
An Optimal Process Model for a Real Time
Process

Likewin Thomas∗, Manoj Kumar M V∗, Annappa B∗, and Vishwanath K P†

∗Department of Computer Science and Engineering
†Department of Mathematical and Computational Science

National Institute of Technology Karnataka, Surathkal,
Mangalore - 575025

India
{likewinthomas, manojmv}@nitk.ac.in

annappa@ieee.org

shastryvishwanath@gmail.com

http://www.cse.nitk.ac.in

Abstract. Recommending an optimal path of execution and a com-
plete process model for a real time partial trace of large and complex
organization is a challenge. The proposed AlfyMiner (αyMiner) does
this recommendation in cross organization process mining technique by
comparing the variants of same process encountered in different organiza-
tion. αyMiner proposes two novel techniques Process Model Compara-
tor (αyComp) and Resource Behaviour Analyser (RBAMiner). αyComp

identifies Next Probable Activity of the partial trace along with the
complete process model of the partial trace. RBAMiner identifies the
resources preferable for performing Next Probable Activity and analyse
their behaviour based on performance, load and queue. αyMiner does
this analysis and recommend the best suitable resource for performing
Next Probable Activity and process models for the real time partial trace.
Experiments were conducted on process logs of CoSeLoG Project1 and
72% of accuracy is obtained in identifying and recommending NPA and
the performance of resources were optimized by 59% by decreasing their
load.

Keywords: Cross Organization Process Mining, Resource Behavior, Best
Resource, Polynomial Regression Model, Resource Performance, Resource
Load, Resource Queue: Average Waiting Time.

1 Introduction

In the current world where the resources are being shared among different or-
ganization through the cloud computing paradigm, most of the organizations
have started to shift towards Shared Business Process Management Infrastruc-
ture (SBPMI). Due to this shift in modelling paradigm, organizations have to

1 http://dx.doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270

117

http://www.cse.nitk.ac.in

continuously improve their process [1]. But most of the organizations are still
depending on the external service providers to monitor their business process,
hence the business links are to be established with those external agencies [2].
This issue was well addressed by the Information Technology by developing var-
ious work-flow tools [3] [4] [5] [6]. The challenge here is to extend the service
from boundary of single organization to cross organizations.

Due to data explosion [7] getting insight and performing analysis on the
data to understand their behaviour and discover an optimized process model
is always been a challenge to any organization in the process mining environ-
ment.αyMiner uses SBPMI, to analyse the data behaviour of an organization.
This is achieved by comparing the model of same variant using RBAMiner in
SBPMI and recommending the best suitable process model. The context of this
paper is the CoSeLoG Project2. The data used for the experiment and analy-
sis of proposed algorithm is obtained from the Configurable Services for Local
Government (CoSeLoG) Project. This project was executed under Dutch Orga-
nization for Scientific Research (NWO) [8].

αyMiner is a new analytical tool for discovering the optimal path of com-
pletion of a partial trace along with recommendation of complete process model.
It proposes two novel techniques αyComp and RBAMiner. αyComp identifies
the optimal path of completion by matching the partial trace and discovering
the variants in all process models logged in the repository. It identify and recom-
mends the Next Probable Activity (NPA) of partial trace. RBAMiner identifies
the suitable resource for performing the discovered NPA, by analysing the be-
haviour of all resources capable of performing NPA based on their performance,
load and waiting time.

αyMiner is analysed using the running example [2]. NPA for the partial
trace and optimal process model is identified in cross organization environment
using αyComp [3] and the resource preferable for performing NPA is analysed

and recommended using RBAMiner [4]. The experiment is conducted using the
real time event log of CoSeLoG Project3 and the result of RBAMiner is presented
in section [5].

2 Running Example

The proposedαyMiner is illustrated using the running example of four variant

process model containing 9 activities, shown in Figure[1b]. The corresponding
sample event log describing the process execution of the process model is shown
in Table[1]. Here the traces matches model perfectly which is not the cases in
real life process model. The complete log file of the running example can be

2 http://dx.doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270
3 http://dx.doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270

118

found at Process Mining @ NITK 4. The experimental results are obtained using
the CoSeLoG Project5.

2.1 Proposed Problem

Consider an online process shown in Figure[1a], the dotted line shows the path
of execution of the online process. Sub-scripted values at each activities are the
sequence of occurrence of the activities (A1 → B2 → C3). At activity C 3,
decision has to be taken about which next activity to be performed, either D
or E. αyMiner identify the NPA and recommends the suitable resource for
performing NPA.

