
Interval-Timed Petri Nets with Auto-concurrent
Semantics and their State Equation

Elisabeth Pelz 1, Abderraouf Kabouche 1, Louchka Popova-Zeugmann 2

1 LACL, Université Paris-Est Créteil, France
2 Department of Computer Science, Humboldt University Berlin, Germany

Abstract. In this paper we consider Interval-Timed Petri nets (ITPN),
an extension of Timed Petri nets in which the discrete time delays of
transitions are allowed to vary within fixed intervals including possible
zero durations. These nets will be analyzed for the first time under some
maximal step semantics with auto-concurrency. This matches well with
the reality of time critical systems which could be modeled and analyzed
with our model. We introduce in particular the notion of global firing
step which regroups all what happens inbetween two time ticks. Full
algebraic representations of the semantics are proposed. We introduce
time-dependent state equations for a sequence of global firing steps of
ITPNs which are analogous to the state equation for a firing sequence
in standard Petri nets and we prove its correctness using linear algebra.
Our result delivers a necessary condition for reachability which is also
a sufficient condition for non-reachability of an arbitrary marking in an
ITPN.

1 Introduction
Petri nets (PN) as proposed initially by Carl Adam Petri [4] are applied to design
models of systems considering only causal relations in it and not temporal ones.
Of course there is a huge field of applications in which time does not really
matter. In real systems, however, the time is mostly indispensable and therefore
it cannot be ignored. Thus a certain number of time-dependent Petri net classes
had been proposed in the meanwhile, cf.([3], [9], [5], [2], [11], [1], [6]). Moreover,
it is well known that the majority of these classes are more expressive then the
classic model: Almost all time-dependent Petri net classes are Turing-powerful,
while the power of classic Petri nets is less than that of Turing-machines.

In this paper we are dealing with Interval-Timed Petri nets (ITPN), which are
an extension of Timed Petri nets (TPN), introduced by Ramhandani in [9] and
extensively studied by Sifakis [10]. TPNs are classic PNs where each transition
is associated with a natural number which describes its firing duration. TPNs,
as well as their extensions like ITPNs, are Turing-powerful (cf. Popova [6]).

In ITPNs the firing duration of a transition is also given by a natural number
but this duration is not fixed. It may vary within an interval which is associated
with the transition. The apparition of a transition is thus divided in two events,
the startfire and the endfire event. Inbetween them tick events may happen,

corresponding to the passing (or elapsing) of one time unit of some global clock
[1].

When transitions are enabled they must start firing. This is the reason why
we consider as firing modus for ITPNs the firing in maximal steps. Two different
step semantics are possible: with or without auto-concurrency. In this article,
we consider ITPNs with auto-concurrency. This means that when a transition
becomes enabled, irrespective of whether or not an instance of it is firing already,
a new instance must immediately start firing. The firing duration of each new in-
stance is choosen in a non-deterministic way and is a natural number, describing
how many tick events may occur before the endfiring event. This number belongs
to the interval associated with the transition. Contrary to previous work, zero
firing durations are allowed in this article.

A configuration in a PN is described by a marking. Because of the explicit
presence of time a marking alone cannot completely represent the configuration
of a time-dependent Petri net however. For this reason we use the notion of
“state" which includes both the marking and the corresponding temporal infor-
mations. The first aim of the paper is to introduce the maximal step semantics
for the ITPNs formally: a firing step sequence in an ITPN consists of alternating
so called Globalsteps (multisets of startfire and endfire events) and tick events.
And we will prove some semantical properties.

The second aim of this paper is to provide a sufficient condition for non-
reachability of states in ITPNs similar to the sufficient condition for non-reachability
of markings for classic Petri nets. To illustrate this purpose, let us consider first
the problem in a classic Petri net N , starting with a firing sequence σ of N .
After the firing of such a sequence a certain marking M of N is reached. We can
compute this marking using the following well known equation:

M =M0 + C · ψσ (1)

where C is the incidence matrix of the Petri netN and ψσ is the Parikh vector
of σ(whose i-th component gives the number of appearance of transition ti in σ).
This equation is also called the state equation of the sequence σ. Actually, it can
be used in many more ways. We can consider each marking suitable for a net as
reached after the firing of an unknown sequence. Now, we can consider the state
equation of the unknown sequence, where the elements of the Parikh vector are
variables. If this equality has no non-negative integer solution then there does
not exist a sequence making the considered marking reachable. Therefore, this
is a sufficient condition for the non-reachability of the marking. The following
simple example illustrates this approach:

p1

p2

t1 t2

Fig. 1: PN N1.

Let us consider the PN N1 with M0 = (1, 1)T and show
that the empty marking M = (0, 0)T is not reachable in
this net. The incidence matrix of N1 is CN1 =

(
1 −1
−1 1

)
.

Let us assume that there is a transition sequence σ
such that after its firing in N1 the empty marking is
reached. When the transition t1 appears x1 times in σ
and t2 appears x2 times then the Parikh vector of σ is
ψσ = (x1, x2)

T . Subsequently, the equality (1) for this

246 PNSE’15 – Petri Nets and Software Engineering

transition sequence leads to the system of equations
{
−1 = x1 − x2
−1 = −x1 + x2

. This equa-

tion system is obviously not solvable and therefore there is no such firing tran-
sition sequence σ in N1 leading to the empty marking M .
Furthermore, it is evident that the marking M ′ = (2, 0)T is reachable in N1 .

Let us now consider the Interval-Timed Petri net D1 arising from the PN N1

by adding time durations to each transition – the firing of each transition should
take exactly one time unit, thus [1, 1] is the duration interval associated to t1
and t2. As both transitions are firable from the initial state, after startfiring both
transitions in one step, the empty marking M is reached. After one tick event,
both transitions need to endfire in one step, and the initial state is reached again.
Thus it is easy to see that in this ITPN D1 the marking M ′ is not reachable.
This simple example shows that reachability and non-reachability in an Interval-
Timed Petri net are essentially unrelated to reachability and non-reachability in
its untimed skeleton. Our aim is to prove with the help of a time-dependent state
equation that for instance, it is impossible to reach M ′ in D1.

Of course, the time-dependent state equations we are establishling in this
paper are much more complex than (1) or our previous results in [8], [7] and
[2] because of the possibility of zero durations and the auto concurrent maximal
step semantics. Nevertheless, our equations of a firing step sequence in an ITPN
are consistent extensions of (1).

The paper is organized as follows: First formal definitions of ITPNs and their
maximal step semantics are given in Section 2, and some semantical equivalence
is proved. Then original algebraic representations and calculus of these semantics
are proposed in Section 3. Some of them are adaptations of definitions known for
the algebraic presentation of a firing step sequence for TPN [8], or ITPN without
zero duration and without auto-concurrency [7], and others are entirely new
here. Within this frame intermediate algebraic properties are first established
in Section 4, leading then to the state equations. Full proofs of all results are
included in the paper.

2 Interval-Timed Petri Nets and their semantics
This section will define the objects treated in this article.

As usual, N denotes the set of all natural numbers including zero, N+ is that
without zero. A matrix A is a (m × n) - matrix when A has m rows and n

columns. The denotation A =
(
aij

)
i=1···m
j=1···n

for a matrix A means that A is a

(m× n) - matrix and aij is the element of A in the (i)−th row and in the j−th
column. Furthermore, A.j = (a.j) denotes the j-th column of the matrix A and
Ai. = (ai.) denotes the i-th row. The (d × d) - matrix Od denotes the (d × d)
zero-matrix (all its elements are zero), the (d × d) - matrix Ed is the (d × d)
identity matrix.

