
Reengineering the Editor of the GreatSPN Framework

Elvio Gilberto Amparore

Università di Torino, Dipartimento di Informatica, Italy
amparore@di.unito.it

Abstract. This paper describes the technical challenges around the moderniza-
tion process of the GreatSPN framework[15], one of the first Petri net frame-
works started in the eighties, in particular in the reengineering of its Graphical
User Interface and in its general user-friendliness, to account for its large set of
functionalities1.

Keywords: GreatSPN, GUI, Dataflow architecture.

1 Objectives and contributions

It is common opinion that formalisms like Petri nets or Timed Automata are very pow-
erful and yet simple to understand thanks to their graphical representation. A graphic
schema is usually simple to specify and grasp. However, graphical formalisms depends
on the availability of good graphical editors to be able to gain the full advantages.

Back in 1985, the University of Torino developed the (probably) first documented
software package for the analysis of stochastic Petri nets, under the name of Graphical
Editor and Analyzer for Timed and Stochastic Petri nets (GreatSPN) [15]. The frame-
work consisted in a set of tools for the analysis of Generalized Stochastic Petri nets
(GSPN) [1], and it was supported by a graphical editor, described in [16], for inter-
actively design, validate and evaluate GSPN models. The graphical editor, developed
initially on a Sun 3 machine with UNIX BSD 4.2, was based on the X11/Motif toolkit.
The simplicity of graphically designing models boosted the usage of GSPNs in vari-
ous fields, from performance evaluation, telecommunications, biology and more. Other
tools/GUIs have then followed, providing nowadays a large base of Petri net tools.

Today, the GreatSPN framework provides a vast collection of solvers developed in
a time span of 30 years, that includes solvers optimized for low memory consumption
(for the computers of the late ’80s), modern model checkers based on decision diagram
techniques [3], a stochastic model checker, ODE/SDE2 solvers, Markov decision pro-
cess optimizers, DSPN [23] solvers, simulators, and others. While the set of solvers of
GreatSPN is very large, the obsolescence of technologies like Motif hurt the usability
of the GUI over the years. After having evaluated other GUIs, the group arrived to the
decision of renewing the interface of GreatSPN. The modular nature of the framework
itself allows to easily replace solvers, modules and the GUI itself, while maintaining

1 This work has been funded by the Compagnia di San Paolo, as a part of the AMALFI (Ad-
vanced Methodologies for the Analysis and management of the Future Internet) project.

2 Ordinary and Stochastic Differential Equations.



the other modules fully working and unchanged. In the end, the modular framework
structure proved to be easy to maintain and to develop over such a long timeframe.

This paper describes the reengineered GUI of GreatSPN, with its recent enhance-
ments. The GUI is written in Java, and it is therefore portable to multiple platforms. En-
hancements include, among all, support for drawing colored Petri nets and hybrid Petri
nets, token game, batch measure specification and processing, and support for multiple
solvers/model checkers. The paper describes the overall tool workflow, from the mod-
eling and the verification phase, that allows to edit models, simulate their behaviors,
inspect their structural properties, up to the evaluation phase, where performance in-
dexes are computed with numerical solvers and/or simulators, and the computed results
are visualized interactively to the user. A prototype of the GUI was briefly described in
a short paper [5], centered around its use for stochastic model checking.

The GUI supports multiple formalisms: Generalized Stochastic Petri Nets (GSPN),
GSPN with colors (Stochastic Well-Formed net, or SWN), Hybrid Petri nets, and De-
terministic Timed Automata (DTA). In addition, the application presents a number of
unique features, like multipage projects, solution batches, support for template variables
in models, LATEX labels and high quality vector graphics. This new GUI is described
here with a focus on various recent additions: parametric measure specification, the
support for SWN and hybrid Petri nets, and the integration inside the framework.