(1)

(2)

(3)

(4)

(Next Probable Activity)

D

F G H

E

(a) Illustration of On-
line Process Model

A B C

D G

E
H A B C

D G

E

H

I

A B

C

D

E

I

G

H

F

A

B

C E

G

I

H

D

F

Process Model 1 Process Model 2

Process Model 3 Process Model 4

85 85 20

29

51

23

35

37

19

56
42

24

14 14

40

26

26

30

33

23

15 15

1920

80 80

29

23

28

23

20

38

1612

28

26

32

29

15

15

39

42

47

60

50

36

50

36

6 610

6

6

5

10

6

(b) Process Models: Four variants of interview pro-
cess (registration (A), validity check (B), document
check (C), information check (D), decide (E), interview
(I), group discussion (G), result (H) and re-initiates
(F))

Fig. 1: Running Example

3 Alfy Miner (αyMiner)

αyMiner is intended to identify and predict the optimal path of execution
along with the complete process model, for a real time process. On identifying
the currently executing activity Ai, αyMiner recommends the optimal path of
completion and the best suitable process model matching the partial trace with
same variant event logs, logged in the process model repository. On identify-
ing the matched variants, the optimal process models are identified by running
process model comparator αyComp which matches the partial trace. Recommen-

dation of Next probable Activity NPA is done by selecting NPA (Ai) in identified
suitable process model. The Algorithm [1] gives the execution steps ofαyMiner.

4 http://http://processminingnitk.blogspot.in/2015/03/best-resource-
recommendation-for.html