2.1 Net definitions

A (marked) Petri net (PN) is a quadruple N = (P, T, v,M0), where P (the
set of places) and T (the set of transitions) are finite and disjoint sets and

E. Pelz et al.: Interval-Timed Petri Nets with Auto-concurrent Semantics 247

v : (P × T) ∪ (T × P) −→ N defines the arcs with their weights and M0 : P −→
N fixes the initial p-marking. In general, a p-marking M : P −→ N is presented
by a vector of dimension |P |. As usual, t is called enabled in a p-marking M if
for all p ∈ P, v(p, t) ≤M(p).
Let N be a PN and D : T −→ N × N be a function. Then, a pair Z = (N , D)
is called an Interval-Timed Petri net (ITPN) where N is its skeleton and D its
duration function including zero duration. Thus, D defines an interval for each
transition. within which its firing duration can vary.
The bounds sfd(t) and lfd(t) with D(t) =

(
sfd(t), lfd(t)

)
are called the shortest

firing duration for t and the longest firing duration for t, respectively. Further-
more, each δi ∈

(
D(ti)∩N

)
can be the actual duration of transition ti firing. The

bounds are allowed to be zero, i.e. the firing can be considered to take no time.
An ITPN behaves similarly to a PN with regards to maximal step semantics.
In this article auto-concurrency is not only allowed, but forced. Thus a maximal
step will be a multiset of events which appears at the same moment.
Formally, a multiset U of events E is a total function U : E −→ N, where U(ei)
defines the number of occurrences of the event ei in the multiset U . We can
write U in the extended set notation U = {eU(e) | e ∈ E and U(e) 6= 0} and we
denote by] the operator of multisets union.
Let t be a transitions sequence of length n, t = t1t2 · · · tn. The transitions se-
quence t is called an undesired cycle if, for all i 6 n, sfd(ti) = 0 and for all
p,

∑
16i6n

(
v(ti, p)− v(p, ti)

)
> 0. Thus undesired cycles have firing duration zero

and could be infinitely repeated without time elapsing.
An ITPN is well formed if it has no undesired cycles. In order to avoid infinite
steps only well formed nets are considered in this paper.
Note that a token will reach the post-set of a transition ti only after the time
corresponding to the actual duration of this transition has elapsed. The exact
value of the actual duration δi is unknown at the beginning of the firing of ti.
The transition may stop firing after an arbitrary number δi ∈ D(ti) of time ticks
has elapsed.
As usual in time-dependent PNs, states in ITPNs are pairs S = (M,h) of map-
pings, M being the p -marking and h codes the clocks of the transitions. In [7]
h was defined as clock-vector, whereas now, in the context of auto-concurrency,
h needs to be a matrix of dimension (|T | × d). Thus the clock-matrix h has |T |
rows (i.e. the number of transitions in the skeleton Z) and d = max

ti∈T
(lfd(ti))+ 1

columns. The value hi,j+1 represents the number of active transitions ti with
age j (i.e. fired since j time ticks), where j ∈ D(ti). Please, note that we need
to use ‘j+1" because the first column of the matrix has number 1 and not num-
ber 0. The initial state S(0) = (M (0), h(0)) of Z is given by the initial marking
M (0) = M0 of Z and the zero-clock-matrix h(0) where h(0)i,j = 0 for all i, j. The
ITPN Zo which is used as a running example is shown in Fig.2.

248 PNSE’15 – Petri Nets and Software Engineering

p1

p2

t2 t3t1 t4

2

2 2

3

[0,2] [1,3] [0,1] [1,2]

8

Fig. 2: ITPN Z0.

2.2 Semantics of Interval-Timed Petri Nets

Now, the behavior of ITPNs will be defined. For the transition rule of an ITPN
we distinguish three types of events, namely

– Startfire events: A startfire event, denoted as [ti, must occur immediately
(even n times) if ti becomes enabled in the skeleton (resp. if n transitions
ti become enabled at the same time). For each occurrence of [ti the input
tokens of ti are removed from their preplaces, the clock associated with ti
will count this occurrence by incrementing the number hi,1 and ti will be
called active.

– Endfire events: An endfire event, denoted as ti〉, must occur (even n times)
if the clock associated with ti is expiring, i.e. hi,j+1 = n 6= 0 and j = lfd(ti).
The event ti〉 may occur (at most qi times) if

∑
sfd(ti)6j<lfd(ti)

hi,j+1 = qi > 1.

For each of the endfire events ti〉 which occurs the corresponding hi,j+1 is
decremented and the output tokens are delivered at the postplaces of ti.
There is not only some choice, if some active transitions which need not
to endfire may endfire. But once the number of these may endfire events is
fixed (for instance q ≤ qi times transition ti), there is a choice to take these q
events totally nondeterministically or to take deterministically those q which
are the oldest among the qi active ones.

– Tick events: A tick event, denoted as X, is enabled iff there is no firing event
which must either start firing or stop firing. Upon occurring, a tick event
increments the clocks for all active transitions. Hence the tick events are
global. More precisely the incrementation is realised with a right shift of the
clock-matrix and by setting the first column to zero.

The initial state is considered to be the first after-tick state. The whole set of
such states is defined by induction in the sequel. An ITPN can change from one
after-tick state into another one by the occurrence of the so-called Globalstep,
which due to zero duration and auto concurrency extends the definition of firing
triple known from [7]. A Globalstep consists of several parts, first a multiset of
endfire events (called Endstep), then an iterative union of two multisetsMaxstep
and EndstepZero, (called Iteratedstep). A Maxstep is a maximal step of startfire
events and an EndstepZero is a multiset of endfire events of transitions with zero
firing duration. The iteration stops when no further Maxstep is possible. Note

E. Pelz et al.: Interval-Timed Petri Nets with Auto-concurrent Semantics 249

that it always stops as only wellformed ITPNs are considered. The Globalstep is
followed by one tick event for time elapsing.

During the execution of the ITPN Globalsteps and single tick events alternate
in the following way. Let S(1) = (M (1), h(1)) be an arbitrary after-tick state of
Z.

1) An Endstep (for end-firing-step), denoted by G
(1)
〉 , represents the union

of two multisets: That of all active transitions T1 which must end their firing
in this state, and a multiset T ′2 that contains several transitions which may end
their firing in this state s.
Thus Endstep G

(1)
〉 = T1] T ′2 where T ′2 ⊆ T2 ,

T1 = {tnii 〉 | i ∈ [1, |T |], h
(1)
i,j+1 = ni 6= 0, j = lfd(ti)} and

T2 = {tqii 〉 | i ∈ [1, |T |], qi =
∑

sfd(ti)6j<lfd(ti)
h
(1)
i,j+1 }.

Without loss of generality, we can choose for each i to put in T ′2 the oldest
active transitions ti ∈ T2, as shown later in Theorem 3.

Its occurrence S(1)
G

(1)

〉−→ S̃(1) leads to S̃(1) = (M̃ (1), h̃(1))
such that

∀p ∈ P M̃ (1)(p) =M (1)(p) +
∑

ti∈G(1)

〉

G
(1)
〉 (ti〉) · v(ti, p) (2)

and h̃(1)i,j :=

0 if G(1)
〉 (ti〉)−

∑
j′>j

h
(1)
i,j′ > 0

h
(1)
i,j − q if G(1)

〉 (ti〉)−
∑

j′>j+1

h
(1)
i,j′ = q and 0 < q < h

(1)
i,j

h
(1)
i,j otherwise.