The modernization process actually required a process of re-engineering of the GUI
around the workflow of GreatSPN. During this process, many limitations of the existing
GUI have been removed, like the absence of a SWN token game, the missing support
for model checkers, no capacity for drawing Timed Automata, and other. The main
contributions provided by the modernized GreatSPN GUI are its improved usability,
while keeping the compatibility with the large framework, and its support to multiple
formalisms and solvers, which expands the tool usability. Other formalisms and other
solvers may be added using the modular tool structure.

Section 2 describes the architecture of the GreatSPN framework. Section 3 and 4
introduce the application interface, and describe briefly the modeling capabilities of
the editor. Section 5 shows how the user can simulate the designed GSPNs with the
token game, and visualize their structural properties like the minimal P/T semi-flows.
Section 6 describes how the designed models can be verified quantitatively with the set
of supported solvers. Section 7 shows a simple use case of the tool that illustrates how
the GUI can help the user in the process of modeling and analysis. The paper concludes
with a comparison of other commonly used GUIs in section 8 and with the section 9
with a brief discussion on the future of GreatSPN.

2 Architecture of GreatSPN

GreatSPN is a large framework made by several interacting components, that has grown
over the time to incorporate various Petri net-related features. The framework itself is
not made by a large, monolithic tool. Instead, many independent tools interact by shar-
ing data through files in standardized formats, resulting in a dataflow architecture ap-
proach. Each tool is responsible for reading its own input, written in one or more files,
performing the computation, and writing the outputs in other files. The framework actu-

154 PNSE’15 – Petri Nets and Software Engineering



MDP generation and optimization.

Translation/Composition system.

Model checking.

Simulation engine.  

 RG computation and analysis.  

Structural analysis.

Numerical solution.

DSPN solution.  

ArgoSPE
Eclipse UML -> 

Petri net translation

gsol
PNML rev.2009 -> 
Petri net (GSPN or 
SWN) translation

UML 
schema

(.uml)

Model 
checking 
results.

PNML
model
(.pnml)

Optimal 
strategy

GSPN
model

(.net / .def)

GreatSPN Editor

N+ 1 N + 12

End

arrivals

Packets1

start

¸=2
1 server

¸ = 2
N = 3
K = 3 timeout

T = 2:35

im req

¼=2
End

arrivals

¸

LpQueue

Queue

Wait Release

complete

¹

norm req

K

Packets2

start2

¸

¹ = 1:5

Place properties

KInitial marking:

Node properties

Tags:

Center only

DefaultLabel:

Packets2

Magnets:

ID:

NextOp

GSPN 2

GSPN Sample

GSPN 3

FastQueue

ExpPInv

EXPTInv

100 %Ok: object selected.

WaitAction

Queue Model Project

FastQueue

UntilDTA

CountArrivals

Measures

CSLTA Measures

100 %Ok.Graphical Editor of GreatSPN

struct

pinvar/
tinvar

P/T-
invariants

(.pin / .tin)

Place bounds
Conflict sets

(.bnd / .ecs)

GSPNRG
GSPN only

Reachability
graph

gst_prep Performance 
indexes setup.

ggsc Steady-state
solution.

ntrs Transient
solution.

gst_stndrd

Performance 
indexes 
results.

SWN
model

(.net / .def)

unfolding
SWN -> GSPN 

translation

WNRG
Ordinary RG

WNSRG
Symbolic RG Reachability

graph in PDFv_graph

traps Deadlocks, traps

GSPNSIM
GSPN only

WNSIM
Ordinary markings

WNSYMB
Symbolic markings

CTL
query

(.ctl)

RGMEDD
CTL model checker with 

decision diagrams

Property 
as DTA

(.dta)

MC4CSLTA
Stochastic model 

checker for CSL/CSLTA

Estimated 
results of the 
Performance 

indexes.

algebra
Composition of multiple 

models by place/
transition superposition

MDWN*
MDP from Markov 
Decision Petri net 

formalism.

mdwnsolve
MDP solution

mdwn2Prism
MDP in Prism format

lpbound
Bounds computed with 

Linear programming

DSPN-Tool
Steady-state MRP

Fig. 1. (Partial) Architecture of the GreatSPN framework, as it is today.

ally contains more than 60 binaries. The advantage of this software architecture is that it
allows to easily modify/replace single components, while keeping the rest of the frame-
work unchanged, as long as the input/output formats are observed. While this software
architecture is not very modern, it has proven to be very solid and maintainable, such
that in the framework many software modules written in its 30 years of development
co-exists, without causing too many troubles.

