, c) ∈ F |ρ(c) = p}| · p,

(4) ∀p ∈ P : |{c ∈ C|∀e ∈ E : (e, c) 6∈ F, ρ(c) = p}| = m0(p).

Every process of a Petri net N relates to a labeled partial order. The set of labeled
partial orders induced by all processes of N is the partial language of N .

Definition 3. A labeled partial order (lpo) is a triple lpo = (V,<, l) where V is a
finite set of events, < ⊆ V × V is a transitive and irreflexive relation, and the labeling
function l : V → T assigns a label to every event.

Definition 4. Let K = (C,E, F, ρ) be a process of a marked p/t-net N . The lpo
(E,F ∗|E×E , ρ|E) is the process lpo of K. Let N be a marked p/t-net and LΠ(N)
be the set of all process lpos of N . L(N) = {(E,<, l)|(E,<, l) an lpo, (E,≺, l) ∈
LΠ(N),≺⊆<} is the partial language of N .

We specify behavior of a system by example runs. An example run is a set of events
with an acyclic relation. Of course, every example run relates to an lpo and we can
extend the partial language of Petri nets to example runs.

Definition 5. A triple run = (V,≺, l) is an example run if (V,≺∗, l) is a labeled
partial order. A finite set of example runs is a specification. Let run = (V,≺, l) be an
example run. We define run∗ = (V,≺∗, l) the lpo and run� = (V,≺�, l) the compact
lpo (cpo) of run.

Definition 6. LetN be a marked p/t-net and S = {run1, . . . , runn} be a specification.
We write S ⊆ L(N) iff {run∗1, . . . , run∗n} ⊆ L(N) holds.

Synthesis is to construct a Petri net so that its behavior matches the specification.
If there is no such net, we construct a net so that its behavior includes the specification
and has minimal additional behavior.

Definition 7. Let S be a specification, the synthesis problem is to compute a marked
p/t-net N so that the following conditions hold: S ⊆ L(N) and for all marked p/t-nets
N ′ : L(N)\L(N ′) 6= ∅ =⇒ S 6⊆ L(N ′).

3 Compact Regions

We synthesize a p/t-net from a partial language applying the theory of regions. We
construct a transition for every label of the specification and get a p/t-net without places.
The language of this net includes arbitrary behavior. Obviously, we need to add places
and arcs to restrict the behavior of such an initial net. Of course, we only add places
that do not prohibit the specification.

114

Definition 8. Let S be a specification and N = (P, T,W,m0) be a marked p/t-net. A
place p ∈ P is called feasible for S iff S ⊆ L(({p}, T,W |({p}×T)∪(T×{p}),m0(p))).

Let S be a specification and N = ({p}, T,W,m0) be a marked one-place p/t-net.
We call N a feasible p/t-net for S if p is feasible for S.

Corollary 1. Let S be a specification and T be its set of labels. Let {({p1}, T,W1,m1),
. . . , ({pn}, T,Wn,mn)} be a set of feasible p/t-nets andN = (

⋃
i pi, T,

⋃
iWi,

⋃
imi)

be their union. Of course, every place of N is feasible and S ⊆ L(N) holds.

In region theory it is well known that the following theorem holds [5].

Theorem 1. Let S be a specification and T be its set of labels. The infinite p/t-net which
is the union of all feasible p/t-nets is a solution of the synthesis problem.

To discover feasible places, we use compact tokenflows as behavioral model [3, 4].

Definition 9. Let N = (P, T,W,m0) be a p/t-net and run = (V,≺, l) be an example
run so that l(V) ⊆ T holds. We denote ≺� = / . A compact tokenflow is a function
x : (V ∪ /)→ N. x is compact valid for p ∈ P iff the following conditions hold:

(i) ∀ v ∈ V : x(v) +
∑
v′/v x(v

′, v) ≥W (p, l(v)),
(ii) ∀ v ∈ V :

∑
v/v′ x(v, v

′) ≤ x(v) +
∑
v′/v x(v

′, v)−W (p, l(v)) +W (l(v), p),
(iii)

∑
v∈V x(v) ≤ m0(p).

run is compact valid for N iff there is a compact valid tokenflow for every p ∈ P .

Papers [3, 4] prove that the partial language of a marked p/t-net is the set of its
compact valid example runs.

Theorem 2. The language of a marked p/t-net is its set of compact valid example runs.

At this point we are able to state the main contribution of this short paper. We take
advantage of compact tokenflows and define the notion of a compact region.

Definition 10. Let S = {(V1,≺1, l1), . . . , (Vn,≺n, ln)} be a specification, T be its set
of labels, and p be a place. We denote ≺�i = /i .

A function r : (
⋃
i(Vi∪/i)∪(T ×{p})∪({p}×T)∪{p})→ N is a compact region

for S iff ∀i ∈ N : r|{Vi∪/i} is compact valid for p in ({p}, T, r|(T×{p})∪({p}×T), r(p)).

Theorem 3. Let S be a specification and T be its set of labels. Every compact region
r for S defines a feasible p/t-net Nr = ({p}, T,W,m0) and vice versa.

Proof. Let r be a compact region. For every example run in S there is a valid compact
tokenflow r|{Vi∪/i} of p in Nr = ({p}, T, r|(T×{p})∪({p}×T), r(p)). Of course, S ⊆
L(Nr) holds and Nr is feasible.
Let N = ({p}, T,W,m0) be a feasible p/t-net so that S ⊆ L(Nr) holds. There is
a valid compact tokenflow ri for every example run of S. Obviously, the union r =⋃
i ri ∪W ∪m0 is a compact region.

115

Altogether, we are able to express the set of all feasible p/t-nets by a single in-
equality system. In this system there is a variable for every element in the domain of a
compact region, i.e. one variable for every event, another variable for every skeleton arc,
two variables for every label, and a single variable for the initial marking. The complete
inequality system is built from the inequalities defined in Definition 9. According to (i)
and (ii) there are two inequalities for every event of the specification. According to (iii)
there is another inequality for every example run. The set of positive integer solutions
of this inequality system is the set of all feasible nets. We call this inequality system the
compact region inequality system. The union of positive integer basis solutions of the
compact region inequality system is a solution of the synthesis problem.

The transition region inequality system [7] and the tokenflow region inequality sys-
tem [6] are defined just like a compact region inequality system. The tokenflow region
inequality system has two additional variables for every transitive arc of the specifica-
tion. For most examples the size of the tokenflow system is quadratic in the size of the
compact system. The transition region inequality system has one inequality for every
cut of the specification. Note, the number of cuts may be exponential in the number of
events and the number of cuts is always bigger than the number of skeleton arcs. Al-
together, the compact system is always smaller than the other two inequality systems.
Compact regions are the most efficient definition of a region of a partial language. Right
now, I am implementing compact region synthesis in a tool called MoPeBs Alpaca. First
results are very promising and match the theoretical considerations. Synthesis is much
faster and the compact solution space leads to nets having fewer places. Of course, this
is provisional. Comprehensive implementation and run-time tests is future work.

References
[1] Ehrenfeucht, A.;Rozenberg, G.: Partial (Set) 2-Structures. Part I: Basic Notions and the

Representation Problem. Acta Inf. 27 (4), 315–342, 1990.
[2] Ehrenfeucht, A.;Rozenberg, G.: Partial (Set) 2-Structures. Part II: State Spaces of Concur-

rent Systems. Acta Inf. 27 (4), 343–368, 1990.
[3] Bergenthum, R.: Verifikation von halbgeordneten Abläufen in Petrinetzen. PhD in computer

science, Library of the University of Hagen, 2013.
[4] Bergenthum, R.; Lorenz, R.: Verification of Scenarios in Petri Nets Using Compact Token-

flows. Fundamenta Informaticae 137, 117–142, IOS Press, 2015.
[5] Badouel, E.; Darondeau P.: Theory of Regions. Lectures on Petri Nets, LNCS 1491, 529–586,

Springer, 1998.
[6] Bergenthum, R.; Desel, J.; Lorenz, R.; Mauser, S.: Synthesis of Petri Nets from Finite Partial

Languages. Fundamenta Informaticae 88, 437–468, IOS Press, 2008.
[7] Bergenthum, R.; Desel, J.; Mauser, S.: Comparison of Different Algorithms to Synthesize a

Petri Net from a Partial Language. ToPNoC 3, LNCS 5800, 216–243, Springer, 2009.
[8] Grabowski, J.: On partial languages. Fundamenta Informaticae 4, 427–498, IOS Press,

1981.
[9] Bergenthum, R.; Desel, J.; Juhs, G.; Lorenz, R.; Mauser, S.: Executability of Scenarios in

Petri Nets.. Theoretical Computer Science 410 (12-13), 1190–1216, Elsevier, 2009.
[10] Desel, J.; Reisig, W.: Place/Transition Petri Nets. Lectures on Petri Nets, LNCS 1491,

122–173, Springer, 1998.
[11] Goltz, U.; Reisig, W.: Processes of Place/Transition-Nets. Automata Languages and Pro-

gramming 154, 264–277, Springer, 1983.