(3)

The state S̃(1) is called an intermediate state.
2) An Iteratedstep is the iterative union of two multisets, the first one being

a Maxstep. The second one contains only Endfiring events of transitions with
zero duration, we denote that as EndstepZero.
We start by setting k := 0 and

M̃ (1,k) = M̃ (1,0) := M̃ (1) and h̃(1,k) = h̃(1,0) := h̃(1). (4)
a) A Maxstep (for maximal start firing step) represents a maximal multiset

of concurrently enabled transitions which must start to fire after an Endstep
or an EndstepZero. The multiset of startfire events is denoted by Gm(1,k+1) =

{[tnii |i ∈ [1, |T |] and M̃ (1,k) >
|T |∑
i=1

ni · v(ti, p)}.
If there are several enabled Maxsteps, the choice will be arbitrary solved.
The iterative union is stopped if the calculated k + 1-th Maxstep is empty
(Gm(1,k+1) = ∅,i.e. a fixpoint is reached). This implies that no further tran-
sitions can fire in this step, which always arrives because of the wellformedness
of the net. The value of k is stocked in kmax (kmax := k).

b) An EndstepZero, denoted by Gz(1,k+1), is a multiset of endfire events
of just activated transitions, which must or may end their firing immediately.

250 PNSE’15 – Petri Nets and Software Engineering

Precisely, EndstepZero contains only transitions started in the same step of it-
eration and whose shortest firing duration is equal to zero; all of them whose
longest firing duration is equal to zero too must end their firing; among the oth-
ers an arbitrary number of transitions may end their firing. Thus EndstepZero
is defined as

Gz(1,k+1) =

i ∈ [1, |T |] and sfd(ti) = 0 and
[(
lfd(ti) = 0 and

tnii 〉 ni = Gm(1,k+1)([ti)
)
or
(
lfd(ti) 6= 0 and

ni 6 Gm(1,k+1)([ti)
)]

.

A state S̃(1,k+1) is calculated after the k-th iteration such that for each p ∈ P
it holds that: M̃ (1,k+1)(p) = M̃ (1,k)(p)−∑

ti∈T
Gm(1,k+1)([ti) · v(p, ti) +

∑

ti∈T
Gz(1,k+1)(ti〉) · v(ti, p) and (5)

h̃
(1,k+1)
i,j :=

{(
h̃
(1,k)
i,j +Gm(1,k+1)([ti)−Gz(1,k+1)(ti〉)

)
if j = 1

h̃
(1,k)
i,j otherwise

. (6)

All newly fired and not ended events obtain age zero, i.e. are counted in
column j = 1 of the clock-matrix.

The Iteratedstep is now defined by
G

(1)
I =

⊎

16k6kmax
(Gm(1,k)

⊎
Gz(1,k)). (7)

The occurrence of an Iteratedstep (GI) S̃(1)
G

(1)
I−→ S′(1) leads to S′(1) =

(M ′(1), h′(1)) with
M ′(1) := M̃ (1,kmax) and h′(1) := h̃(1,kmax). (8)

S′(1) is called an intermediate state.
3) After the Globalstep (G

(l)
〉 , GI

(l)), one tick event has to occur now in state

S′, as no further firing event must happen. Its occurrence S′(1) X−→ S(2) leads to
S(2) = (M (2), h(2)). The state S(2) is a new after-tick state, with

M (2) :=M ′(1) and h
(2)
i,j :=

{
h
′(1)
i,j−1 if 1 < j 6 d

0 if j = 1
(9)

4) A firing step sequence σ in an ITPN Z is an alternating sequence of
Globalsteps and ticks, starting with the initial time state S(0) = (M (0), h(0))

σ = S(0)
G

(0)

〉 =∅
−→ S̃(0) G

(0)
I−→ S′

(0) X−→ S(1)
G

(1)

〉−→ S̃(1) G
(1)
I−→ S′

(1) X−→ S(2)
G

(2)

〉−→

S̃(2) . . . S(n−1) G
(n−1)

〉−→ S̃(n−1) G
(n−1)
I−→ S′

(n−1) X−→ S(n). (10)

where for all l > 0, the Endstep G
(l)
〉 , Iteratedstep G

(l)
I and states S(l) =

(M (l), h(l)), S′(l) = (M ′(l), h′(l)) and S̃(l) = (M̃ (l), h̃(l)) verify the above con-
ditions. In particular each S(l) has the same marking, i.e. the same first column
in the time marking as S′(l−1).
The following lemma states that the definition of S′(1) is well founded

E. Pelz et al.: Interval-Timed Petri Nets with Auto-concurrent Semantics 251

Lemma 1 Let us consider state S′(l) = (M ′(l), h′(l)) as defined in (8). Then this
state fulfils

M ′(l) = M̃ (l) −
|T |∑
i=1

G
(l)
I ([ti) · v(p, ti) +

|T |∑
i=1

G
(l)
I (ti〉) · v(ti, p) and

h
′(l)
i,j =

{
h̃
(l)
i,j + [G

(l)
I ([ti)−G

(l)
I (ti〉)] if j = 1

h̃
(l)
i,j otherwise.

2

Proof. We start with

M ′(l) =
(8)

M̃ (l,kmax)

=
(5)

M̃ (l,kmax−1) −
|T |∑

i=1

Gm(l,kmax)([ti) · v(p, ti) +
|T |∑

i=1

Gz(l,kmax)(ti〉) · v(ti, p)

and after kmax iterations we obtain

M ′(l) =
(5)

M̃ (l,0) −
kmax∑

k=1

|T |∑

i=1

Gm(l,k)([ti) · v(p, ti) +
kmax∑

k=1

|T |∑

i=1

Gz(l,k)(ti〉) · v(ti, p)

=
(4)+(7)

M̃ (l) −
|T |∑

i=1

G
(l)
I ([ti) · v(p, ti) +

|T |∑

i=1

G
(l)
I (ti〉) · v(ti, p).

Further, we start with the definition of h′(l).

h′(l) =
(8)

h̃(l,kmax)

=
(6)

h̃
(l,kmax−1)
i,j + [G

(l,kmax)
m ([ti)−G

(l,kmax)
z (ti〉)] if j = 1

h̃
(l,kmax−1)
i,j otherwise.

and after kmax iterations we obtain

h′(l) =
(6)

h̃
(l,0)
i,j + [

kmax∑
k=1

G
(l,k)
m ([ti)−

kmax∑
k=1

G
(l,k)
z (ti〉)] if j = 1

h̃
(l,0)
i,j otherwise.

=
(4)+(7)

h̃
(l)
i,j + [G

(l)
I ([ti)−G

(l)
I (ti〉)] if j = 1

h̃
(l)
i,j otherwise.

.

�

The set of all after-tick states and intermediate states forms the set of reach-
able states of Z. The reachability graph start with the initial state s0 and has all
these states as nodes and the concerned Endsteps, Iteratedsteps or ticks X as arc
inscriptions. Each after-tick state has as many successor nodes as the number of

252 PNSE’15 – Petri Nets and Software Engineering

subsets of the set of endfiring events which may occur in the state. Each of these
nodes has as many successor nodes as Iteratedsteps. Thus the reachability graph
grows very quickly. To avoid the construction of such an enormous reachability
graph the consideration of the state equation to decide unreachability will be a
good alternative.

2.3 Semantic equivalences

We could have defined firing step sequences of an ITPN as in (10) where for all
l > 0, the Endstep G

(l)
〉 may contain transitions to be endfired independently

of their age. We would like to define the notion of similar firing step sequences
which only differ in the choice of the age of transitions which may and will
endfire.

Two firing step sequences σ and σ0 are called similar, denoted by σ0 ∼ σ if
both start at the same state and in all states S(l) and S0

(l) the marking (i.e.
their first column) is the same, and the Globalsteps are the same.
Thus, in similar firing step sequences only the clock matrices may differ, which
signifies that transitions of different ages could have endfired.