5 http://dx.doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270

119

Case ID TRACE Duration

10358444 A12350
24/01/14 B630640

28/01/14 C221210
29/01/14 D23640

02/02/14 E7560
15/02/14 H631250

26/02/14 33

12421232 A23640
25/01/14 B530640

26/01/14 C230410
28/01/14 D12350

09/02/14 G7716
13/02/14 H631250

24/02/14 30

12592056 A12350
02/03/14 B4503

12/03/14 C630450
18/03/14 G721560

26/03/14 E7560
27/03/14 H631250

08/04/14 37

12610928 A23640
12/05/14 B530640

17/05/14 C230410
29/05/14 E7560

05/06/14 D23640
16/06/14 G7716

28/06/14 H631250
05/07/14 54

12984815 A12350
16/08/14 B630450

29/08/14 C221210
09/09/14 D12350

16/09/14 G721560
22/09/14 E7716

15/10/14 H631250
27/10/14 72

(a) Event Log of Process Model 1

Case ID TRACE Duration

13945854 A23640
26/01/14 B450320

28/01/14 C630450
31/01/14 D23640

15/02/14 G720560
19/02/14 H631250

26/02/14 31

13968144 A12350
12/02/14 B630450

19/02/14 C221210
22/02/14 E12350

09/03/14 I631210
26/03/14 H631250

28/03/14 44

15073705 A12350
12/04/14 B530640

29/04/14 C630450
02/05/14 D12350

15/05/14 G771620
19/05/14 E720560

26/05/14 H631250
08/06/14 57

16609162 A23640
15/04/14 B530640

19/04/14 C230410
02/05/14 E720560

15/05/14 D23640
16/05/14 G771620

18/05/14 H631250
20/05/14 35

16789201 A12350
19/06/14 B630450

23/06/14 C221210
29/06/14 D23640

15/07/14 G721560
27/07/14 E771620

09/08/14 I641210
16/08/14 H631250

23/08/14 65

(b) Event Log of Process Model 2

Case ID TRACE Duration

16796450 A12350
02/05/14 B450320

23/05/14 C630450
15/06/14 E720560

19/06/14 I651210
09/07/14 H631250

27/07/14 86

17031584 A23640
26/07/14 B450320

15/08/14 C221210
29/08/14 E720560

12/09/14 F720560
28/09−14 B630450

13/10/14 C221210
18/10/14 E720560

22/10/14 I651210
29/10/14 H631250

30/10/14 96

17939005 A12350
05/10/14 B630450

13/10/14 C630450
22/10/14 E720560

29/10/14 F720560
13/11/14 B450320

19/11/14 D23640
02/12/14 E720560

06/12/14 G720560
10/12/14 H631250

24/12/14 80

19472044 A23640
15/12/14 B530640

19/12/14 C630450
28/12/14 E720560

03/01/15 F720560
05/01/15 B630450

16/01/15 C230410
18/01/15 E720560

22/01/15 G721560
23/01/15 I631210

28/01/15 H631250
29/01/15 45

25845687 A23640
12/11/14 B530640

14/12/14 C630450
19/12/14 E720560

22/12/14 G721560
27/12/14 H631250

30/12/14 48

(c) Event Log of Process Model 3

Case ID TRACE Duration

19830478 A12350
02/05/14 B12350

02/05/14 E12350
02/05/14 G12350

02/05/14 H12350
02/05/14 53

19834032 A12350
02/05/14 B12350

02/05/14 E12350
02/05/14 F12350

02/05/14 C12350
02/05/14 E12350

02/05/14 G12350
02/05/14 H12350

02/05/14 52

19836934 A12350
02/05/14 B12350

02/05/14 C12350
02/05/14 E12350

02/05/14 F12350
02/05/14 B12350

02/05/14 E12350
02/05/14 G12350

02/05/14 H12350
02/05/14 59

19838656 A12350
02/05/14 D12350

02/05/14 B12350
02/05/14 E12350

02/05/14 F12350
02/05/14 B12350

02/05/14 E12350
02/05/14 G12350

02/05/14 H12350
02/05/14 37

19844185 A12350
02/05/14 D12350

02/05/14 C12350
02/05/14 E12350

02/05/14 F12350
02/05/14 B12350

02/05/14 E12350
02/05/14 G12350

02/05/14 H12350
02/05/14 29

(d) Event Log of Process Model 4

Table 1: Event logs of four different process models of interview pro-
cess shown in figure[1b]. Each log table shows Case ID1, Trace2 and the total
duration3. Each cell in trace, shows the activity of the trace, Resource (Super-
scripted) and the time of occurrence of that activity (sub-scripted).

Algorithm 1: αyMiner

Input: Partial Real Time Trace
Output: NPA & Process Model

1 Develop Process model repository;
2 repeat
3 MatchV ar ← Call Match Variant(Ai);
4 αyComp ← αyComp(MatchV ar) ;

5 Set(NPA) ← InOutBinding(C-Net)

6 until for each currently executing activity Ai

3.1 Process Model: Casual Net

αyMiner uses Casual Net: C-Net notation to represent the process model. C-

Net is a six-tuple: {A,D,ai,ao,I,O} representation of process model with A:{set
of activities}, D :{Set of Dependencies}, ai:{Set of Start activities}, ao: {Set of
Output activities} , I : {Set of Input Binding} , O : {Set of Output Binding}.

120

C-Net for all the four process model of the running example is shown in Figure 2.
The repository of process model is maintained for analysing process behaviour.

{ A, B, C, D, E, G, H}

{(A,B), (B,C), (C,D), (C,E), (D,G), (G,H), (E,H)}

{A}

{H}

{I(A):{Null}, I(B):A, I(C):B, I(D):C, I(E):C, I(G):D, I(H):{G,E}}

{O(A): B, O(B):C, O(C):{D,E}, O(D):G, O(G):H, O(E):H, O(H):{Null}

{ A, B, C, D, E, G, I, H}

{(A,B), (B,C), (C,D), (C,E), (D,G), (E,I), (G,H), (I,H)}

{A}

{H}

{I(A):{Null}, I(B):A, I(C):B, I(D):C, I(E):C, I(G):D, I(H):{G,E}}

{O(A): B, O(B):C, O(C):{D,E}, O(D):G, O(G):H, O(I):H, O(H):{Null}

{ A, B, C, D, E, F, G, I, H}

{(A,B), (B,C), (B,D), (C,E), (D,E), (E,F), (E,I), (E,G), (F,B), (I,H), (G,H)}

{A}

{H}

{I(A):{Null}, I(B):{A,F} I(C):B, I(D):B, I(E):{C,D}, I(F):E, I(I):E, I(G):E, I(H):{I,G}}

{O(A): B, O(B):{C,D}, O(C):E, O(D):E, O(E):{I,G,F}, O(F):B, O(I):H, O(G):H, O(H):{Null}

{ A, B, C, D, E, F, G, I, H}

{(A,B), (A,C), (A,D), (B,E), (C,E), (D,E), (E,F), (F,B), (F,C), (F,D), (E,G), (E,I), (G,H), (I,H)}

{A}

{H}

{I(A):{Null}, I(B):{A,F}, I(C):{A,F}, I(D):{A,F}, I(E):{B,C,D}, I(F):E, I(G):E, I(I):E, I(H):{G,I}}

{O(A): {B,C,D}, O(B):E, O(C):E, O(D):E, O(E):{F,G,I}, O(F):{B,C,D} O(I):H, O(G):H, O(H):{Null}

A
D
ai

ao

I
O

=
=
=
=
=
=

A
D
ai

ao

I
O

=
=
=
=
=
=

A
D
ai

ao

I
O

=
=
=
=
=
=

A
D
ai

ao

I
O

=
=
=
=
=
=

Process Model 1 Process Model 2

Process Model 3

Process Model 4

Fig. 2: C-Net Representation of process Model in Figure 1b

3.2 Matching variants with Path Detector

When an online process is getting executed, identifying to which variant the cur-
rently executing trace belongs is a challenge for αyMiner. Algorithm Variant

Match[2] identify the path of execution along with the set of possible NPA.
VariantMatch uses the concept of linked list with 2 nodes: CellNode and Vari-
antNode which are represented as class. CellNode = {from1 ←