116

An Optimal Process Model for a Real Time
Process

Likewin Thomas∗, Manoj Kumar M V∗, Annappa B∗, and Vishwanath K P†

∗Department of Computer Science and Engineering
†Department of Mathematical and Computational Science

National Institute of Technology Karnataka, Surathkal,
Mangalore - 575025

India
{likewinthomas, manojmv}@nitk.ac.in

annappa@ieee.org

shastryvishwanath@gmail.com

http://www.cse.nitk.ac.in

Abstract. Recommending an optimal path of execution and a com-
plete process model for a real time partial trace of large and complex
organization is a challenge. The proposed AlfyMiner (αyMiner) does
this recommendation in cross organization process mining technique by
comparing the variants of same process encountered in different organiza-
tion. αyMiner proposes two novel techniques Process Model Compara-
tor (αyComp) and Resource Behaviour Analyser (RBAMiner). αyComp

identifies Next Probable Activity of the partial trace along with the
complete process model of the partial trace. RBAMiner identifies the
resources preferable for performing Next Probable Activity and analyse
their behaviour based on performance, load and queue. αyMiner does
this analysis and recommend the best suitable resource for performing
Next Probable Activity and process models for the real time partial trace.
Experiments were conducted on process logs of CoSeLoG Project1 and
72% of accuracy is obtained in identifying and recommending NPA and
the performance of resources were optimized by 59% by decreasing their
load.

Keywords: Cross Organization Process Mining, Resource Behavior, Best
Resource, Polynomial Regression Model, Resource Performance, Resource
Load, Resource Queue: Average Waiting Time.

1 Introduction

In the current world where the resources are being shared among different or-
ganization through the cloud computing paradigm, most of the organizations
have started to shift towards Shared Business Process Management Infrastruc-
ture (SBPMI). Due to this shift in modelling paradigm, organizations have to

1 http://dx.doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270

117

http://www.cse.nitk.ac.in

continuously improve their process [1]. But most of the organizations are still
depending on the external service providers to monitor their business process,
hence the business links are to be established with those external agencies [2].
This issue was well addressed by the Information Technology by developing var-
ious work-flow tools [3] [4] [5] [6]. The challenge here is to extend the service
from boundary of single organization to cross organizations.

Due to data explosion [7] getting insight and performing analysis on the
data to understand their behaviour and discover an optimized process model
is always been a challenge to any organization in the process mining environ-
ment.αyMiner uses SBPMI, to analyse the data behaviour of an organization.
This is achieved by comparing the model of same variant using RBAMiner in
SBPMI and recommending the best suitable process model. The context of this
paper is the CoSeLoG Project2. The data used for the experiment and analy-
sis of proposed algorithm is obtained from the Configurable Services for Local
Government (CoSeLoG) Project. This project was executed under Dutch Orga-
nization for Scientific Research (NWO) [8].

αyMiner is a new analytical tool for discovering the optimal path of com-
pletion of a partial trace along with recommendation of complete process model.
It proposes two novel techniques αyComp and RBAMiner. αyComp identifies
the optimal path of completion by matching the partial trace and discovering
the variants in all process models logged in the repository. It identify and recom-
mends the Next Probable Activity (NPA) of partial trace. RBAMiner identifies
the suitable resource for performing the discovered NPA, by analysing the be-
haviour of all resources capable of performing NPA based on their performance,
load and waiting time.

αyMiner is analysed using the running example [2]. NPA for the partial
trace and optimal process model is identified in cross organization environment
using αyComp [3] and the resource preferable for performing NPA is analysed

and recommended using RBAMiner [4]. The experiment is conducted using the
real time event log of CoSeLoG Project3 and the result of RBAMiner is presented
in section [5].

2 Running Example

The proposedαyMiner is illustrated using the running example of four variant

process model containing 9 activities, shown in Figure[1b]. The corresponding
sample event log describing the process execution of the process model is shown
in Table[1]. Here the traces matches model perfectly which is not the cases in
real life process model. The complete log file of the running example can be

2 http://dx.doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270
3 http://dx.doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270

118

found at Process Mining @ NITK 4. The experimental results are obtained using
the CoSeLoG Project5.

2.1 Proposed Problem

Consider an online process shown in Figure[1a], the dotted line shows the path
of execution of the online process. Sub-scripted values at each activities are the
sequence of occurrence of the activities (A1 → B2 → C3). At activity C 3,
decision has to be taken about which next activity to be performed, either D
or E. αyMiner identify the NPA and recommends the suitable resource for
performing NPA.

(1)

(2)

(3)

(4)

(Next Probable Activity)

D

F G H

E

(a) Illustration of On-
line Process Model

A B C

D G

E
H A B C

D G

E

H

I

A B

C

D

E

I

G

H

F

A

B

C E

G

I

H

D

F

Process Model 1 Process Model 2

Process Model 3 Process Model 4

85 85 20

29

51

23

35

37

19

56
42

24

14 14

40

26

26

30

33

23

15 15

1920

80 80

29

23

28

23

20

38

1612

28

26

32

29

15

15

39

42

47

60

50

36

50

36

6 610

6

6

5

10

6

(b) Process Models: Four variants of interview pro-
cess (registration (A), validity check (B), document
check (C), information check (D), decide (E), interview
(I), group discussion (G), result (H) and re-initiates
(F))

Fig. 1: Running Example

3 Alfy Miner (αyMiner)

αyMiner is intended to identify and predict the optimal path of execution
along with the complete process model, for a real time process. On identifying
the currently executing activity Ai, αyMiner recommends the optimal path of
completion and the best suitable process model matching the partial trace with
same variant event logs, logged in the process model repository. On identify-
ing the matched variants, the optimal process models are identified by running
process model comparator αyComp which matches the partial trace. Recommen-

dation of Next probable Activity NPA is done by selecting NPA (Ai) in identified
suitable process model. The Algorithm [1] gives the execution steps ofαyMiner.

4 http://http://processminingnitk.blogspot.in/2015/03/best-resource-
recommendation-for.html