The following sentence establishes that w.l.o.g., we can always use as may
endfire events the oldest active transitions (as chosen in Definition 1 of Subsec-
tion 2.2. above).
Note that in both cases, transitions whose actual durations are the upper bound
of their respective time interval (δi = lfd(ti)) must endfire. For the others active
transitions (i.e. those which may endfire) we have the choice to choose which
transitions do so. Choosing to endfire the oldest active transitions make the
choice deterministic.

Example 2 Let be S(3) = (M (3), h(3)) the state reached from the initial state
of our running example in Fig.2. by the firing steps sequence σ =(
∅, {[t82},X

)
,
(
{t22〉}, {[t1, [t4, t1〉, [t2},X

)
,
(
{t4〉, t22〉}, {[t21, [t2, t21〉, [t22},X

)
with

M (3) = (00) and h
(3) =

(
0 0 0 0
0 3 1 4
0 0 0 0
0 0 0 0

)
.

Note that in this state, there are eight active transitions t2 whose time interval
is [1, 3].
From the clock matrix h(3) we can see that there are four transitions t2 of age
3, one transition of age 2 and three transitions of age 1. Imagine that seven
transitions will be endfired.
(a) If only the oldest active transitions are chosen

The intermediate state S̃ with M̃ (3) = (0
14) and h̃

(3) =

(
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

)
will be reached.

(b) If transitions of any age may be chosen, then that of age two can be ignored

and the following state S̃ with M̃ (3) = (0
14) and h̃(3) =

(
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

)
could be

reached, too. �

Theorem 3 Let Z be an ITPN and n ∈ N+. For each firing step sequence σ of
n Globalsteps where we choose to may endfire active transitions of any ages, we

E. Pelz et al.: Interval-Timed Petri Nets with Auto-concurrent Semantics 253

can find a sequence σ0 where always the oldest active transitions are endfired,
and σo ∼ σ. �
Proof. Let σ be a sequence of n > 1 global steps where may endfire events are
chosen arbitrarily among the active transitions independently of their ages. As
defined in (10) it holds that

σ = S(0)
G

(0)

〉−→ S̃(0)
G

(0)
I−→ S′(0)

X−→ S(1)
G

(1)

〉−→ S̃(1)
G

(1)
I−→ S′(1)

X−→ S(2)
G

(2)

〉−→ S̃(2) . . .

. . . S(n−1) G
(n−1)

〉−→ S̃(n−1) G
(n−1)
I−→ S′(n−1)

X−→ S(n)

and ∀i 6 n, S(i) = (M (i), h(i)) , whereM (i) is a marking and h(i) its associated
clock matrix. We want to prove, by induction on n, that we can obtain another
sequence σ0 which has the same global steps as σ but different states, by endfiring
the oldest active transitions first.

Base : n = 1. For the first global step σ = S(0)
G

(0)

〉−→ S̃(0)
G

(0)
I−→ S′(0)

X−→ S(1)

we want to construct σo similar to σ. The initial state is the same in both cases
because we begin from the initial marking and no transition is active. Thus
So

(0) = (M (0), h(0)) = S(0).
The first endfiring multi-set is empty and the age does not play any role. Thus
S̃o

(0)
= S̃(0).

The iterated step contains only endfiring events of zero ages, thus we can use the
same multiset of firing S′o

(0)
= S′(0). After the tick event So(1) = S(1) holds.

We conclude that σo = So
(0)

G
(0)

〉−→ S̃o
(0) G

(0)
I−→ S′o

(0) X−→ So
(1) is a valid firing step

sequence and σo ∼ σ.
The base of induction is proved.

Induction hypothesis : For all firing step sequences σ of length i 6 n, with
arbitrarily aged endfiring events, there exists σo of length i such that σo ∼ σ is
supposed to be true and σo endfires only the oldest active transitions.

Induction step: Let σ be a firing step sequence of size (n+ 1) with arbitrary
aged endfiring events.
Thus, the prefix of σ of size n is the following firing step sequence

σ′ = S(0)
G

(0)

〉−→ S̃(0)
G

(0)
I−→ S′(0)

X−→ S(1)
G

(1)

〉−→ S̃(1)
G

(1)
I−→ S′(1)

X−→ S(2)
G

(2)

〉−→

S̃(2) . . . S(n−1) G
(n−1)

〉−→ S̃(n−1) G
(n−1)
I−→ S′(n−1)

X−→ S(n)

and its (n+1)-th global step is S(n) = (M (n), h(n))
G

(n)

〉−→ S̃(n) = (M̃ (n), h̃(n))
G

(n)
I−→

S′(n) = (M ′(n), h′(n))
X−→ S(n+1) = (M (n+1), h(n+1)). As the ages of transitions

in G
(n)
〉 are arbitrary, we only know the following about h̃(n), h(n) :
(a) For all i, xi := hi,lfd(ti)+1 transitions ti must endfire in this step. Thus,

for each i, txii is in G
(n)
〉 and h̃(n)i,lfd(ti)+1 = 0 follows.

(b) For all i, yi :=
∑

16j6lfd(ti)
h
(n)
i,j −

∑
16j6lfd(ti)

h̃
(n)
i,j is the number of may

endfire transitions in G
(n)
〉 .

254 PNSE’15 – Petri Nets and Software Engineering

(c) It follows that for all i, zi := xi + yi = G
(n)
〉 (ti).

Now let us prove that there exist σo of size (n + 1) with σo ∼ σ, such that
the oldest active transitions endfire.
By hypothesis, we have σ′o, such σ′o ∼ σ′ and σ′o ends with state So(n), such that
the states S(n) and So(n) have the same markings but may have different clock
matrices. In σ′o only the oldest active transitions have endfired.

We need to prolongate σ′o by the same (n+1)-th global step (G〉
(n),GI

(n),X).
Thus, we have to show the existence of fitting h̃o

(n)
, h′o

(n) and h0(n+1) such that

So
(n) = (M (n), ho

(n))
G

(n)

〉−→ S̃o
(n)

= (M̃ (n), h̃o
(n)

)
G

(n)
I−→ S′o

(n)
= (M ′(n), h′o

(n)
)

X−→ So
(n+1) = (M (n+1), ho

(n+1)).
We have first to show that we can endfire zi active transitions by choosing

the oldest ones. Clearly, as the same global steps appeared in σ′ and σ′o, the
same number of active transitions appears in the two states S(n) and So(n), i.e.,
for all i, it holds that∑

i>1d+1

h
(n)
i,j =

d+1∑

i>1

ho i,j
(n) and zi 6

d+1∑

i>1

h
(n)
i,j .

Because all preceding global steps are the same for the two sequences, we
have precisely the same number of transitions too young to be endfired, i.e., for
all i,∑
j6sfd(ti)

h
(n)
i,j =

∑
j6sfd(ti)

h
(n)
o i,j . Thus, there are also the same number of active

transitions which must or may endfire in S(n) and So(n).
By consequence, we can take exactly the same endfiring multiset G

(n)
〉 as in σ,

by choosing the oldest active instance of transitions.
The state S̃o

(n)
= (M̃ (n), h̃o

(n)
), as defined in (2) and (3), and S̃(n) have

clearly the same markings.
Now the same iterated step GI

(n) can appear in both states leading to S′o
(n)

=

(M ′(n), h′o
(n)

), as defined in (5), (6) and (8), and to S′(n).
Finally, by the tick event we obtain So(n+1) = (M (n+1), ho

(n+1)), as defined in
(9).
Thus, the firing step sequence σo is successfully completed. We can conclude
that σo ∼ σ. �

3 Algebraic representations

As already quoted, the relationship between a firing step sequence σ and a
reachable p-marking M in an ordinary PN with initial p-marking M0 and a
incidence matrix C can be described formally by the following linear equation,
where ψσ is the Parikh vector of σ: M = M0 + C · ψσ. A Parikh vector of a
word α defined over the finite set, here of transitions T = {t1 · · · tn} is a vector
of dimension n and the i-th component is the number of appearance of ti in the
word α. Our goal is to obtain a similar result for ITPNs, i.e. to give an algebraic
description, precisely, a linear equation, for each firing step sequence, now of

E. Pelz et al.: Interval-Timed Petri Nets with Auto-concurrent Semantics 255

Globalsteps as defined above, in an arbitrary ITPN which takes into account the
time, too. Meanwhile state equations had been introduced for TPN with fixed
duration [8] and for ITPN without auto-concurrency and without zero duration
[7], where the semantics had been formulated in a more algebraic way. We will
present in the following the formal definitions of the notions we need later for
the different proofs. Some of them are adaptations of definitions known for the
algebraic presentation of a firing step sequence for TPN, or ITPN without zero
duration and without auto-concurrency [8,7] and others are entirely new here.