⋃
{•a}, to2 ← a,

value3← {|•a→ a|σ}, count4 = |•a→ a| ∈ ζ. VariantNode {*matrix (address of
CellNode), *prev2 *next3 (address of next and previous CellNode)}. The CellNode
Figure[3a] stores the information of trace A→B→C→E→F→B→D→E→G→H
of process model 2. The value3 field remains 1 till the sequence in trace appears
first time. On identifying the loop, value in value3 filed is updated to 2 as shown
at CellNode with memory 500 in Figure[3a]. Value3 field is an array and stores
the value 1,2 to indicate the sequence B→C is appearing second time in the
trace.Count3 is a counter of the sequence appearance in the trace. VariantNode
Figure[3b] stores the information of all the variants. This is used while compar-
ing the online sequence with the variants. If a variant matches the sequence,
then that variant is retained else it is deleted from the linked list.

3.3 Process Model Comparator (αyComp)

αyComp compares the C-Net of all the variants in cross organization environ-
ment based on following comparison metrics.

1. Process Model Metric: Compare total number of activities, resources, traces
and variants

2. Relation Metric: Compare total number of parallel, serial activities and
loops.

121

From

To

Value

Count

*Next

A

B

1

1

100

100 200 300

B

C

1

1

200

C

E

1

1

300

E

F

1

1

400

400

F

B

1

1

500

500

B

C

2

600

600

C

E

2

700

700

E

G

2

2

800

800

G

I

2

2

900

900

I

H

2

2

Null

1 2 1 2

050

(a) Structure of CellNode for sequence
A→B→C→E→F→B→D→E→G→H of process
model 2

*Matrix

*Prev

*Next

50

Null

10100

1050

10000

10200

1100

10100

Null

1010010000 10200

First Cell Node
Second Cell Node Third Cell Node

(b) Structure of Vari-
antNode for the set
of CellNode of process
model 2

Fig. 3: Structure of CellNode and VariantNode

Algorithm 2: Matching the Variants: V ariantMatch()
Input: Online process
Output: Matching matrix

1 Match Variant() struct variantNode?gvn, ?tempvn; (gvn : address of linked list say
globle Variant Node), Let ?gvn gives address of the double linked list, Initialize all counter
in cellNode → 0;

2 repeat
3 ?tempvn ← &gvn Get the address of the double linked list;
4 repeat
5 ?tempcn ← &matrix Get the address of the matrix ;
6 tempcn→from = sequence[i] ∧ tempcn→to = sequence[i+1];
7 if not found then Delete current variantNode from double linked list and go to 5
8 else Increment the member variable count;
9 if count == val[count] (Current and previous check are passed) then Go to

next→variantNode in the double linked list and go to step 5
10 else Delete the current→variantNode from the double linked list and go to 5

11 until ?next in double linked list is null

12 until for each activity in online process

13 Remaining variantnode present in tempvn are all matched variant table for the given

sequence.

3. Complexity Metric: Compare total number of split and join.

4. Service Time Metric: Compare the queue time for each activity.

5. Fitness Metric: Running fitness test along with the time of completion and
valid no of sequence in each event log.

Process Model Metric The process model comparison is done based on No
of {Activities, Resources, Traces & Varinats } and is shown in Table 2a.

Relation Metric αyComp analysed that if a model has more parallel relation
it performs well when compared to serial relation, at the same time if the loop
is increased the consumption of execution time also increases. Parallel relation
is identified by Equation 4 in Definition 1. Loops are identified by Equation 5.

Definition 1. Log based ordering relation
Let A = [a, b, c, d, e] be the set of activities and let L be the simple event log

122

i.e., L ∈ A ∗ and Let A be athi activity and B be athi+1 then,

˙DirectlyFollow(a>Lb) ← {iff ∃ trace σ = 〈t1, t2, ..., tn〉 ∧

i ∈ [1, 2,, n− 1] | σ ∈ L,

∧ ti = a,∧ ti + 1 = b} (1)

˙Casuality(a−→Lb) ← {iff a >L b ∧ b ≯L a} (2)

˙Unrelated(a#Lb) ← {iff a ≯L b ∧ b ≯L a} (3)

˙Parallel(a‖Lb) ← {iff a >L b ∧ b >L a} (4)

˙Loop(a>Lb>La) ← {iff (ai == ai+2) → ai >L ai+1 >L ai+2} (5)

The Table 2b gives the relation metric of all the four models in running
example.

Complexity Metric Complexity metric identifies the joins and splits in the
process model. Joins and split are identified using the result of output and in-
put binding. Consider the Figure[1b] where for process model 1: O(A)={B}=85
times, similarly the split {CDE} = 20, its means 20 times activity C is 20 times
followed by both D and E, join {GEH} is joined 16 times. Using this information
complexity metric shown in Table[2c] is developed.