5 http://dx.doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270

119

Case ID TRACE Duration

10358444 A12350
24/01/14 B630640

28/01/14 C221210
29/01/14 D23640

02/02/14 E7560
15/02/14 H631250

26/02/14 33

12421232 A23640
25/01/14 B530640

26/01/14 C230410
28/01/14 D12350

09/02/14 G7716
13/02/14 H631250

24/02/14 30

12592056 A12350
02/03/14 B4503

12/03/14 C630450
18/03/14 G721560

26/03/14 E7560
27/03/14 H631250

08/04/14 37

12610928 A23640
12/05/14 B530640

17/05/14 C230410
29/05/14 E7560

05/06/14 D23640
16/06/14 G7716

28/06/14 H631250
05/07/14 54

12984815 A12350
16/08/14 B630450

29/08/14 C221210
09/09/14 D12350

16/09/14 G721560
22/09/14 E7716

15/10/14 H631250
27/10/14 72

(a) Event Log of Process Model 1

Case ID TRACE Duration

13945854 A23640
26/01/14 B450320

28/01/14 C630450
31/01/14 D23640

15/02/14 G720560
19/02/14 H631250

26/02/14 31

13968144 A12350
12/02/14 B630450

19/02/14 C221210
22/02/14 E12350

09/03/14 I631210
26/03/14 H631250

28/03/14 44

15073705 A12350
12/04/14 B530640

29/04/14 C630450
02/05/14 D12350

15/05/14 G771620
19/05/14 E720560

26/05/14 H631250
08/06/14 57

16609162 A23640
15/04/14 B530640

19/04/14 C230410
02/05/14 E720560

15/05/14 D23640
16/05/14 G771620

18/05/14 H631250
20/05/14 35

16789201 A12350
19/06/14 B630450

23/06/14 C221210
29/06/14 D23640

15/07/14 G721560
27/07/14 E771620

09/08/14 I641210
16/08/14 H631250

23/08/14 65

(b) Event Log of Process Model 2

Case ID TRACE Duration

16796450 A12350
02/05/14 B450320

23/05/14 C630450
15/06/14 E720560

19/06/14 I651210
09/07/14 H631250

27/07/14 86

17031584 A23640
26/07/14 B450320

15/08/14 C221210
29/08/14 E720560

12/09/14 F720560
28/09−14 B630450

13/10/14 C221210
18/10/14 E720560

22/10/14 I651210
29/10/14 H631250

30/10/14 96

17939005 A12350
05/10/14 B630450

13/10/14 C630450
22/10/14 E720560

29/10/14 F720560
13/11/14 B450320

19/11/14 D23640
02/12/14 E720560

06/12/14 G720560
10/12/14 H631250

24/12/14 80

19472044 A23640
15/12/14 B530640

19/12/14 C630450
28/12/14 E720560

03/01/15 F720560
05/01/15 B630450

16/01/15 C230410
18/01/15 E720560

22/01/15 G721560
23/01/15 I631210

28/01/15 H631250
29/01/15 45

25845687 A23640
12/11/14 B530640

14/12/14 C630450
19/12/14 E720560

22/12/14 G721560
27/12/14 H631250

30/12/14 48

(c) Event Log of Process Model 3

Case ID TRACE Duration

19830478 A12350
02/05/14 B12350

02/05/14 E12350
02/05/14 G12350

02/05/14 H12350
02/05/14 53

19834032 A12350
02/05/14 B12350

02/05/14 E12350
02/05/14 F12350

02/05/14 C12350
02/05/14 E12350

02/05/14 G12350
02/05/14 H12350

02/05/14 52

19836934 A12350
02/05/14 B12350

02/05/14 C12350
02/05/14 E12350

02/05/14 F12350
02/05/14 B12350

02/05/14 E12350
02/05/14 G12350

02/05/14 H12350
02/05/14 59

19838656 A12350
02/05/14 D12350

02/05/14 B12350
02/05/14 E12350

02/05/14 F12350
02/05/14 B12350

02/05/14 E12350
02/05/14 G12350

02/05/14 H12350
02/05/14 37

19844185 A12350
02/05/14 D12350

02/05/14 C12350
02/05/14 E12350

02/05/14 F12350
02/05/14 B12350

02/05/14 E12350
02/05/14 G12350

02/05/14 H12350
02/05/14 29

(d) Event Log of Process Model 4

Table 1: Event logs of four different process models of interview pro-
cess shown in figure[1b]. Each log table shows Case ID1, Trace2 and the total
duration3. Each cell in trace, shows the activity of the trace, Resource (Super-
scripted) and the time of occurrence of that activity (sub-scripted).

Algorithm 1: αyMiner

Input: Partial Real Time Trace
Output: NPA & Process Model

1 Develop Process model repository;
2 repeat
3 MatchV ar ← Call Match Variant(Ai);
4 αyComp ← αyComp(MatchV ar) ;

5 Set(NPA) ← InOutBinding(C-Net)

6 until for each currently executing activity Ai

3.1 Process Model: Casual Net

αyMiner uses Casual Net: C-Net notation to represent the process model. C-

Net is a six-tuple: {A,D,ai,ao,I,O} representation of process model with A:{set
of activities}, D :{Set of Dependencies}, ai:{Set of Start activities}, ao: {Set of
Output activities} , I : {Set of Input Binding} , O : {Set of Output Binding}.

120

C-Net for all the four process model of the running example is shown in Figure 2.
The repository of process model is maintained for analysing process behaviour.

{ A, B, C, D, E, G, H}

{(A,B), (B,C), (C,D), (C,E), (D,G), (G,H), (E,H)}

{A}

{H}

{I(A):{Null}, I(B):A, I(C):B, I(D):C, I(E):C, I(G):D, I(H):{G,E}}

{O(A): B, O(B):C, O(C):{D,E}, O(D):G, O(G):H, O(E):H, O(H):{Null}

{ A, B, C, D, E, G, I, H}

{(A,B), (B,C), (C,D), (C,E), (D,G), (E,I), (G,H), (I,H)}

{A}

{H}

{I(A):{Null}, I(B):A, I(C):B, I(D):C, I(E):C, I(G):D, I(H):{G,E}}

{O(A): B, O(B):C, O(C):{D,E}, O(D):G, O(G):H, O(I):H, O(H):{Null}

{ A, B, C, D, E, F, G, I, H}

{(A,B), (B,C), (B,D), (C,E), (D,E), (E,F), (E,I), (E,G), (F,B), (I,H), (G,H)}

{A}

{H}

{I(A):{Null}, I(B):{A,F} I(C):B, I(D):B, I(E):{C,D}, I(F):E, I(I):E, I(G):E, I(H):{I,G}}

{O(A): B, O(B):{C,D}, O(C):E, O(D):E, O(E):{I,G,F}, O(F):B, O(I):H, O(G):H, O(H):{Null}

{ A, B, C, D, E, F, G, I, H}

{(A,B), (A,C), (A,D), (B,E), (C,E), (D,E), (E,F), (F,B), (F,C), (F,D), (E,G), (E,I), (G,H), (I,H)}

{A}

{H}

{I(A):{Null}, I(B):{A,F}, I(C):{A,F}, I(D):{A,F}, I(E):{B,C,D}, I(F):E, I(G):E, I(I):E, I(H):{G,I}}

{O(A): {B,C,D}, O(B):E, O(C):E, O(D):E, O(E):{F,G,I}, O(F):{B,C,D} O(I):H, O(G):H, O(H):{Null}

A
D
ai

ao

I
O

=
=
=
=
=
=

A
D
ai

ao

I
O

=
=
=
=
=
=

A
D
ai

ao

I
O

=
=
=
=
=
=

A
D
ai

ao

I
O

=
=
=
=
=
=

Process Model 1 Process Model 2

Process Model 3

Process Model 4

Fig. 2: C-Net Representation of process Model in Figure 1b

3.2 Matching variants with Path Detector

When an online process is getting executed, identifying to which variant the cur-
rently executing trace belongs is a challenge for αyMiner. Algorithm Variant

Match[2] identify the path of execution along with the set of possible NPA.
VariantMatch uses the concept of linked list with 2 nodes: CellNode and Vari-
antNode which are represented as class. CellNode = {from1 ←

⋃
{•a}, to2 ← a,

value3← {|•a→ a|σ}, count4 = |•a→ a| ∈ ζ. VariantNode {*matrix (address of
CellNode), *prev2 *next3 (address of next and previous CellNode)}. The CellNode
Figure[3a] stores the information of trace A→B→C→E→F→B→D→E→G→H
of process model 2. The value3 field remains 1 till the sequence in trace appears
first time. On identifying the loop, value in value3 filed is updated to 2 as shown
at CellNode with memory 500 in Figure[3a]. Value3 field is an array and stores
the value 1,2 to indicate the sequence B→C is appearing second time in the
trace.Count3 is a counter of the sequence appearance in the trace. VariantNode
Figure[3b] stores the information of all the variants. This is used while compar-
ing the online sequence with the variants. If a variant matches the sequence,
then that variant is retained else it is deleted from the linked list.

3.3 Process Model Comparator (αyComp)

αyComp compares the C-Net of all the variants in cross organization environ-
ment based on following comparison metrics.

1. Process Model Metric: Compare total number of activities, resources, traces
and variants

2. Relation Metric: Compare total number of parallel, serial activities and
loops.

121

From

To

Value

Count

*Next

A

B

1

1

100

100 200 300

B

C

1

1

200

C

E

1

1

300

E

F

1

1

400

400

F

B

1

1

500

500

B

C

2

600

600

C

E

2

700

700

E

G

2

2

800

800

G

I

2

2

900

900

I

H

2

2

Null

1 2 1 2

050

(a) Structure of CellNode for sequence
A→B→C→E→F→B→D→E→G→H of process
model 2

*Matrix

*Prev

*Next

50

Null

10100

1050

10000

10200

1100

10100

Null

1010010000 10200

First Cell Node
Second Cell Node Third Cell Node

(b) Structure of Vari-
antNode for the set
of CellNode of process
model 2

Fig. 3: Structure of CellNode and VariantNode

Algorithm 2: Matching the Variants: V ariantMatch()
Input: Online process
Output: Matching matrix

1 Match Variant() struct variantNode?gvn, ?tempvn; (gvn : address of linked list say
globle Variant Node), Let ?gvn gives address of the double linked list, Initialize all counter
in cellNode → 0;

2 repeat
3 ?tempvn ← &gvn Get the address of the double linked list;
4 repeat
5 ?tempcn ← &matrix Get the address of the matrix ;
6 tempcn→from = sequence[i] ∧ tempcn→to = sequence[i+1];
7 if not found then Delete current variantNode from double linked list and go to 5
8 else Increment the member variable count;
9 if count == val[count] (Current and previous check are passed) then Go to

next→variantNode in the double linked list and go to step 5
10 else Delete the current→variantNode from the double linked list and go to 5

11 until ?next in double linked list is null

12 until for each activity in online process

13 Remaining variantnode present in tempvn are all matched variant table for the given

sequence.

3. Complexity Metric: Compare total number of split and join.

4. Service Time Metric: Compare the queue time for each activity.

5. Fitness Metric: Running fitness test along with the time of completion and
valid no of sequence in each event log.

Process Model Metric The process model comparison is done based on No
of {Activities, Resources, Traces & Varinats } and is shown in Table 2a.

Relation Metric αyComp analysed that if a model has more parallel relation
it performs well when compared to serial relation, at the same time if the loop
is increased the consumption of execution time also increases. Parallel relation
is identified by Equation 4 in Definition 1. Loops are identified by Equation 5.