3.1 Semantics with time markings

In this subsection we introduce a more detailed view of the p-markings in an
arbitrary ITPN with respect to the time. This view makes it possible to obtain
a time-dependent state equation for a firing step sequence and it delivers a
sufficient condition for the non-reachability of p-markings (timeless) as well as
of time markings in such a net.

First, to calculate the effect of Endstep G〉 we introduce a new (|T |×d)matrix,
denoted by G〉 which is the matrix representation of the Endstep multiset, fixing
which events have to endfire, by taking the oldest ones.

Let S(1) = (M (1), h(1))
G

(1)

〉−→ S̃(1) = (M̃ (1), h̃(1))

G
(1)
〉i,j :=

h
(1)
i,j if G(1)

〉 (ti〉)−
∑
j′>j

h
(1)
i,j′ > 0

q if G(1)
〉 (ti〉)−

∑
j′>j

h
(1)
i,j′ = q > 0 and q < h

(1)
i,j

0 otherwise.

(11)

The element G(1)
〉i,j fixes the number of ti whose age is (j − 1) and which is

chosen to endfire.
Lemma 4 Let an Endstep G

(1)
〉 appear in state S(1), i.e., S(1) =

(M (1), h(1))
G

(1)

〉−→ S̃(1) = (M̃ (1), h̃(1)) and let G(1)
〉 be its associated matrix as

defined in (11). Then for all i, j it holds that h̃(1)i,j = h
(1)
i,j −G

(1)
〉i,j. 2

The proof is an immediate consequence of the above definition (11).
Second, in order to describe the relation between tokens and time alge-

braically, we use a generalization of the p-marking, called time marking, cf. [8].
A time marking is a (|P | × (d+1))- matrix. The number of rows is equal to the
number of places and the number of columns, d+ 1, equals the maximum of all
longest durations in the considered ITPN, plus 2. They are numbered from 1
to d + 1. Each column can be considered to be a p-marking. The first column
represents the number of visible tokens in each place, i.e. the actual p-marking
M . The other columns represent tokens which are on their way to the places: col-
umn number two for those arriving immediately, column number three for those
arriving in one time unit (one tick later), the column number four for those ar-
riving in two time units (after two ticks), and so on. We may observe, that only
a finite number of time markings can be associated with a given p-marking M.

256 PNSE’15 – Petri Nets and Software Engineering

This number depends on the time-dimension d of the net and is exponential in
|T |.

A time state s is now defined as a pair (m,h), where m is a time marking
and h is a clock-matrix. The initial time marking m(0) is defined as

m
(0)
.1 =M (0) and m(0)

i,j = 0 for i = 1 . . . |P | and j = 2 . . . d+ 1. (12)

The initial time state s(0) is the pair (m(0), h(0)) considered now to be the first
after-tick time state.

Example 5 Consider the ITPN Zo with d = 4 and m(0) = (8 0 0 0 0
0 0 0 0 0) . This

initial time marking allows many possible Globalsteps such as, e.g.,

1. (G
(0)
〉 = ∅, G

(0)
I = {[t82});

2. (G
(0)
〉 = ∅, G

(0)
I = {[t62, [t3}

⊎{t3〉}
⊎{[t4}= {[t62, [t3, [t4, t3〉});

3. (G
(0)
〉 = ∅, G

(0)
I = {[t22, [t33}

⊎{t3〉3}
⊎{[t1}

⊎{t1〉}
⊎{[t2}

= {[t32, [t33, [t1, t3〉3, t1〉}).

The choice of one Globalsteps among those above is arbitrary. We will consider
later the third one appearing. �

Let s(1) = (m(1), h(1)) be an after-tick time state in some ITPN Z, and
(G(1)
〉 , G

(1)
I) a Globalstep which may appear from state S(1) = (M (1), h(1)) as

defined in Subsection 2.1. above. We will adapt the definitions now to show how
the execution of this Globalstep changes the time state s(1), by using matrix G(1)

〉
for the calculations.
a) By firing the Endstep we obtain s(1)

G
(1)

〉−→ s̃(1) = (m̃(1), h̃(1)), with

m̃
(1)
i,j :=

m
(1)
i,j +

|T |∑
k>1

(
d∑
r>1

G
(1)
〉k,r) · v(tk, pi) if j = 1

m
(1)
i,j −

|T |∑
k>1

G
(1)
〉k,j′ · v(tk, pi) if j > 1 and

j′ = lfd(tk)− j + 3

. (13)

and h̃
(1)
i,j := h

(1)
i,j −G

(1)
〉i,j (by Lemma 4). It is clear that m̃(1)

i,2 = 0.

b) By firing the Iteratedstep we obtain s̃(1)
G

(1)
I−→ s′(1) = (m′(1), h′(1)). The

Iteratedstep change the first column of the time marking,m′(1)i,1 =M ′(1), as shown
in Lemma 1. For each transition tk ∈ G

(1)
I the j-th column can be modified if

j = lfd(tk) + 2, but tk does not influence the others columns. Hence, it holds
that m

′(1)
i,j :=

m̃
(1)
i,j −

|T |∑
k>1

G
(1)
I ([tk) · v(pi, tk) +

|T |∑
k>1

G
(1)
I (tk〉) · v(tk, pi) if j = 1

m̃
(1)
i,j +

∑
16k6|T |

j=lfd(tk)+2

[
G

(1)
I ([tk)−G

(1)
I (tk〉)

]
· v(tk, pi) if j > 1

. (14)

E. Pelz et al.: Interval-Timed Petri Nets with Auto-concurrent Semantics 257

The clock matrix h′(1) does not need to be recalculated: the definitions of (6)
and (8) apply.

c) Now one tick has to occur s′(1) X−→s(2) = (m(2), h(2)) with

m
(2)
i,j :=

m
′(1)
i,j if j = 1

m
′(1)
i,j+1 if 2 6 j 6 d

0 if j = d+ 1

. (15)

The clock matrix h(2) is already defined in (9). The time state s(2) is a new
after-tick time state. We can observe, that in the defined time markings the first
column is in fact always the usual p-marking of the corresponding state.
Example 6 Let us reconsider the running example Zo and the selected Global-
step appearing from the initial state s(0): (G(0)

〉 = ∅, G(0)
I = {[t32, [t33, [t1, t3〉3, t1〉}).

Then the time states reached during its firing and the subsequent tick s(0)
G

(0)

〉−→
s̃(0)

G
(0)
I−→ s′(0)

X−→ s(1) have the following time markings

m̃(0) = m(0) = (8 0 0 0 0
0 0 0 0 0) ,m

′(0) =(0 0 0 0 0
0 0 0 0 6) ,m

(1) = (0 0 0 0 0
0 0 0 6 0).