Service Time Metric This metric gives the total service time comparison
for an activity in each model. This comparison helps in identifying the model
serving an activity with less service time. The service time is calculated by∑each cases
i=1 duration(Ai), where Ai ⊆ A (set of activities). The sample output

in seconds is shown in Table 2d.

Fitness Metric This gives the numbers of traces that can be successfully run
on the model. This is helpful in deciding how efficient the model is, in running
the trace. αyComp identifies the model which runs maximum number of traces
with minimum time. Consider the Table 2e.

3.4 Binding Relation

On identifying variants following the partial trace, the NPA of currently execut-
ing activity Ai is identified using binding relation which bind the incoming and
outgoing activity of Ai. Algorithm 3 eplain the concept of binding relation, where
for each trace in a case, if an activity A is followed by B, then A.outbond ← B
∧ B.inbound ← A, i.e., A has out-bounding relationship with B and similarly B
as in-bounding relationship with A

123

No of Activities No of Resources No of Traces No of Variants

PM 1 8 16 90 10
PM 2 8 14 80 13
PM 3 9 14 56 19
PM 4 9 14 86 51

(a) Process Model Metric

No of Dependency No of Parallel No of Loops No of Serial

PM1 7 2 0 5
PM2 8 4 0 4
PM3 11 2 2 7
PM4 14 3 3

(b) Relation Metric

Joins Splits

PM1 19 20
PM2 16 12
PM3 29 29
PM4 33 28

(c) Complexity Metric

A B C D

PM1 3678956 45896374 56987845 1236589
PM2 2598964 56978746 78594785 4589647
PM3 4577896 36987567 23698124 5698347
PM4 1236978 23678945 22456378 4548768

(d) Service Time Metric

PM1 T(PM1) PM2 T(PM2) PM3 T(PM3) PM4 T(PM4)

Event Log1 1 56897845 0.9 78456975 0.75 45789647 0.65 56587874
Event Log2 0.8 45878123 1 45678412 0.9 78956478 0.95 78945698
Event Log3 0.6 45236984 0.75 56898774 1 69875457 1 65327841
Event Log4 0.45 32789564 0.6 68974564 0.75 39845641 1

(e) Fitness Metric

Table 2: Process Model Comparator (αyComp)

Algorithm 3: To calculate Input & Output Binding
1 InOutBinding() Input: Ai, RTrace

Output: Ai.InputBinding, Ai.OutputBinding
2 repeat
3 if (|a >L b|) then
4 a.Outbound ← b ∧ b.Inbound← a

5 |a >L b| =
∑
σ∈L

L(σ)× |{1 ≤ i < |σ| | σ(i) = a ∧ σ(i+ 1) = b}| [see [7]]

6 until for each sequence in trace σ in event log L

4 Resource Behaviour Analyser (RBAMiner)

αyMiner on discovering suitable process model with NPA identifies the re-
sources preferable for performing NPA. Set of resource preferable for perform-
ing NPA is identified using Activity/Resourcerep[3]. RBAMiner analyse the be-
haviour and recommend the suitable resource for performing NPA. Behaviour of
the resources is analysed based on 3 parameter: Performance, Load and Queue
using polynomial regression model for load and performance [4.2] and Average
Servicing Time at resource using queue model [4.3]. Algorithm 4 explains the
concept of resource behaviour analysis.

4.1 Activity/Resourcerep

αyMiner identifies the list of resources performing an activity in entire process
log along with the time consumed by them for performing that activity. The
Table 3 gives representational view of list of resources performing an activity in
process model 1 along with the time consumed.

124

Algorithm 4: RBAMiner

1 RBA(NPA)()
Input: NPA&BestResActivity
Output: RecommendationofRes(NPA)

2 repeat
3 Load(Res(NPA))←− Poly.Load(Load(Res(NPA))); [see algo5]

4 Perf(Res(NPA))←− Poly.Perf(Res(NPA)); [see algo5]

5 AvgWaitingT ime(Res(NPA))←− Queue(Res(NPA)); [see algo 6]

6 until (for each resource of NPA in BestResActivity Table)

7 Recommend the optimal load, performance and waiting time resource

Activity Res12350 Res23640 Res630450 Res530640 Res450320 Res221210 Res230410 Res501 Res771620 Res502 Res771620 Res721560

A 36.657 45.380 DNP DNP DNP DNP DNP DNP DNP DNP DNP DNP
B DNP DNP 18.473 22.667 9.25 DNP DNP DNP DNP DNP DNP DNP
C DNP 7 24.684 DNP DNP 5.4667 22.294 DNP DNP DNP DNP DNP
D DNP 25.53 DNP DNP DNP DNP DNP 72 11.5 DNP DNP DNP
E DNP 25.531 DNP DNP DNP DNP DNP 62.5 DNP 91 11.5 DNP
G DNP DNP DNP DNP DNP DNP DNP DNP 7 DNP DNP 13.944

Table 3: Activity/Resourcerep of process model 1 of running example
[DNP: Did Not Play]