A simplified schema of the GreatSPN framework is shown in Fig. 1, that reports a
selection of the various features of GreatSPN. Tools are written in bold, and are grouped
in logical modules, according to their function, that span from numerical solutions,
structural analysis, MDP support, conversion between multiple formalism, and so on.
The graphical editor is the center for drawing the models and their properties. It is
responsible for the invocation of various command line tools and for the visualization
of the results. Actually, many but not all the command line tools are available from the
GUI.

E. Amparore: Reengineering the Editor of the GreatSPN Framework 155



The workflow of GreatSPN was conceived, back in its original design, to be made
in three main phases: first the user (the “modeler”) designs the Petri net in a textual or
graphical way; secondly, structural properties are computed (minimal P/T semi-flows,
place bounds, conflict sets, ...) to understand if the model is designed properly and may
be solved under numerical analysis or simulation; then the user specifies the measures
of interest on the model and calls a command line solvers to do the computation. Several
solvers are provided, for different types of models and with different characteristics.

2.1 Reengineering requirements.

In order to create a new GUI that replaces the old one, it must satisfy a set of re-
quirements and constraints imposed by the framework itself. First of all, the GUI is
responsible of these tasks:

1. Help the user in the process of drawing Petri net models and other graphical models.
2. Allow the user to call the tools provided by the GreatSPN framework for the struc-

tural analysis of Petri net models, to discover potential structural mistakes made in
the drawn models.

3. Simplify the process of specifying and computing performance measures, by call-
ing the command-line solvers and providing an understandable visualization of the
computed results.

The design choices done to satisfy requirement 1 are explained in sections 3 and 4.
Requirements 2 and 3 involve the interaction between the GUI and the command line
tools. Command line tools expect precise file formats in input and produce other files as
output, since these tools are designed to be non-interactive. Therefore, the tool interac-
tion with the solvers require an explicit serialization of the data for the computation and
a deserialization of the results. Many different files are involved in any computation: a
partial list of these files is shown in Table 2.1.

Extension Content of the file
.PNPRO Petri net Project (XML format). Main format of the editor.
.net Input format of Petri net models for command line solves.
.def Input performance indexes.
.ctl Qualitative queries in CTL language.
.dta Deterministic timed automata for CSLTA model checker.
.pin, .tin P/T invariants.
.sta Computed statistics.
.throu Transition throughputs.
.tpd Token distributions in places.
.ecs Extended conflict sets.
.bnd Upper/lower bounds of tokens in places.
.grg Reachability graph.

Table 1. File extensions of the input/output files used by the editor and the solvers).

156 PNSE’15 – Petri Nets and Software Engineering



The complete solution process of a Petri net may require the invocation from one to
twelve different command line tools, depending on the target measures to be computed.
In addition, the reengineered workflow has been improved to support parametric mod-
els, i.e. models defined to depend on multiple integer/real parameters, whose values are
specified at solution time and not at design time. Parameters are passed as command
line arguments, and all command line tools have been modified to support them.

Another design requirement of the GUI is to support new modeling formalisms and
functionalities that are not present in the current toolchain. To represent and store these
informations, the tool uses a new XML file format for the models. This choice avoids
modifying the input file formats of the toolchain. Any command line tool invocation
serializes the drawn model in appropriate input formats when needed, leaving the main
file format just for the editor. In this way, it is easy to change the editor format without
breaking the compatibility with the command line tools of the GreatSPN framework.

Requirements 2 and 3 involve the reconstruction of the modeler workflow of Great-
SPN inside the GUI. Examples of how this workflow is implemented graphically are
given in sections 5–7.