As G(0)
〉 = O, it holds that h̃(0) = h(0) = O. As GI (0)([t3)−GI

(0)(t3〉) = 3 it
follows that

h′(0)2,1 = 3 and h̃(0) = h(0) = O, h′(0) =
(

0 0 0 0
3 0 0 0
0 0 0 0
0 0 0 0

)
and h(1) =

(
0 0 0 0
0 3 0 0
0 0 0 0
0 0 0 0

)
after a

right shift. �
Analogously to states, we call reachable time states all after-tick and interme-

diate time states reached during the execution of arbitrary firing step sequences.

3.2 Algebraic calculus of the semantics

In the following we introduce all matrices which are necessary to obtain a state
equation for some ITPN, starting with the so called time incidence matrix.

Let Z be an ITPN. The (|P |×(d+1)·|T |)-matrix C is called the time incidence
matrix of Z, if C := (C(1), C(2), . . . , C(|T |)) with C(k) being a (|P | × d)-matrix

for each k ∈ {1, . . . , |T |}, such that C(k) =
(
c
(k)
i,r

)
i=1···|P |
r=1···d

and

c
(k)
i,r :=

−v(pi, tk) if r = 1
v(tk, pi) if r − 2 = lfd(tk)
0 otherwise.

.

The matrix C consists of submatrices C(k) representing the transitions tk of
the net. Each c(k)i,1 is the number of tokens that will be changed (decremented)
at place pi immediately when the startfire event [tk appears, and c(k)i,r shows the
number of tokens that will arrive at place pi when the endfire event tk〉 appears
after at most (r − 2) time units.

Example 7 The time incidence matrix of Zo from Fig.2 is as follows:

C =
(

0 0 0 0 0 −1 0 0 0 0 −2 0 0 0 0 0 0 0 1 0
−3 0 0 1 0 0 0 0 0 2 0 0 1 0 0 −1 0 0 2 0

)
. �

258 PNSE’15 – Petri Nets and Software Engineering

Obviously the time incidence matrix takes into account the longest firing dura-
tion lfd(ti) for each transition ti.
The appearance of t〉ni in some G

(l)
〉 at a certain state s(l) = (m(l), h(l)) tells us

that there are at least n active transitions. The matrix G(l)
〉 associated to the

end-step tells us which ones are going to endfire.
For subsequent computation we need to update the matrix C with respect to

G
(l)
〉 . This is achieved by matrix C(l) obtained from C where for each submatrix

C
(l)
(i) the first column represents the tokens consumed by the transitions to endfire

and the j-th column represents the tokens arriving to the corresponding places
after j − 2 ticks at least.

Therefore, concerning G(l)
〉 in the state s(l) = (m(l), h(l)), we define the matrix

C(l) :=
(
C

(l)
(1), C

(l)
(2), . . . , C

(l)
(|T |)

)
as follows. Each C(l)

(k) =
(
c
(l,k)
i,r

)
i=1···|P |
r=1···d

is a (|P |×
(d+ 1))-matrix with

c
(l,k)
i,r :=

{
−v(pi, tk) ·G〉(tk) if r = 1
v(tk, pi) ·G〉k,r′ f r > 1 and r′ = lfd(tk)− r + 3

. (16)

Example 8 In the ITPN Zo let us consider the endfiring step s(l) =

(m(l), h(l))
G

(l)

〉−→ s̃(l) = (m̃(l), h̃(l)) with m(l) = (0 0 4 0 0
0 0 10 8 0), h(l) =

(
0 0 0 0
0 4 1 0
0 0 0 0
0 0 4 0

)
and

G
(l)
〉 = {t2〉4, t4〉3}. Then its associated matrix is G(l)

〉 =

(
0 0 0 0
0 3 1 0
0 0 0 0
0 0 3 0

)
.

The time incidence matrix C(l) arises from the matrix C as follows:

C(l) = (0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 2 6 0 0 0 0 0 0 −3 0 6 0 0). �

Our goal now is to introduce a sparse matrix U which allows us to calculate
C(l) from C, such that C(l) = C · U (l) for its submatrix U (l). Let us consider
tk〉 6∈ G

(l)
〉 and ti〉 ∈ G

(l)
〉 .

We define the square matrix U (l) with (d+1) · |T | rows and (d+1) · |T | columns
O stands for a block of zeros, A(l)

i is a
(d+1×d+1)matrix obtained from Ed+1

by:
(1) Multiplying the first column of Ed+1

by G
(l)
〉 (ti〉) which is the number of oc-

currences of endfiring event ti〉 in the
end-step G

(l)
〉 .

(2) Superseding the (lfd(ti)− j + 3)-th
column of Ed+1 by the (lfd(ti) + 2)-th
column multiplied by G(l)

〉i,j for each j ∈
[0, d] as follows:

t1 tk ti tn

t1

tk

ti

tn

A
(l)
1 O Od+1 O Od+1 O Od+1

...
...

...
...

...
...

...

O
. . . O O O O O

...
...

...
...

...
...

...
Od+1 O A

(l)
k

=Od+1 O Od+1 O Od+1

... O
... O

... O
. . .

... O O
... O

Od+1 O Od+1 O A
(l)
i O Od+1

... O
... O

... O
... O

... O
. . .

... O
Od+1 O Od+1 O Od+1 O A

(l)
n

.

E. Pelz et al.: Interval-Timed Petri Nets with Auto-concurrent Semantics 259

Example 9 In Zo from Fig. 2 we consider the same end-step G
(l)
〉 = {t2〉4, t4〉3} with

G
(l)
〉 =

(
0 0 0 0
0 3 1 0
0 0 0 0
0 0 3 0

)
. We obtain the corresponding matrices A(l)

2 , A(l)
4 and U (l):

A
(l)
2 =

(
4 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 3 0

)
, A

(l)
4 =

(
3 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 3 0 0
0 0 0 0 0

)
, U (l) =

O5 O5 O5 O5

O5 A
(l)
2 O5 O5

O5 O5 O5 O5

O5 O5 O5 A
(l)
4

 . �

It is evident that matrix U (l) makes it possible to calculate C(l) because the
values of each submatrix C(l)

(k) of C(l) verify with respect to the endfire events
tk〉

C
(l)
(k) =

{
C(k) ·A(l)

(k) if tk〉 ∈ G
(l)
〉

C(k) · Od+1 otherwise.
.

The
(
|P |× (d+1) · |T |

)
-matrix C(l) = C ·U (l) is called time incidence matrix

with actual durations for the end-step G
(l)
〉 .

In the following calculi (just below and later) we need some matrices, all
of them are sparse square (d + 1 × d + 1) matrices: Besides the already intro-
duced identity matrix Ed+1 and zero-matrix Od+1, we define here the matrices
Ld+1 = (lij), Wd+1 = (wij) and the progress matrix Rd+1 = (rij) by setting

lij :=

1if i ≥ 2
and i = j

0otherwise
, wij :=

1 if i ≥ 2
and j = 1

0 otherwise.
, ri,j :=

1if (i = j = 1)
or (i = j + 1)

0otherwise
.

For simplicity we write R instead of Rd+1 if d+ 1 is clear from the context.

Example 10 For the running example Zo from Fig.1 with d + 1 = 5 these
square matrices are

L5=

(
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
,W5=

(
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

)
, R5=

(
1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

)
. �

Now, let us observe the utility of these matrices. If we multiply an arbitrary
(l×d+1)- matrix A by Ld+1 we obtain a (l×(d+1))- matrix B = A ·Ld+1 whose
first column is the l - dimensional zero-vector and the rest of its columns are the
same as in the matrix A. If we multiply A by Wd+1 we obtain a (l × (d + 1))-
matrix B′ = A ·W whose first column is the sum of all but the first columns of
A and all the other columns are zero-vectors. Finally, if we multiply A by Rd+1

we obtain a (l× (d+1))- matrix B′′ = A ·W whose i-th column is the (i+1)-th
column of A, except the first one and the last one. Thus the multiplication by R
insures a shift. The first column of B′′ is the sum of the first and second columns
of A and the last one is a zero-vector.