4.2 Resource load & performance analyser

The Yerkes-Dodson Law of Arousal, also known as Arousal Theory, states that
by increasing arousal, the workers performance can be improved. However, if the
level of arousal increases too much, performance decreases Figure[4a] [9]. The
RBAMiner identifies the level of arousal : Optimal Load i.e., the maximum load
the resource can handle efficiently, along with its performance using polynomial
regression model. Performance is a ratio of Total time taken by Load. The per-
formance was analysed by increasing the load and observing the time taken.
It was observed that, as the load was increased, the consumption of the time
was decreasing. But at some point there was a drift and the time consumption
started increasing. That drifted point is known as Arousal (optimal load and
performance of the resources). The Algorithm[5] identifies the load ` and perfor-
mance [Total time÷ `] for /resource/unit time.

The RBAMiner first filters the unperformed load1 (an activity with 0 ms)
and residual load2 (an activities with exceptional duration). Then the actual
load (`) and average time of Service (α) of each worker each month is identi-
fied. Polynomial regression model[5] is applied on this cleaned data. Since the
RBAMiner is intended in identifying the second degree regression model, the
regression model initialize a 3×3 matrix (A) and 3×1 matrix (B) as shown in
figure [4b& 4c]. Then the transpose of matrix A is multiplied with matrix B.
The result obtained is the coefficient of polynomial equation. On applying the
load on an equation the polynomial curve (power curve) is obtained as shown in
figure. On analysing the polynomial curve and applying the Yerkes-Dodson Law
the optimal load and optimal performance of a resource is identified for each
month.

125

P
e
rf

ro
m

a
n
c
e

Load

Optimal Load

Optimal Performance

(a) Yerkes Dodson Law

A =


n

n∑
1
`

n∑
1
`2

n∑
1
`

n∑
1
`2

n∑
1
`3

n∑
1
`2

n∑
1
`3

n∑
1
`4


(b) Matrix Table A

B =


n∑
1
α

n∑
1

(α×`)
n∑
1

(α×`2)


(c) Matrix Table B

Fig. 4: Structure of Power Curve for identifying the Optimal Load and Per-
formance and the Structure Initial load & performance matrix for running Poly-
nomial Regression Model

Algorithm 5: Resource Second Order Polynomial Regression Model
Input: ` (Total Load) on each resource each month and α (Log(Average Service Time)) for

running the load ` per month
Output: Optimal Load L & Optimal Performance P

1 Let A[3,3] & B[1,3] be 2 initial Matrix as shown in figure[4b & 4c]; k=0;
2 repeat

3 AInverse ←− Transpose(A, 3); Transpose: Function transposing the matrix ;

Result←− multiplyMatrices(AInverse, B); multiplyMatrices: Function for
multiplying matrix ;

4 repeat
5 β[i]←− Result[i][j]; where β= Coefficient of Polynomial Equation
6 until ((i=0 to 3) ∧ j=0)

7 Polynomial Equation : β0 + β1`+ β2`
2

8 until (for each resource each unit time)

4.3 Activity Servicing Time Model

Along with identification of load and performance of the resource preferable
for performing NPA, RBAMiner also finds the Activity Servicing Time (i.e.,
the average waiting time for an activity to be served by a resource), before
that resource is recommended. Since the interest is in finding the queue at
each resource, RBAMiner uses Single-Server Models (M/M/1):(GD/∞/∞) and
(M/M/1):(GD/N/∞). Here the model (M/M/1):(GD/∞/∞) describe (Arrival1/
Departure2/ Server3):(Queue discipline4/ Max number in Queue5/ Source of
Calling6).

Arrival1 (λ) is the rate at which the activities are arrived at each resources
and Departure2 (µ) is the rate at which the arrived activities are served. Since
RBAMiner is intended in identifying the average waiting time at each resource,
the single server model is applied. When data was analyzed for First Come First
Serve FCFS, Last Come First Serve LCFS and Service in Random Order SIRO,
it was understood that arrival of the activity was following General Discipline
GD as its Queue Discipline4. As the number in queue and source of calling is
not defined RBAMiner marks them as infinity. The average waiting time in the

126

system Ws is identified using Equations [6- 9]. The Algorithm Activity Servicing
Time [6] starts with identifying the arrival rate λ and the servicing rate µ at
each resources.

The λn & µn in generalized model is shown in Equation[6]. The traffic ρ:
number of activities arriving and getting served per unit time is shown in Equa-
tion[7]. Hence the Average waiting time in system Ls is given in Equation[9].