Definition 1. Log based ordering relation
Let A = [a, b, c, d, e] be the set of activities and let L be the simple event log

122

i.e., L ∈ A ∗ and Let A be athi activity and B be athi+1 then,

˙DirectlyFollow(a>Lb) ← {iff ∃ trace σ = 〈t1, t2, ..., tn〉 ∧

i ∈ [1, 2,, n− 1] | σ ∈ L,

∧ ti = a,∧ ti + 1 = b} (1)

˙Casuality(a−→Lb) ← {iff a >L b ∧ b ≯L a} (2)

˙Unrelated(a#Lb) ← {iff a ≯L b ∧ b ≯L a} (3)

˙Parallel(a‖Lb) ← {iff a >L b ∧ b >L a} (4)

˙Loop(a>Lb>La) ← {iff (ai == ai+2) → ai >L ai+1 >L ai+2} (5)

The Table 2b gives the relation metric of all the four models in running
example.

Complexity Metric Complexity metric identifies the joins and splits in the
process model. Joins and split are identified using the result of output and in-
put binding. Consider the Figure[1b] where for process model 1: O(A)={B}=85
times, similarly the split {CDE} = 20, its means 20 times activity C is 20 times
followed by both D and E, join {GEH} is joined 16 times. Using this information
complexity metric shown in Table[2c] is developed.

Service Time Metric This metric gives the total service time comparison
for an activity in each model. This comparison helps in identifying the model
serving an activity with less service time. The service time is calculated by∑each cases
i=1 duration(Ai), where Ai ⊆ A (set of activities). The sample output

in seconds is shown in Table 2d.

Fitness Metric This gives the numbers of traces that can be successfully run
on the model. This is helpful in deciding how efficient the model is, in running
the trace. αyComp identifies the model which runs maximum number of traces
with minimum time. Consider the Table 2e.

3.4 Binding Relation

On identifying variants following the partial trace, the NPA of currently execut-
ing activity Ai is identified using binding relation which bind the incoming and
outgoing activity of Ai. Algorithm 3 eplain the concept of binding relation, where
for each trace in a case, if an activity A is followed by B, then A.outbond ← B
∧ B.inbound ← A, i.e., A has out-bounding relationship with B and similarly B
as in-bounding relationship with A

123

No of Activities No of Resources No of Traces No of Variants

PM 1 8 16 90 10
PM 2 8 14 80 13
PM 3 9 14 56 19
PM 4 9 14 86 51

(a) Process Model Metric

No of Dependency No of Parallel No of Loops No of Serial

PM1 7 2 0 5
PM2 8 4 0 4
PM3 11 2 2 7
PM4 14 3 3

(b) Relation Metric

Joins Splits

PM1 19 20
PM2 16 12
PM3 29 29
PM4 33 28

(c) Complexity Metric

A B C D

PM1 3678956 45896374 56987845 1236589
PM2 2598964 56978746 78594785 4589647
PM3 4577896 36987567 23698124 5698347
PM4 1236978 23678945 22456378 4548768

(d) Service Time Metric

PM1 T(PM1) PM2 T(PM2) PM3 T(PM3) PM4 T(PM4)

Event Log1 1 56897845 0.9 78456975 0.75 45789647 0.65 56587874
Event Log2 0.8 45878123 1 45678412 0.9 78956478 0.95 78945698
Event Log3 0.6 45236984 0.75 56898774 1 69875457 1 65327841
Event Log4 0.45 32789564 0.6 68974564 0.75 39845641 1

(e) Fitness Metric

Table 2: Process Model Comparator (αyComp)

Algorithm 3: To calculate Input & Output Binding
1 InOutBinding() Input: Ai, RTrace

Output: Ai.InputBinding, Ai.OutputBinding
2 repeat
3 if (|a >L b|) then
4 a.Outbound ← b ∧ b.Inbound← a

5 |a >L b| =
∑
σ∈L

L(σ)× |{1 ≤ i < |σ| | σ(i) = a ∧ σ(i+ 1) = b}| [see [7]]

6 until for each sequence in trace σ in event log L

4 Resource Behaviour Analyser (RBAMiner)

αyMiner on discovering suitable process model with NPA identifies the re-
sources preferable for performing NPA. Set of resource preferable for perform-
ing NPA is identified using Activity/Resourcerep[3]. RBAMiner analyse the be-
haviour and recommend the suitable resource for performing NPA. Behaviour of
the resources is analysed based on 3 parameter: Performance, Load and Queue
using polynomial regression model for load and performance [4.2] and Average
Servicing Time at resource using queue model [4.3]. Algorithm 4 explains the
concept of resource behaviour analysis.

4.1 Activity/Resourcerep

αyMiner identifies the list of resources performing an activity in entire process
log along with the time consumed by them for performing that activity. The
Table 3 gives representational view of list of resources performing an activity in
process model 1 along with the time consumed.

124

Algorithm 4: RBAMiner

1 RBA(NPA)()
Input: NPA&BestResActivity
Output: RecommendationofRes(NPA)

2 repeat
3 Load(Res(NPA))←− Poly.Load(Load(Res(NPA))); [see algo5]

4 Perf(Res(NPA))←− Poly.Perf(Res(NPA)); [see algo5]

5 AvgWaitingT ime(Res(NPA))←− Queue(Res(NPA)); [see algo 6]

6 until (for each resource of NPA in BestResActivity Table)

7 Recommend the optimal load, performance and waiting time resource

Activity Res12350 Res23640 Res630450 Res530640 Res450320 Res221210 Res230410 Res501 Res771620 Res502 Res771620 Res721560

A 36.657 45.380 DNP DNP DNP DNP DNP DNP DNP DNP DNP DNP
B DNP DNP 18.473 22.667 9.25 DNP DNP DNP DNP DNP DNP DNP
C DNP 7 24.684 DNP DNP 5.4667 22.294 DNP DNP DNP DNP DNP
D DNP 25.53 DNP DNP DNP DNP DNP 72 11.5 DNP DNP DNP
E DNP 25.531 DNP DNP DNP DNP DNP 62.5 DNP 91 11.5 DNP
G DNP DNP DNP DNP DNP DNP DNP DNP 7 DNP DNP 13.944

Table 3: Activity/Resourcerep of process model 1 of running example
[DNP: Did Not Play]

4.2 Resource load & performance analyser

The Yerkes-Dodson Law of Arousal, also known as Arousal Theory, states that
by increasing arousal, the workers performance can be improved. However, if the
level of arousal increases too much, performance decreases Figure[4a] [9]. The
RBAMiner identifies the level of arousal : Optimal Load i.e., the maximum load
the resource can handle efficiently, along with its performance using polynomial
regression model. Performance is a ratio of Total time taken by Load. The per-
formance was analysed by increasing the load and observing the time taken.
It was observed that, as the load was increased, the consumption of the time
was decreasing. But at some point there was a drift and the time consumption
started increasing. That drifted point is known as Arousal (optimal load and
performance of the resources). The Algorithm[5] identifies the load ` and perfor-
mance [Total time÷ `] for /resource/unit time.

The RBAMiner first filters the unperformed load1 (an activity with 0 ms)
and residual load2 (an activities with exceptional duration). Then the actual
load (`) and average time of Service (α) of each worker each month is identi-
fied. Polynomial regression model[5] is applied on this cleaned data. Since the
RBAMiner is intended in identifying the second degree regression model, the
regression model initialize a 3×3 matrix (A) and 3×1 matrix (B) as shown in
figure [4b& 4c]. Then the transpose of matrix A is multiplied with matrix B.
The result obtained is the coefficient of polynomial equation. On applying the
load on an equation the polynomial curve (power curve) is obtained as shown in
figure. On analysing the polynomial curve and applying the Yerkes-Dodson Law
the optimal load and optimal performance of a resource is identified for each
month.