Now, for each Endstep G
(l)
〉 = {tni1i1

〉, . . . , tniρiρ 〉} and Iteratedstep

G
(l)
I = {[tni1i1

, t
qi1
i1
〉, . . . , [tniρiκ , t

qiρ
iρ
〉}, with qs 6 ns forall s ∈ [1 · · · ρ]. we define a

matrix B(l)
〉 , called the bag matrix of G(l)

〉 as well as the matrices B(l)
m and B(l)

z

260 PNSE’15 – Petri Nets and Software Engineering

called the bag matrices of G(l)
I , all being (d + 1 · |T | × (d + 1)) matrices, by

setting

B
(l)
〉 =

B
(l)
〉(1)

B
(l)
〉(2)
...

B
(l)
〉(|T |)

, B

(l)
m =

B
(l)
m(1)

B
(l)
m(2)

...
B

(l)
m(|T |)

 and B(l)

z =

B
(l)
z(1)

B
(l)
z(2)

...
B

(l)
z(|T |)

 where

B
(l)
〉(s)

:=

{
Ld+1 if s ∈ {i1, . . . , iρ}
0 · Ed+1 otherwise. , (17)

B
(l)
m(s)

:=

{
G

(l)
I ([ts) · Ed+1 if s ∈ {i1, . . . , iκ}

0 · Ed+1 otherwise.
,

B
(l)
z(s) :=

{
G

(l)
I (ts〉) · Ld+1 if s ∈ {i1, . . . , iκ}

0 · Ed+1 otherwise.
(18)

Remark 1 In the bag matrices for Endsteps B(l)
〉 and B(l)

z , the first column is
obviously a zero vector.

Example 11 The Iteratedstep G
(l)
I = {[t62, [t3, [t1, t3〉} of the net Z0 from Fig.1

yields B(l)
m =

(1·E5
6·E5
1·E5
0·E5

)
and B(l)

z =

(0·L5
0·L5
1·L5
0·L5

)
. 2

Finally, we consider two ((d+1) · |T | × (d+1))-matrices K(l)
〉 and B(l)

I which
help us to describe algebraically the effect of respectively an Endstep and an
Iteratedstep.
We will prove that the following terms describe exactly this change.

− C(l) ·B(l)
〉 + C(l) ·B(l)

〉 ·Rd = − C · U (l)
︸ ︷︷ ︸
C(l)

B
(l)
〉 + C · U (l)

︸ ︷︷ ︸
C(l)

·B(l)
〉 ·Rd

= C
(
− U (l)B

(l)
〉 + U (l) ·B(l)

〉 ·Rd︸ ︷︷ ︸
:=K

(l)

〉

)
= C ·K(l)

〉 . (19)

and C ·B(l)
m − C ·B(l)

z + C ·B(l)
z ·Rd =

C (B
(l)
m −B(l)

z +B
(l)
z ·Rd︸ ︷︷ ︸

:=B
(l)
I

) = C ·B(l)
I . (20)

4 State equation
In this section we derive a state equation for an arbitrary ITPN that is analogous
to the state equation (1) of time-less nets and which is consistent with the state
equation for ITPNs without auto concurrency and zero durations [8].

We consider in the firing step sequence given in (10) the effects of the Glob-
alstep appearing at the after-tick time state s(l), for some natural number l ≤ n,
as well as of its subsequent tick event :

s(l)
G

(l)

〉
−−−→ s̃(l)

G
(l)
I−−−→ s′

(l) X
−−−→ s(l+1). (21)

The following two remarks are easy to prove.

E. Pelz et al.: Interval-Timed Petri Nets with Auto-concurrent Semantics 261

Remark 2 For all k ≥ d it holds that Rk =: (fi,j) i=1···d
j=1···d

with

fi,j =

{
1 if i= 1
0 otherwise .

Remark 3 Let be W (l) := B
(l)
〉 ·Rd. Then the matrix W (l) has the following

structure: W (l) =

W
(l)
(1)

W
(l)
(2)

...
W

(l)
(|T |)

 and W

(l)
(s) :=

{
Wd if ts ∈ G〉l
Od otherwise. .

Lemma 12 Let us consider the (|P | × d+ 1) - matrix Q(l) := C(l) ·B(l)
〉 . Then

its elements qi,j have the following values:

q
(l)
i,j =

0 if j = 1
|T |∑
k=1

G〉k,j′ · v(tk, pi) if 1 < j 6 d+ 1 and j′ = lfd(tk)− j + 3
.

Proof. We compute the elements q(l)i,j .

Case 1: j = 1. Then q
(l)
i,1 =

(
C(l) · B(l)

〉

)
i,1

=
(|T |∑
k=1

C
(l)
(k) · B

(l)
〉(k)

)
i,1

=

|T |∑
r=1

(d+1)∑
k=1

c
(l,r)
i,k · b

(l,r)
k,1︸︷︷︸
=0

= 0.

Case 2: 1 < j 6 d+ 1. Then

q
(l)
i,j =

(
C(l) ·B(l)

〉

)
i,j

=
(|T |∑
k=1

C
(l)
(k) ·B

(l)
〉(k)

)
i,j

=
|T |∑
r=1

d+1∑
k=1

(
c
(l,r)
i,k · b

(l,r)
k,j

)

=
|T |∑
r=1

(
c
(l,r)
i,j · 1

)
=
(16)

|T |∑
k=1

G〉k,
(
lfd(tk)−j+3

) · v(tk, pi). �

We will first establish linear equations for the time markings around a firing
step.

Theorem 13 Let Z be an ITPN, and let the time states s(l) = (m(l), h(l)),
s̃(l) = (m̃(l)h̃(l)), s′(l) = (m′(l), h′(l)) and s(l+1) = (m(l+1), h(l+1)) be defined as
in (21). Then the time markings fulfil

m̃(l) = m(l) + C ·K(l)
〉 (22)

m′(l) = m̃(l) + C ·B(l)
I (23)

m(l+1) = m′(l) ·R (24)

Proof of equation (22) :
In order to derive (22) we have to show that

(
m̃(l)

)
i,j

=
(
m(l)

)
i,j

+
(
C ·K(l)

〉

)
i,j

for each i ∈ {1, · · · , |P |} and j ∈ {1, · · · , d+ 1}.
Case 1: j = 1. According to the definition of time markings (13) it

holds that

262 PNSE’15 – Petri Nets and Software Engineering

(
m̃(l)

)
i,1
−
(
m(l)

)
i,1

=
(|T |∑

k=1

(d∑

r=1

G
(l)
〉k,r

)
· v(tk, pi)

)
.

Thus we have to prove that
(|T |∑
k=1

(d∑
r=1

G
(l)
〉k,r

)
·v(tk, pi)

)
=
(
C ·K(l)

〉

)
i,1
. It holds

(
C ·K(l)

〉

)
i,1

=
(19)

(
− C · U (l) ·B(l)

〉

)
i,1

+
(
C · U (l) ·B(l)

〉 ·Rd
)
i,1
. (25)

Now we first consider the term
(
− C · U (l) ·B(l)

〉

)
i,1
. As the first column of the

matrix B(l)
〉 consists only of zeros, it holds that

(
− C · U (l) ·B(l)

〉

)
i,1

=

(
− C(l) ·B(l)

〉

)
i,1

= −
(
Q(l)

)
i,1

= 0. (cf. lemma 12) (26)

Subsequently, we consider the second term
(
C · U (l) ·B(l)

〉 ·Rd
)
i,1
. By remark 3

we know that
(
C · U (l) ·B(l)

〉 ·Rd−1
)
i,1

=
(
C(l) ·W

)
i,1

=
(d+1)·|T |∑
k=1

c
(l)
i,k · w

(l)
k,1 =

|T |∑
r=1

d+1∑
k=1

c
(l,r)
i,k · w

(l,r)
k,1 =

(16)

|T |∑
k=1

(d∑
r=1

G
(l)
〉k,r

)
· v(tk, pi).