2.2 Code structure of the new GUI.
The GUI consists of about 55K lines of code written in the JavaTM language, plus an
optional command line LATEX engine that runs in the background to format the text
labels of the models. The application is cross platform and runs on Windows, MacOSX
and Linux. Java package structure is shown in Table 2.2.

Packages Description
gui Core GUI structure, main window cycle.
gui.net Visualization/editing of abstract graphs (Petri nets, automata).
gui.play Interactive token game.
gui.semiflows Visualization of minimal P/T semi-flows.
gui.measures Editing of measures and visualization of computed results.
domain Data structures.
domain.project File management, undo/redo facility.
domain.grammar Unified ANTLRv4 grammar for expressions and measures.
domain.io Serialization/deserialization in net/def, XML and APNN formats.
domain.values Expression evaluation engine.
domain.elements.gspn GSPN elements.
domain.elements.dta DTA elements.
domain.play Token game logic.
domain.semiflows Computation of minimal P/T semi-flows.
domain.measures Measure specification and tool invocations.
domain.unfolding Unfolding of colored Petri nets into uncolored ones.

Table 2. Code structure of the Java application.

The core structure of the design view of the GUI is essentially an editor for abstract
graphs of nodes and edges. The version described in this paper supports two graph

E. Amparore: Reengineering the Editor of the GreatSPN Framework 157



formalisms: Petri nets and automata. New formalisms can be added by deriving the
corresponding base classes in the Java codebase. Adding a new formalism is done by
deriving the base classes for the model, the node elements and the edge elements, and
by providing the Java panels to edit properties. For instance, the DTA formalism, imple-
mented in the domain.elemens.dta package, involves about 2K lines of code: two Java
classes for the DTA locations and edges (the graph nodes), a class for the DTA model
in a project, and the property panels for the location and edges. Of course, other part of
the application that use DTAs also involve some additional logic. To abstract different
syntax of properties, measures, expressions, provided by various solvers, the GUI has
a uniform C-like language for expressions. When an expression needs to be passed to a
solver, it is converted to the specific syntax expected by the tool. Abstracting expression
languages of different solvers allows to support multiple solvers without having to re-
specify expressions and measures for different tools. Overall, the complete GreatSPN
framework amounts to about 500K lines of code, mostly made by C/C++ programs.

3 Drawing Petri net models

The core feature of the editor is the drawing of Petri net models, centered around the
GSPN, the SWN and the Hybrid Petri net formalisms. Figure 2 shows the main appli-
cation window, taken while editing a colored Petri net model. In the upper-left panel,
there is the list of open projects. The editor is designed around the idea of multi-page
projects. Each project correspond to a file, and is made by several pages. In the current
version of the editor, pages can be of three types: Petri net models, DTA models or table
of measures. In the lower-left panel of the main window there is the property panel, that
shows the editable properties of the selected objects. The central canvas contains the
editor of the selected project page, that is in this case a SWN model.

Petri nets are drawn with the usual graphical notation. Transitions may be immediate
(thin black bars), exponential (white rectangles) or general (black rectangles). Names,
arc multiplicities, transition delays, weights and priorities are drawn as small movable
labels near the corresponding Petri net elements. Arcs may be “broken”, meaning that
only the beginning and the end of the arrows are shown. Color definitions are drawn in
textual form, as in the upper right part of the window where two color classes, a com-
posite color domain and two color variables are declared. The editor also supports fluid
places and fluid transitions (not shown in the example of Fig. 2), and place partitions
for Kronecker-based solutions [11]. The editing process supports all the common oper-
ations of modern interactive editors, like undo/redo of every actions, cut/copy/paste of
objects, drag selection of objects with the mouse, single and multiple editing of selected
objects, etc. Great care has been put to the graphical quality of the resulting Petri net
models, to allow for high quality visualization of the net. The interface is designed to
avoid modal dialog windows as much as possible, to streamline the use of the GUI.