125

P
e
rf

ro
m

a
n
c
e

Load

Optimal Load

Optimal Performance

(a) Yerkes Dodson Law

A =


n

n∑
1
`

n∑
1
`2

n∑
1
`

n∑
1
`2

n∑
1
`3

n∑
1
`2

n∑
1
`3

n∑
1
`4


(b) Matrix Table A

B =


n∑
1
α

n∑
1

(α×`)
n∑
1

(α×`2)


(c) Matrix Table B

Fig. 4: Structure of Power Curve for identifying the Optimal Load and Per-
formance and the Structure Initial load & performance matrix for running Poly-
nomial Regression Model

Algorithm 5: Resource Second Order Polynomial Regression Model
Input: ` (Total Load) on each resource each month and α (Log(Average Service Time)) for

running the load ` per month
Output: Optimal Load L & Optimal Performance P

1 Let A[3,3] & B[1,3] be 2 initial Matrix as shown in figure[4b & 4c]; k=0;
2 repeat

3 AInverse ←− Transpose(A, 3); Transpose: Function transposing the matrix ;

Result←− multiplyMatrices(AInverse, B); multiplyMatrices: Function for
multiplying matrix ;

4 repeat
5 β[i]←− Result[i][j]; where β= Coefficient of Polynomial Equation
6 until ((i=0 to 3) ∧ j=0)

7 Polynomial Equation : β0 + β1`+ β2`
2

8 until (for each resource each unit time)

4.3 Activity Servicing Time Model

Along with identification of load and performance of the resource preferable
for performing NPA, RBAMiner also finds the Activity Servicing Time (i.e.,
the average waiting time for an activity to be served by a resource), before
that resource is recommended. Since the interest is in finding the queue at
each resource, RBAMiner uses Single-Server Models (M/M/1):(GD/∞/∞) and
(M/M/1):(GD/N/∞). Here the model (M/M/1):(GD/∞/∞) describe (Arrival1/
Departure2/ Server3):(Queue discipline4/ Max number in Queue5/ Source of
Calling6).

Arrival1 (λ) is the rate at which the activities are arrived at each resources
and Departure2 (µ) is the rate at which the arrived activities are served. Since
RBAMiner is intended in identifying the average waiting time at each resource,
the single server model is applied. When data was analyzed for First Come First
Serve FCFS, Last Come First Serve LCFS and Service in Random Order SIRO,
it was understood that arrival of the activity was following General Discipline
GD as its Queue Discipline4. As the number in queue and source of calling is
not defined RBAMiner marks them as infinity. The average waiting time in the

126

system Ws is identified using Equations [6- 9]. The Algorithm Activity Servicing
Time [6] starts with identifying the arrival rate λ and the servicing rate µ at
each resources.

The λn & µn in generalized model is shown in Equation[6]. The traffic ρ:
number of activities arriving and getting served per unit time is shown in Equa-
tion[7]. Hence the Average waiting time in system Ls is given in Equation[9].

λn = λ

µn = µ

}
Where n = 0,1,2.... (6) ρ =

λ

µ
(7)

Ws =
Ls
λ

(8) Ls =
ρ

1− ρ
(9)

Algorithm 6: To Discover the Activity Servicing Time
Input: Set of resources:<, Trace:=, Duration of service:∂
Output: Arrival λ, Service µ, Traffic ρ, Ls,Ws

1 Let Arrival λ ∈ Load ` discovered on /Resource/month; Service µ ∈ service rate of λ; Π be
No of Days in month

2 if (if ((Π − =.Date)× 24hrs× 60Sec) ≥ =.∂ then Event is executed in same month;
µ(<Filtered Year Month)←− µ(<Filtered Year Month) + 1;

3 else ⊥ = d
((=.∂)− ((Π − =.Dt)× 24hrs× 60Sec))

Π × 24× 60
e

µ(<Filtered Year Month +⊥)←− µ(<Filtered Year Month +⊥) + 1;

4 Average Servicing Time in system ← Equation [6 to 9]

5 Experimental Analysis and Result

The αyMiner algorithm is evaluated by running it on CoSeLoG Project6. The
experiments ExpNPA, ExpAST and ExpL&P was performed on the CoSeLoG
Municipality 2, which contains 645 cases and 376 activities. Experiments were
conducted and analysed on set of every 100 cases.αyMiner makes 4 assumption:
Any activity whose duration is recorded as 0 millisecond is considered as never
been executed, since the nanosecond time is not recorded, vocabulary of an
activity is not taken into account [1], don’t deal with Live or Dead locks and
assume that all process have same starting activity.

5.1 Design of Experiment

The αyMiner experimental set up is shown in Figure [5]. Where the log is first
cleaned and initialized using initializer from which the NPA is identified. Optimal
resource for performing NPA is identified and their behaviour is analysed. Finally
αyMiner recommends the best process and resource model.

6 http://dx.doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270

127

Fig. 5: Illustration of Online Process Model
5.2 Recommendation of Next Probable Activity (NPA): ExpNPA

Experiment was simulated in the form of supervised learning, where the test
ExpNPA was conducted for every 100 cases and starting from 2nd activity of the
sequence. ExpNPA was analysed by comparing it with the actual path of execu-
tion. The result of this comparison is shown un Figure [6] and on analysis it is
studied that the percentage of error rate (marked by green line) in recommenda-
tion is lesser in later positions of execution when compared to earlier positions.
The ExpNPA achieved 72.8568% of efficiency. On analysing the graph, it is
understood that the behaviour of recommended path is always below the actual
path of execution. Inclination shows the huge difference of behaviour between
the actual and recommended path. For the cases 400 to 500, it is observed that
the graph don’t have red line, as the path of execution is critical and was ob-
served to take optimal time for completion. Hence this proves that αyMiner,
don’t recommend if the path of execution is observed to be optimal.

Fig. 6: Result of ExpNPA

128

5.3 Recommendation of Resource capable for performing NPA:
ExpAST

The ExpAST for each resource performing NPA. Waiting time of recommended
resource was compared with the actual resource and it was studied that their per-
formance was improved by 59.7303%. The Figure [7] show the result of ExpAST .
The ExpAST , discovered the better path of execution based on resource aver-
age service time and it is also understood αyMiner, don’t recommend if the
resources to whom the task is assigned is efficient in performing.

Fig. 7: Result of ExpAST

100 200 300 400 500 600 Overall

560530 0.0178571 0.005128 0.005525 0.006329 0.005495 0.009009 0.000787
560598 0.1666667 0.083333 0.166667 0.333333 0.111111 0.090909 0.016949
560521 0.0714286 0.090909 0.083333 0.012987 0.052632 0.008621 0.004587
560532 0.0076336 0.005102 0.009009 0.007194 0.003279 0.005051 0.000517
4634935 0.1428571 0.083333 0.142857 0.043478 0.009709 0.016129 0.006329
560458 0.0069444 0.007519 -0.00115 0.00304 0.00625 0.006369 0.00036
560429 0 1 1 1 1 1 1
560528 0 1 0.5 1 0.5 1 0.166667
560519 0.0153846 0.009009 0.013699 0.01 0.007246 0.001605 0.001754

Table 4: Result of Average Waiting time for CoSeLoG project

5.4 Polynomial regression model: ExpL&P

The result of ExpL&P is shown in Table [5] and the Figure [8] shows the polyno-
mial curve. Using the law of Arousal, the optimal load and performance at each
resource can be identified. This result is used in making appropriate decision

129

about resource behaviour and load assignments. Using the outcome of experi-
ment proper recommendations can be made, whether to assign the task to that
resource ot not.

89.27518988 2.783782314

y = 0.0232x2 - 19.935x + 3468.5

R² = 0.3719

-2000

0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

T
o

ta
l

T
im

e
/T

o
ta

l
L

o
a

d

Load

560458

Poly. (560458)

Optimal Load

Optimal Performance
7.132075364 60.08506375

y = -0.0043x2 + 1.2426x + 37.412

R² = 0.0465

-200

0

200

400

600

800

1000

1200

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

T
o

ta
l

T
im

e/
 T

o
ta

l
L

o
a

d

Load

560519

Poly. (560519)

Optimal Load

Optimal Performance

24.30951968 19.23434689

y = -0.0071x2 + 0.1691x + 106

R² = 0.0471

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135

T
o

ta
l

T
im

e/
 T

o
ta

l
L

o
a

d

load

560521

Poly. (560521)

Optimal Load

Optimal Performance

54.11534808
42.39623095

y = 0.0007x2 - 0.935x + 317.12

R² = 0.1996

-100

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

T
o

ta
l

T
im

e/
 T

o
ta

l
L

o
a

d

Load

560530

Poly. (560530)

Optimal Load

Optimal Performance

180.5425777

85.64472927

y = 0.0059x2 - 4.9853x + 1028.9

R² = 0.2758

-500

0

500

1000

1500

2000

2500

3000

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

T
ot

al
 t

im
e/

 t
ot

al
 l

oa
d

Load

560532

Poly. (560532)

Optimal Load

Optimal Performance

361.111102
210.9521607

y = -0.0658x2 + 7.8119x + 7.2516

R² = 0.2151

-100

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100 110 120 130P
er

fo
rm

a
n

ce
=

 T
o

ta
l

T
im

e/
 T

o
ta

l
L

o
a

d

Load

4634935

Poly. (4634935)

Optimal Load

Optimal Performance

Fig. 8: Result of ExperimentLoad&Performance

Resources No of load total time R2 Load Range Performance Range

4634935 744 124351.8 0.2151 50-70 210.9521607 - 361.111102
560458 7838 1161852 0.3719 300-600 2.783782314 - 89.27519
560519 4809 390477.9 0.0465 125-250 7.132075 - 60.08506
560521 1475 92446.43 0.0471 30-70 19.23435 - 24.30952
560530 11140 905091.6 0.1996 250-400 42.39623 - 54.11535
560532 7817 1221671 0.2758 150-250 180.5426 - 85.64473

Table 5: Result of Polynomial Regression for CoSeLoG project

6 Conclusion

αyMiner provided a solution for recommending an optimal path of execution:
NPA along with the complete process model and resource preferable for perform-
ing NPA. αyMiner is a analytical tool which gave solution for real time busi-
ness process execution, by analysing the process and resource behaviour. The
Experimental result shows 72% of optimization in process execution and 59%
improvement in the behaviour of resource based on their Average waiting time,
load and performance. αyMiner was successful in recommending appropriate
process and resource model for the real time process.