λn = λ

µn = µ

}
Where n = 0,1,2.... (6) ρ =

λ

µ
(7)

Ws =
Ls
λ

(8) Ls =
ρ

1− ρ
(9)

Algorithm 6: To Discover the Activity Servicing Time
Input: Set of resources:<, Trace:=, Duration of service:∂
Output: Arrival λ, Service µ, Traffic ρ, Ls,Ws

1 Let Arrival λ ∈ Load ` discovered on /Resource/month; Service µ ∈ service rate of λ; Π be
No of Days in month

2 if (if ((Π − =.Date)× 24hrs× 60Sec) ≥ =.∂ then Event is executed in same month;
µ(<Filtered Year Month)←− µ(<Filtered Year Month) + 1;

3 else ⊥ = d
((=.∂)− ((Π − =.Dt)× 24hrs× 60Sec))

Π × 24× 60
e

µ(<Filtered Year Month +⊥)←− µ(<Filtered Year Month +⊥) + 1;

4 Average Servicing Time in system ← Equation [6 to 9]

5 Experimental Analysis and Result

The αyMiner algorithm is evaluated by running it on CoSeLoG Project6. The
experiments ExpNPA, ExpAST and ExpL&P was performed on the CoSeLoG
Municipality 2, which contains 645 cases and 376 activities. Experiments were
conducted and analysed on set of every 100 cases.αyMiner makes 4 assumption:
Any activity whose duration is recorded as 0 millisecond is considered as never
been executed, since the nanosecond time is not recorded, vocabulary of an
activity is not taken into account [1], don’t deal with Live or Dead locks and
assume that all process have same starting activity.

5.1 Design of Experiment

The αyMiner experimental set up is shown in Figure [5]. Where the log is first
cleaned and initialized using initializer from which the NPA is identified. Optimal
resource for performing NPA is identified and their behaviour is analysed. Finally
αyMiner recommends the best process and resource model.

6 http://dx.doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270

127

Fig. 5: Illustration of Online Process Model
5.2 Recommendation of Next Probable Activity (NPA): ExpNPA

Experiment was simulated in the form of supervised learning, where the test
ExpNPA was conducted for every 100 cases and starting from 2nd activity of the
sequence. ExpNPA was analysed by comparing it with the actual path of execu-
tion. The result of this comparison is shown un Figure [6] and on analysis it is
studied that the percentage of error rate (marked by green line) in recommenda-
tion is lesser in later positions of execution when compared to earlier positions.
The ExpNPA achieved 72.8568% of efficiency. On analysing the graph, it is
understood that the behaviour of recommended path is always below the actual
path of execution. Inclination shows the huge difference of behaviour between
the actual and recommended path. For the cases 400 to 500, it is observed that
the graph don’t have red line, as the path of execution is critical and was ob-
served to take optimal time for completion. Hence this proves that αyMiner,
don’t recommend if the path of execution is observed to be optimal.

Fig. 6: Result of ExpNPA

128

5.3 Recommendation of Resource capable for performing NPA:
ExpAST

The ExpAST for each resource performing NPA. Waiting time of recommended
resource was compared with the actual resource and it was studied that their per-
formance was improved by 59.7303%. The Figure [7] show the result of ExpAST .
The ExpAST , discovered the better path of execution based on resource aver-
age service time and it is also understood αyMiner, don’t recommend if the
resources to whom the task is assigned is efficient in performing.

Fig. 7: Result of ExpAST

100 200 300 400 500 600 Overall

560530 0.0178571 0.005128 0.005525 0.006329 0.005495 0.009009 0.000787
560598 0.1666667 0.083333 0.166667 0.333333 0.111111 0.090909 0.016949
560521 0.0714286 0.090909 0.083333 0.012987 0.052632 0.008621 0.004587
560532 0.0076336 0.005102 0.009009 0.007194 0.003279 0.005051 0.000517
4634935 0.1428571 0.083333 0.142857 0.043478 0.009709 0.016129 0.006329
560458 0.0069444 0.007519 -0.00115 0.00304 0.00625 0.006369 0.00036
560429 0 1 1 1 1 1 1
560528 0 1 0.5 1 0.5 1 0.166667
560519 0.0153846 0.009009 0.013699 0.01 0.007246 0.001605 0.001754

Table 4: Result of Average Waiting time for CoSeLoG project

5.4 Polynomial regression model: ExpL&P

The result of ExpL&P is shown in Table [5] and the Figure [8] shows the polyno-
mial curve. Using the law of Arousal, the optimal load and performance at each
resource can be identified. This result is used in making appropriate decision

129

about resource behaviour and load assignments. Using the outcome of experi-
ment proper recommendations can be made, whether to assign the task to that
resource ot not.