(27)

Considering (25),(26) and (27) leads to the equation
(
m̃(l)

)
i,1

=
(
m(l)

)
i,1

+
(
C ·K(l)

〉

)
i,1
, as desired.

Case 2: j > 1.
According to the definition of time markings in (13) it holds that

m̃
(l)
i,j −m

(l)
i,j = −

|T |∑

k=1

G〉
(l)

k,
(
lfd(tk)−j+3

) · v(tk, pi). (28)

Thus, we have to prove that
(
C ·K(l)

〉

)
i,j

= −
|T |∑
k=1

G〉
(l)

k,
(
lfd(tk)−j+3

) · v(tk, pi).
It holds that

(
C ·K(l)

〉

)
i,j

=
(19)

(
− C · U (l) ·B(l)

〉 + C · U (l) ·B(l)
〉 ·Rd

)
i,j

=
(
− C(l) ·B(l)

〉 + C(l) ·B(l)
〉 ·Rd

)
i,j

=
(
−Q(l) + C(l) ·W (l)

)
i,j

(cf. Rem. 3 and Lemma 12)

= −
(
Q(l)

)
i,j

+
(
C(l) ·W (l)

)
i,j

= −
(
Q(l)

)
i,j

+ 0 = q
(l)
i,j (cf. Rem. 3)

= −
|T |∑

k=1

G〉
(l)

k,
(
lfd(tk)−j+3

) · v(tk, pi). (cf. Lemma 12)

E. Pelz et al.: Interval-Timed Petri Nets with Auto-concurrent Semantics 263

The profs of equations (23) and (24) can be done similarly. 2

Now we can deduce the main result, i.e., the equation for the sequence (10):

Theorem 14 Let Z be an ITPN, n ≥ 1 and σ a firing step sequence con-
sisting of n Globalsteps, alternating with ticks, leading to the time state s(n) =
(m(n), h(n)) as defined in (10). Then the time marking m(n) fulfils m(n) =

m(0) ·Rn + C · Ψσ where Ψσ =

n∑

l=1

(
K

(l−1)
〉 +B

(l−1)
I

)
·Rn+1−l. (29)

The proof can be done by induction on n. 2

We call Ψσ, which is a ((d + 1) · |T | × |P |) - matrix, the Parikh matrix and
equation (29) the state equation of the firing step sequence (10). Analogously
to the Parikh vector, the Parikh matrix counts the number of appearances of
startfire and endfire events in (10).

It is evident, that due to Theorems 13 and 14, we can analogously establish
state equations for the other (intermediate) time markings, such as m′(n) and
m̃(n), that appear in the firing step sequences.

The last Theorem 14 provides a sufficient condition for the non-reachability
of a given time marking. Let us explain what it means to show that there does not
exist a sequence, nevertheless which length, such that after firing of the sequence
from the initial time state, the net is in a time state whose time marking is the
given one. For this reason, similar to the case for classic Petri nets, we have to
solve an system of equalities defined by the equation (29). Of course, this system
of equalities is much more difficult than that for the equation (1) for classic PNs.

The number of variables in the state equation is around n · |T | ·
(
(d +

1)2/2 + 3
)
, in total. Additionally, there are some more additional "local" equal-

ities/inequalities.
Finally, we have to prove that for no n the obtained system of equalities of the

state equation has an integer solution. In that case the given time marking is not
reachable. In the other case - if there is an integer solution for some particular
n - then no assertion can be done about the reachability of the time marking.
It could be possible that the solution represents only non realizable sequences
with, for instance, intermediate states which would have negative values.

5 Conclusion

In this article we have studied the class of Interval-Timed Petri nets with discrete
delays in their most complex version. Firstly, zero duration is allowed (i.e. zero
is possible as a lower bound of the duration interval of a transition), which has
as consequence that in between two time ticks a certain number of transitions
may start and end and provoke the start and perhaps ending of others, and so
on. We consider only well formed nets where this number is always finite, i.e.
where there is no undesired cycle of transitions of zero duration.

Then we allow auto-concurrency in the firing of transitions. This means that
in maximal steps several instances of the same transition may start at the same

264 PNSE’15 – Petri Nets and Software Engineering

moment and could have independent durations. Our notion of Globalstep, which
consists of all startfire and endfire events in between two time ticks, is original.

When in a state a subbag of concurrently active instances of the same transi-
tion should end we could choose to end the oldest ones between them or arbitrary
ones. We prove that both ways are equivalent, leading to sequences composed of
the same Globalsteps. This result allows us to choose once for all in this article
to end always the oldest active transitions.

To obtain adequate formalizations, original algebraic structures have been
proposed for all defined concepts.

In this complex algebraic context, our goal was to construct state equations
for the considered net class. We proposed a series of results which lead to the
main theorem, which establishes that each reachable time state fulfils a certain
nontrivial state equation. The paper contains all proofs.

By contraposition we may conclude, that a time state is unreachable in the
considered Interval-Timed Petri net when the system of equalities associated to
its state equation has no solution.

References

1. H. Fleischhack and E. Pelz. Hierarchical Timed High Level Nets and their Branch-
ing Processes. In Proceedings of ICATPN’03, LNCS 2679, Springer, pages 397–416,
2003.

2. M. Heiner and L. Popova-Zeugmann. Worst-case Analysis of Concurrent Systems
with Duration Interval Petri Nets. In Proceedings of 5. Fachtagung Entwurf kom-
plexer Automatisierungssysteme, TU Braunschweig, 1997.

3. P. Merlin. A Study of the Recoverability of Communication Protocols. PhD thesis,
Irvine, 1974.

4. C. A. Petri. Fundamentals of a Theory of Asynchronous Information Flow. In
IFIP Congress, 1962.

5. L. Popova-Zeugmann. On Time Petri Nets. J. Inform. Process. Cybern. EIK
27(1991)4, 1991.

6. L. Popova-Zeugmann. Time and Petri Nets. Springer, 2013.
7. L. Popova-Zeugmann and E. Pelz. Algebraical Characterisation of Interval-Timed

Petri Nets with Discrete Delays. Fundamenta Informaticae, 120(3-4):341–357,
2012.

8. L. Popova-Zeugmann, M. Werner, and J. Richling. Using State-equation to Prove
Non-reachability in Timed Petrinets. Fundamenta Informaticae (FI), 61, IOS-
Press, Amsterdam, 55:187–202, 2003.

9. C. Ramchandani. Analysis of Asynchronous Concurrent Systems by Timed Petri
Nets. Project MAC-TR 120, MIT, February 1974.

10. J. Sifakis. Use of petri nets for performance evaluation. In Proceedings of the
Third International Symposium on Measuring, Modelling and Evaluating Computer
Systems, pages 75–93. North-Holland, 1977.

11. Wil M. P. van der Aalst. Interval Timed Coloured Petri Nets and their Analy-
sis. In Application and Theory of Petri Nets 1993, 14th International Conference,
Chicago, Illinois, USA, June 21-25, 1993, Proceedings, 1993.

12. M. Werner, L. Popova-Zeugmann, M. Haustein, and E. Pelz. A Holistic State
Equation for Timed Petri Nets. Fundamenta Informaticae, 133(2-3):305–322, 2014.

E. Pelz et al.: Interval-Timed Petri Nets with Auto-concurrent Semantics 265