References

1. Joos CAM Buijs, Boudewijn F van Dongen, and Wil MP van der Aalst. Towards
cross-organizational process mining in collections of process models and their exe-
cutions. In Business Process Management Workshops, pages 2–13. Springer, 2012.

130

2. Justus Klingemann, Jurgen Wasch, and Karl Aberer. Deriving service models in
cross-organizational workflows. In Research Issues on Data Engineering: Informa-
tion Technology for Virtual Enterprises, 1999. RIDE-VE’99. Proceedings., Ninth
International Workshop on, pages 100–107. IEEE, 1999.

3. Diimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview of work-
flow management: From process modeling to workflow automation infrastructure.
Distributed and parallel Databases, 3(2):119–153, 1995.

4. Gustavo Alonso, Divyakant Agrawal, Amr El Abbadi, and Carl Mohan. Func-
tionality and limitations of current workflow management systems. IEEE Expert,
12(5):105–111, 1997.

5. Asuman Dogac. Workflow management systems and interoperability. Number 164.
Springer Science & Business Media, 1998.

6. Andrzej Cichocki. Workflow and process automation: concepts and technology.
Springer Science & Business Media, 1998.

7. Wil Van Der Aalst. Process mining: discovery, conformance and enhancement of
business processes. Springer Science & Business Media, 2011.

8. J.C.A.M.; Buijs. Environmental permit application process (wabo), coselog project,
2014.

9. Joyce Nakatumba and Wil MP van der Aalst. Analyzing resource behavior using
process mining. In Business Process Management Workshops, pages 69–80. Springer,
2010.

131

Capturing the Sudden Concept Drift in Process
Mining

Manoj Kumar M V, Likewin Thomas, and Annappa B

Department of Computer Science and Engineering
National Institute of Technology Karnataka, Surathkal

Mangalore - 575025
INDIA

{manojmv,likewinthomas}@nitk.ac.in, annappa@ieee.org
http://www.cse.nitk.ac.in

Abstract. Concept drift is the condition when the process changes dur-
ing the course of execution. Current methods and analysis techniques
existing in process mining are not proficient of analyzing the process
which has experienced the concept drift. State-of-the-art process min-
ing approaches consider the process as a static entity and assume that
process remains same from beginning of its execution period to end.
Emphasis of this paper is to propose the technique for localizing concept
drift in control-flow perspective by making use of activity correlation
strength feature extracted using process log. Concept drift in the process
is localized by applying statistical hypothesis testing methods. The pro-
posed method is verified and validated on few of the real-life and artificial
process logs, results obtained are promising in the direction of efficiently
localizing the sudden concept drifts in process-log.
Keywords: Concept drift, process mining, event class correlation, activity
correlation strength, sudden drift

1 Introduction

Process mining is a fairly new research discipline that stands between process
modeling and analysis on the one hand, and computational intelligence and data
mining on the other hand. The idea of process mining is to discover, monitor
and improve the operational, electronic and embedded processes by using the
data logged in process logs[4].

Process mining comprises (automated) process discovery (i.e., mining process
models), conformance checking (i.e., monitoring deviances by matching model
and log), social network/ organizational mining, automated creation of simula-
tion models, model extension, model repair, case prediction, and history-based
recommendations as shown on fig. 1.

There are two main reasons for the increasing attention in process mining.
First, more and more events are being logged, thus, providing thorough info
about the past of processes. Second, there is a necessity to develop and upkeep
business processes in modest and quickly altering environments.

132

http://www.cse.nitk.ac.in

Fig. 1. Basic objectives and types of process mining [?]

Process mining techniques offer a means to more rigorously check compliance
and ascertain the validity and reliability of information about an organization’s
core processes.

Beginning point for process mining is availability of appropriate event log.
All process mining methods assume that it is possible to sequentially record
events. Each event refers to an activity (i.e., a well-defined step in some process)
and is related to a particular case (i.e., a process instance). Event logs may store
extra info about events. In fact, whenever possible, process mining techniques
use extra information such as the resource (i.e., person or device) executing or
initiating the activity and time-stamp of the event etc.

Remaining sections of this paper are structured as follows. Section 2 discusses
about concept drift with brief and concise example. Section 3 gives the brief
description about the terminologies and notations used in this paper. Section 4
briefs about the methodology used to localize the sudden concept drift. Results
of our experiments are given in section 5, brief about the related literature is
explained in section 6 and this paper ends with some concluding remarks.

2 Concept drift

Process-centric analysis methods and techniques available in process mining are
capable of generating excellent insight on working of operational process. If the
process is not of static in nature, presently available process mining methods
cannot be applied for the analysis. The main erroneous assumption that all
of the available process mining techniques does is, ”Process at the end of its
execution is same as the process at the beginning of its execution”[12], this is
not often the case due to the possibility of process change during the period
of execution. All currently available process mining algorithms fail consider the
changes happened in the process during the process execution.

133

Fig. 2. Concept drift problem dimension

Possibility of occurrence of concept drift has unfortunately been neglected
while proposing methods available in the area of process mining. Not concen-
trating and ignoring the changes in the process makes end results of analysis
obsolete.

End-to-end Solution for the phenomenon of concept drift can only be achieved
by considering sub-problems involved, perspectives of change, change types, change
patterns and duration of change in to account, same is shown in fig. 2 Change
detection and change localization are the two major sub-problems. Control-flow,
data, case and organizational are four the main process perspectives. Sudden,
recurring, incremental and gradual are the four different change types those
can be normally observed. Most normally observed change patterns of change
in control-flow perspective are shown in fig. 2(c). Please refer [7,6,5] to get to
know more about different control-flow, resource and data patterns that can be
observed in operational process.

For example, consider the process model shown in fig. 3(a) represent the
repair process of electronic products in a company and is modeled with petri-
net notations. A petri net is a bipartite graph consists of places (circle) and
transition (rectangle). A transition becomes enable when each of its input places
has at least one token in it. Upon firing of transition, it consumes a token from
each of its input places and produces a token in each of its output places. The

134

Table 1. Example process-log

Trace set-1 Trace set-2

t1 {r, i, c, d, g, rp, s, rc} t9 {r, i, u, c, d, g, rp , s, rc}
t2 {r, u, d, c, g, rp, s, rc} t10 {r, u, i, c, d, g, rp, s, rc}
t3 {r, i, c, d, g, t, rc} t11 {r, i, u, c, d, g, t, rc}
t4 {r, u, d, c, g, t, rc} t12 {r, u, i, c, d, g, t, r, c}
t5 {r, i, d, c, g, rp, s, rc} t13 {r, i, c, u, d, g, rp, s, rc}
t6 {r, u, c, d, g, t, rc} t14 {r, c, i, u, d, g, t, rc}
t7 {r, i, d, c, g, rp, s, rc} t15 {r, c, i, u, d, g, rp, s, rc}
t8 {r, i, d, c, g, t, rc} t16 {r, i, u, d, c, g, rp, s, rc}

fig. shown in 3 is drawn using Colored Petri-Net1 Tools (CPNtools2). Process
model in fig. 3(a) has set of 10 different activities. In fig. 3(a), transition sp with
double rectangle represents sub-process.

(a) Repair process modeled in petri-net process modeling notation

(b) Sub process of repair process
before occurance of concept drift

(c) Sub-process of repair process after oc-
curance of concept drift

Fig. 3. Example illustrating sudden concept drift in control-flow perspective of repair
process

Activities of the process in fig. 3(a) are r=receive repair request, i=inspect
item, u=update database, c=check warranty, d=decide the cost of repair, g=get
the approval from customer, rp=repair product, s=send bill and collect charges,

1 Coloured Petri nets (CPN) are a backward compatible extension of the concept of
Petri nets. CPN preserve useful properties of Petri nets and at the same time extend
initial formalism to allow the distinction between tokens.

2 http://www.cpntools.org

135

t=terminate the repair process and rc= return item and close case. Table 1 shows
the traces of the repair process. According to the process log shown in table 1,
process experiences concept drift after t8 i.e. the traces t1 to t8 represents the
process traces before change and t9 to t16 are the traces possible after process
change.