89.27518988 2.783782314

y = 0.0232x2 - 19.935x + 3468.5

R² = 0.3719

-2000

0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

T
o

ta
l

T
im

e
/T

o
ta

l
L

o
a

d

Load

560458

Poly. (560458)

Optimal Load

Optimal Performance
7.132075364 60.08506375

y = -0.0043x2 + 1.2426x + 37.412

R² = 0.0465

-200

0

200

400

600

800

1000

1200

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

T
o

ta
l

T
im

e/
 T

o
ta

l
L

o
a

d

Load

560519

Poly. (560519)

Optimal Load

Optimal Performance

24.30951968 19.23434689

y = -0.0071x2 + 0.1691x + 106

R² = 0.0471

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135

T
o

ta
l

T
im

e/
 T

o
ta

l
L

o
a

d

load

560521

Poly. (560521)

Optimal Load

Optimal Performance

54.11534808
42.39623095

y = 0.0007x2 - 0.935x + 317.12

R² = 0.1996

-100

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

T
o

ta
l

T
im

e/
 T

o
ta

l
L

o
a

d

Load

560530

Poly. (560530)

Optimal Load

Optimal Performance

180.5425777

85.64472927

y = 0.0059x2 - 4.9853x + 1028.9

R² = 0.2758

-500

0

500

1000

1500

2000

2500

3000

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

T
ot

al
 t

im
e/

 t
ot

al
 l

oa
d

Load

560532

Poly. (560532)

Optimal Load

Optimal Performance

361.111102
210.9521607

y = -0.0658x2 + 7.8119x + 7.2516

R² = 0.2151

-100

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100 110 120 130P
er

fo
rm

a
n

ce
=

 T
o

ta
l

T
im

e/
 T

o
ta

l
L

o
a

d

Load

4634935

Poly. (4634935)

Optimal Load

Optimal Performance

Fig. 8: Result of ExperimentLoad&Performance

Resources No of load total time R2 Load Range Performance Range

4634935 744 124351.8 0.2151 50-70 210.9521607 - 361.111102
560458 7838 1161852 0.3719 300-600 2.783782314 - 89.27519
560519 4809 390477.9 0.0465 125-250 7.132075 - 60.08506
560521 1475 92446.43 0.0471 30-70 19.23435 - 24.30952
560530 11140 905091.6 0.1996 250-400 42.39623 - 54.11535
560532 7817 1221671 0.2758 150-250 180.5426 - 85.64473

Table 5: Result of Polynomial Regression for CoSeLoG project

6 Conclusion

αyMiner provided a solution for recommending an optimal path of execution:
NPA along with the complete process model and resource preferable for perform-
ing NPA. αyMiner is a analytical tool which gave solution for real time busi-
ness process execution, by analysing the process and resource behaviour. The
Experimental result shows 72% of optimization in process execution and 59%
improvement in the behaviour of resource based on their Average waiting time,
load and performance. αyMiner was successful in recommending appropriate
process and resource model for the real time process.

References

1. Joos CAM Buijs, Boudewijn F van Dongen, and Wil MP van der Aalst. Towards
cross-organizational process mining in collections of process models and their exe-
cutions. In Business Process Management Workshops, pages 2–13. Springer, 2012.

130

2. Justus Klingemann, Jurgen Wasch, and Karl Aberer. Deriving service models in
cross-organizational workflows. In Research Issues on Data Engineering: Informa-
tion Technology for Virtual Enterprises, 1999. RIDE-VE’99. Proceedings., Ninth
International Workshop on, pages 100–107. IEEE, 1999.

3. Diimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview of work-
flow management: From process modeling to workflow automation infrastructure.
Distributed and parallel Databases, 3(2):119–153, 1995.

4. Gustavo Alonso, Divyakant Agrawal, Amr El Abbadi, and Carl Mohan. Func-
tionality and limitations of current workflow management systems. IEEE Expert,
12(5):105–111, 1997.

5. Asuman Dogac. Workflow management systems and interoperability. Number 164.
Springer Science & Business Media, 1998.

6. Andrzej Cichocki. Workflow and process automation: concepts and technology.
Springer Science & Business Media, 1998.

7. Wil Van Der Aalst. Process mining: discovery, conformance and enhancement of
business processes. Springer Science & Business Media, 2011.

8. J.C.A.M.; Buijs. Environmental permit application process (wabo), coselog project,
2014.

9. Joyce Nakatumba and Wil MP van der Aalst. Analyzing resource behavior using
process mining. In Business Process Management Workshops, pages 69–80. Springer,
2010.

131

	Lecture Notes in Computer Science
	Introduction
	Running Example
	Proposed Problem

	
	Process Model: Casual Net
	Matching variants with Path Detector
	
	Process Model Metric
	Relation Metric
	Complexity Metric
	Service Time Metric
	Fitness Metric

	Binding Relation

	Resource Behaviour Analyser (RBAMiner)
	
	Resource load & performance analyser
	Activity Servicing Time Model

	Experimental Analysis and Result
	Design of Experiment
	Recommendation of Next Probable Activity (NPA): Exp NPA
	Recommendation of Resource capable for performing NPA: Exp AST
	Polynomial regression model: Exp L&P

	Conclusion