Before concept drift (before t9), any one of the activities inspect item or
update database can be observed in traces of the log shown in table 1. After
the occurrence of concept drift (after t8), both inspect item and update database
activities can be observed. This example precisely signify the effect of concept
drift in process. If we employ the process discovery methods available in process
mining to construct the process model using the process log shown in Table 1,
outcome will be process model in the fig. 3 with the excerpt shown in fig. 3(a)
as the subprocess replacing the activity sp.

3 Event class and Event class correlation

Let A be a set of activity names. A trace σ is a sequence of activities, i.e., σ ∈ A∗.
A simple event log L is a multi-set of traces over A, i.e., L ∈ B(A∗)

Definition (Event, log trace, log). Let E be a set of unique set of log
events. l is a log trace over E if and only if l is a non-repeating sequence on E
. A set of log traces L is a log over E if and only if all log traces l ∈ L are log
traces over E and ∀l1 ,l2 ∈ L : (set(l1) ∩ set(l2) 6= ∅)→ (l1 = l2).

Using the definition of event, trace and log, event class can be defined as
follows.

Definition (Event class). c ∈ E → C maps each event to its event class,
where C is the set of event classes.

The set of event classes for a log trace l can be defined as follows:

C(l) = {c(e)|e ∈ l}

The set of event classes for a log L is defined as follows:

C(L) ∪l∈L C(l)

Let C be a set of event classes. The function ecc ∈ C × C → R+
0 assigns to

each tuple of event classes a certain correlation value. The larger this the value
is, the more related the two respective event classes are.

In our method we define the correlation function among event classes by
scanning the whole log. We begin with a matrix of C × C, set with zero values
before the real scanning pass. While traversing the log, this matrix is updated
for every following relation that is found. Correlation matrix, as well as the
correlation function itself, is symmetric, i.e., ecc(X,Y) = ecc(Y,X). During the
scanning pass, this regularity requires to be preserved by the algorithm.

Consider the fig. 4, the scanning is presently examining an event of class e1.
We call the event presently under consideration as reference event. Looking at
the directly preceding event of class e2, the scanner can establish an observation

136

Fig. 4. ecc calculation

of the co-occurrence between event classes e1 and e2, which means that their
association is strengthened. Similarly, the correlation matrix value for ecc(e1, e2)
is incremented by i, the increment value (generally set to 1). In our method,
the scanning pass uses a look-forward window for calculating each event. This
means that if the look-forward windows size is seven, the scanner will consider the
upcoming seven events which have followed the reference event. When calculating
events in the look forward window, the scanner will weaken its measurement
exponentially, based on an attenuation factor a, where 0 ≤ a ≤ 1.

For any event y in the look-forward window, where x is the reference event,
the correlation matrix will be updated as given below

ecc(c(x), c(y)) = ecc(c(x), c(y)) + (i.an) (1)

where n is the number of events located between x and y in the trace.
After the scanning pass has estimated all events in all traces of the log, a

trustworthy correlation function between event classes is recognized, as expressed
in the aggregated correlation matrix. Our correlation function thus relates two
event classes as more linked, if events of these classes commonly happen closely
together in traces of the log.

Concept drift is the condition where the process experiences change during
the course of analysis. We believe that the representative appearance of feature
values change before and after the occurrence of concept drift. By considering
the sequential order of process instances in the log, we apply windowing strategy
for selecting the instances for processing and to localize the occurrence of con-
cept drift. Statistical hypothesis tests3 are used to examine differences between
successive feature values obtained using event class correlation.

4 Methodology

3 Hypothesis testing is really a systematic way to test claims or ideas about a group
or population, using data measured in a sample.

137

Algorithm 1 Algorithm to detect concept drift using event class correlation

Require: Process log with concept drifts
1: sub logs← 0 // set the initial value to 0
2: sub logs← split log(process log, size)
3: num sub logs← sub logs.size()
4: while num sub logs 6= 0 do
5: i← 0
6: activities = get activities of sub log(sub log[i]) // get the number of activities

in the each sub log
7: i← i + 1
8: cor[size(activities)][size(activities)]← 0
9: for ∀casei ∈ sub logsi do

10: subcase← 0
11: for ∀eventi ∈ casei do
12: look back ← 0 l
13: for ∀eventsj ∈ casei do
14: if name(eventi 6= eventj) then
15: if look back ≤ size then
16: cor[eventi][eventj]← cor[eventi][eventj]+(i×alook back) // calculate

the ecc of event classes i and j
17: look back = look back + 1
18: end if
19: end if
20: end for
21: end for
22: end for
23: num sub logs← num sub logs− 1
24: level of significance = 0.05 // Set the level of significance (alpha value)
25: Test satistic = test hypothesis(cor, hypothesis test name,window size, num of popultions)

// (performing hypothesis tests)
26: P value← Compute P − value(Test statistic)
27: if P value ≤ level of significance then
28: Reject H0 and declare concept drift // deciding the validity of H0

29: end if
30: end while

The standard process of statistical hypothesis testing comprises of four phases

– S1: Formulating null (H0) and alternative hypothesis (H1)
– S2 : Identifying a test statistic that can be used to assess the trustworthiness
H0.

– S3 : Calculate the P -value (probability of obtaining a sample outcome, given
that the H0 is true).

– S4 : Compare the P -value to a statistical significance level α. If P ≤ α, that
the observed effect is statistically significant, H0 is ignored, and the H1 is
considered as valid.

H0 can be stated as,

138

(H0): There is no significant characteristic differences in the manifestation of
consecutive populations of feature values.

Null hypothesis is considered as fact until proved as false. When the null
hypothesis is proved as false, alternative hypothesis (H1: There is significant
difference in manifestation of feature values) is considered and accepted and
occurrence concept drift is declared.

Complete procedure for assessing the hypothesis tests on consecutive popula-
tions of ecc values is shown in the algorithm 1. We choose two-sample (since we
need to analyze two samples of the population at the given point of time for de-
tecting concept drift), independent (since both the samples are not depending on
each other), non-parametric(since we do not know the priori distribution of the
feature values in an event log), uni-variate and multi-variate (univariate tests
deal with scalar data and multivariate tests deal with vector data) statistical
hypothesis tests for detecting and localizing the concept drift in the process.

Using windowing strategy as instance selection method, successive popula-
tions of feature values are compared and examined to discover any significant
difference. Significant difference between feature values only observed during the
change in the process. Depending on the requirement of our problem and based
on the characteristics of the tests described in the previous paragraph we con-
sider Mann-Whitney U Test and The Moses Test for Equal Variability. Mann-
Whitney U Test is used to answer ”do two independent samples represent
two populations with different median values” (or different distributions
with respect to the rank-orderings of the scores in the two underlying population
distributions)? The Moses Test for Equal Variability test will be used to answer
Do two independent samples represent two populations with different
variances?

5 Experiments and Results

Table 2. Process-log details and concept drift locations

Process log Cases Activities Events creo crep cins cdel
L1 Loan application process 13,087 36 2,62,200 5,000 7,500 - -

L2 Volvo IT incident management process 7,554 13 65,533 - 3,000 4,000 -

L3 Insurance claim process 500 21 7,033 - - 200 400

Process before the occurrence of concept drift represent different version of
the process than after the occurrence of concept drift. Concept drift can be
observed in the process any number of times.

It is very hard to find real-life operational process-log with concept drift in
it. Process mining doesn’t has any standard data set or workbench for testing
the credibility of algorithms detecting and localizing concept drift. There are

139

4500 5500 6500 7500

0.
0

0.
4

0.
8

(a)

Trace no.

p−
va

lu
e

4500 5500 6500 7500

0.
0

0.
4

0.
8

(b)

Trace no.

p−
va

lu
e

2500 3000 3500 4000 4500

0.
0

0.
4

0.
8

(c)

Trace no.

p−
va

lu
e

2500 3000 3500 4000

0.
0

0.
4

0.
8

(d)

Trace no.

p−
va

lu
e

0 100 300 500

0.
0

0.
4

0.
8

(f)

Trace no.

p−
va

lu
e

0 100 200 300 400 500 600

0.
0

0.
4

0.
8

(e)

Trace no.

p−
va

lu
e

Fig. 5. Result of application of statistical hypothesis testing on process logs L1, L2 and
L3 given in 2. Graphs (a),(c),(e) are the results of application of Mann-Whitney U Test
and the graphs (b), (d), (f) are the results of application of The Moses Test for Equal
Variability on process logs L1, L2 and L3 respectively

few real-life standard datasets available3 4, but they are not appropriate for
testing the algorithms dealing with concept drift. In our experiments, we have
taken appropriate data sets from open repository of process logs and artificially
induced concept drift in the control-flow perspective of the process.

3 http://data.3tu.nl/repository/
4 http://www.processmining.org/logs/start

140

Process logs form the open process log repository are used and modified to
include concept drift. We used Colored Petri Net (CPN) Tools with CPNXES
library5 for creating synthetic process logs. Approach proposed in this paper is
tested on 3 different logs shown in table 2.

– creo: Rearranging activities.
– crep: Replacing one activity with other.
– cins: Inserting a new activity.
– cdel: Deleting an existing activity.

Table 2 lists info about three different process logs that we have considered to
validate the approaches proposed in this paper. Process logs L1 (Loan application
process) and L2(Volvo IT incident management process) are taken from on-line
process log repository. Process log L3 (Insurance claim process) is generated
with the help of CPNTools and CPNXES library. Both L1 and L2 are modified
to include concept drift1. Table 2 shows the details about location of concept
drift in L1, L2 and L3.

Process log L1 is altered to include the concept drift caused by sudden creo
and crep. L2 is altered to include sudden crep and cins. Process log L3 is altered
to include sudden cins and cdel. By considering the limitation of space, we have
ignored to include the models of the process L1, L2 and L3 in this paper.
H0 is assessed on each of L1, L2 and L3 by applying hypothesis tests discussed

in the last section, result is shown in fig. 5. Graphs a,c,f in fig. 5 are the results
of application of Mann-Whitney U Test and graphs b,d,e in fig. 5 are the results
of application of The Moses Test for Equal Variability on process logs described
in the table 2. Crests in the graphs given in fig. 5 signify real concept drift
in the process. There are some false alarms are also be possible, one should
be very careful about the actual concept drift and the concept drift caused by
noise in the process log. The drastic change in the P-value is observed during
the occurrence of concept drift. Our technique perform poorly when applied to
localize the concept drift caused by crep and same can be seen in the graphs
shown in fig. 5 (b) and (c) (at the trace number 7500 in 5 (b) and 3000 in 5 (c)).
Overall, results shown in graph 5 implies that the methods presented in this
paper for localizing concept drift is promising. In future, the proposed technique
is going to be added to ProM, and there by making it possible for people to
experiment with it.

6 Related work

The word concept drift is initially coined by Schlimmer et.al. during 1986 in the
article Incremental learning from noisy data[8]. Phenomenon of concept drift is
known by many terminologies in other research disciplines (as Covariate Shift

5 https://westergaard.eu/2011/07/prom-package-documentation-keyvalue/
1 process logs and models used in this paper can be downloaded at

http://www.cse.nitk.ac.in/researchscholars/manoj-kumar-m-v

141

in machine learning, as Load Shedding in databases, as Temporal Evolution
in Information retrial etc.). Efficiently handling concept drift is an important
concern in every data analysis disciplines[2], unfortunately it has been deeply
neglected in process mining. According to [2], concept drift is a non stationary
learning problem over time and [1] describes drift as the process of changing
the process. The core theory when dealing with the concept drift problem is
uncertainty about the future. It can be assumed, estimated or predicted but
there is no certainty.

Some efforts have been made to find different versions of control-flow per-
spective of the process using clustering and classification techniques available in
Data Mining[9,10,11]. Finding different versions of the process does not consider
the type, pattern and perspective of concept drift. Hence, they cannot be the
suitable means for solving phenomenon of concept drift.

ProM is the open source process mining framework consisiting more than
1, 2006 plug-in and plug-in variants that can be used for solving different process
mining problems, out of which one or two plug-ins capable of addressing the
problem of concept drift. To our knowledge, two works in the literature that ad-
dresses concept drift in process mining are [12,14,13]. Technique proposed in [12]
are tested on real setting and the results are documented in [13]. Both [12,13]
proposes extracting different global and local features out of process log and
applying statistical hypothesis testing for detecting and localizing concept drift.
Techniques shown in [12,14] propose solution for offline and online methods for
detecting and localizing sudden concept drift in control-flow perspective of pro-
cess. The idea of extracting Event Class Correlation (ecc) feature is taken form
[3]. End-to-end solution for the problem of concept drift can only be accom-
plished if it is addressed by considering all perspectives, types and patterns of
change shown in fig.2. Effort given in this paper suggests the method of localizing
sudden concept drift in the control-flow perspective of the process using event
class correlation feature by applying statistical hypothesis testing methods.

7 Conclusion

Handling the phenomenon of concept drift efficiently is the prime concern in
all disciplines that deal with data analysis. Concept drift is the situation when
process experiences changes in its associated perspectives during the period of
its execution. The configuration of the process before the occurrence of concept
drift is different from the process after the occurrence of concept drift. State-
of-the-art process-centric analysis techniques available in process mining behave
poorly when employed to analyze the process that has experienced concept drift.
Because, they consider the process as a static entity. But, process represents the
dynamic aspect of the organization and can evolve in any perspective showing
any change pattern exhibiting several different change type during the phase
of its execution. This paper proposes the extraction of event class correlation

6 http://www.promtools.org/doku.php?id=packdocs

142

feature for localizing the sudden concept drift in the control-flow perspective of
the operational process. Results of the experimental study shown that proposed
methods are capable of localizing concept drift efficiently. Our feature work in-
clude extension of the proposed methods to make working in on-line setting for
sudden and gradual drift detection and localization.

References

1. Gama, Joo, et al. ”A survey on concept drift adaptation.” ACM Computing Sur-
veys (CSUR) 46.4 (2014): 44.

2. Zliobaite, Indre. Learning under concept drift: an overview. Overview, Technical
report, Vilnius University, 2009 techniques, related areas, applications Subjects:
Artificial Intelligence, 2009.

3. Gnther, Christian W., Anne Rozinat, and Wil MP Van Der Aalst. ”Activity
mining by global trace segmentation.” Business process management workshops.
Springer Berlin Heidelberg, 2010.

4. Van Der Aalst, Wil, et al. ”Process mining manifesto.” Business process manage-
ment workshops. Springer Berlin Heidelberg, 2012.

5. Russell, Nick, Ter Hofstede, Arthur HM, Mulyar, Nataliya, Workflow controlflow
patterns: A revised view, Citeseer, 2006.

6. Ter Hofstede, Arthur HM, David Edmond, and Wil MP van der Aalst. ”Workflow
resource patterns” (2005): 13-17.

7. Russell, Nick, Arthur HM Ter Hofstede, David Edmond, and Wil MP van der
Aalst. Workflow data patterns. QUT Technical report, FIT-TR-2004-01, Queens-
land University of Technology, Brisbane, 2004.

8. Schlimmer, Jeffrey C., and Richard H. Granger Jr. ”Incremental learning from
noisy data.” Machine learning 1.3 (1986): 317-354.

9. Song, Minseok, Christian W. Gnther, and Wil MP Van der Aalst. ”Trace clus-
tering in process mining.” Business Process Management Workshops. Springer
Berlin Heidelberg, 2009.

10. Luengo, Daniela, and Marcos Seplveda. ”Applying clustering in process mining
to find different versions of a business process that changes over time.” Business
Process Management Workshops. Springer Berlin Heidelberg, 2012.

11. Bose, RP Jagadeesh Chandra, and Wil MP van der Aalst. ”Context Aware Trace
Clustering: Towards Improving Process Mining Results.” SDM. 2009.

12. Bose, RP Jagadeesh Chandra, et al. ”Handling concept drift in process mining.”
Advanced Information Systems Engineering. Springer Berlin Heidelberg, 2011.

13. Bose, RP Jagadeesh Chandra, et al. ”Dealing with concept drifts in process min-
ing.” Neural Networks and Learning Systems, IEEE Transactions on 25.1 (2014):
154-171.

14. Carmona, Josep, and Ricard Gavalda. ”Online techniques for dealing with concept
drift in process mining.” Advances in Intelligent Data Analysis XI. Springer Berlin
Heidelberg, 2012. 90-102.

143

	frontmatter
	paper01
	paper02
	paper03
	Discovery of Personal Processes from Labeled Sensor Data – An Application of Process Mining to Personalized Health Care

	paper04
	ILP-Based Process Discovery Using Hybrid Regions

	paper05
	paper06
	Mining Duplicate Tasks from Discovered Processes
	Introduction
	Local search algorithm
	Experimentation
	Conclusions

	paper07
	A Method for Assessing Parameter Impact on Control-Flow Discovery Algorithms

	paper08
	paper09
	paper10
	Lecture Notes in Computer Science
	Introduction
	Running Example
	Proposed Problem

	
	Process Model: Casual Net
	Matching variants with Path Detector
	
	Process Model Metric
	Relation Metric
	Complexity Metric
	Service Time Metric
	Fitness Metric

	Binding Relation

	Resource Behaviour Analyser (RBAMiner)
	
	Resource load & performance analyser
	Activity Servicing Time Model

	Experimental Analysis and Result
	Design of Experiment
	Recommendation of Next Probable Activity (NPA): Exp NPA
	Recommendation of Resource capable for performing NPA: Exp AST
	Polynomial regression model: Exp L&P

	Conclusion

	paper11
	Capturing the Sudden Concept Drift in Process Mining