Figure 3 shows some of the extended features of the Petri net editor. Name labels for
elements (places, transitions, constants, etc) may appear in three user-selected modes:

– The label shown is the alphanumeric object identifier, as-is;
– A LATEX string is used, allowing for more readable models that better express their

meanings, like in the simple reaction network of Fig. 3(A) where alphanumeric

158 PNSE’15 – Petri Nets and Software Engineering



hsi

hs; fi

hs; fi

hs; fi

hs; fi

hs; fi

hs; fi

hsi
hAll¡ s; fi hs; fi hs; fi hs; fi

hsi

hs; fi

hs; fi

hsi

hs; fihs; fihs; fihAll¡ s; fi

hfi
hfi

class S = circular sf1::4g
class F = enum ff1::3g

domain S£F = S£ F

hAlli all active S:

Start
1:0

wait mutex S£F: var s : S
var f : F

Acquire

modify S£F:

Change
1:0

wait ack S£F:

Release

message S£F: rec buf S£F:

SendMessage
1:0

Update

hAlli all passive S:

updating S£F:

EndUpdate
1:0reply buf S£F:acknowledge S£F:

SendReply
1:0

hAlli

mutex F:

Color domain

Color domain: F

Place properties

Kronecker partition:

DiscreteType:

<All>Initial marking:

Node properties

Tags:

Center only

Label:

mutex

Magnets:

ID:

Fluid Line

FluidImmediate

ColorSemanticTest

ConcurrentGen

Database

NextOp

CPN Measures

NextOp PN

100 %Ok: object selected.

Fig. 2. The old and the new graphical user interfaces of GreatSPN. Screen-capture of the former
is taken during the interactive token-game, while the SVG capture of the latter shows the design
view with a colored Petri net model.

E. Amparore: Reengineering the Editor of the GreatSPN Framework 159



Pallets

Machine

Broken

Completestage1
stage2

load 

start interm end 

fail repair 

N = 3

N

(A) Models can use LaTeX labels to 
improve the visual presentation of the 
model elements. All labels (including 
arc multiplicities) are fully movable.

(B) Customizable magnetic points where arrows can attach.

2

2

H2

O2
2H2 + O2! 2H2O

¸ synt
H2O

¸ synt = 0:7588

N

K

Fig. 3. Some features of the Petri net editor.

transition names are replaced with the represented chemical reaction, and place
names represent the chemical species.

– The label is the object identifier automatically formatted in LATEX with a function
that tries to convert common patterns (like alpha→ α , or stage1→ stage1).

Arc arrows point to the center of the attached transitions/places. If this behavior
is not satisfactory, the editor provides a set of customizable “magnetic points” drawn
on the element perimeters, where the arrows may attach. This behavior is shown in
Fig. 3(B), figure that has been taken while dragging the arc arrow with the mouse on
the “start” transition that has “3 magnets per side”. All elements in the model are vector
based, which result in high print quality. Printing and PDF exportation of the models
are also possible, using the printing facilities of the operating system.

Figure 4 shows a colored model, drawn using the SWN formalism, as it appears in
the editor window. Support for SWN has been recently added to the GUI. The model has
three objects, located in the upper left part, that represents object declarations. The 〈N〉
objects declares a parametric integer constant, whose value is decided at verification
time. The ‘class’ declaration defines a color class for the places in the Petri net, as
usual in the SWN formalism. Places belonging to this color class are labeled with the
place name followed by a colon and the color class name. The third declaration is a
color variable named x of color class Philo. All expressions are parsed and verified
syntactically and semantically on-the-fly, and appear in red if there is some error.

4 Drawing CSLTA DTAs

The second type of models that can be drawn with the editor are Deterministic Timed
Automata (DTA), a type of timed automata for the CSLTA stochastic logic [19]. CSLTA

works by measuring stochastic GSPN behaviors using a DTA. A DTA is an automaton
that reads the language of GSPN firing sequences (also called paths), and separates
accepted and rejected paths. The formal semantic of the DTA can be found in [19]
(single clock), and in [14] (with multiple clocks). In few words, the logic provides a
stochastic operator: s0 |= P./λ (A) that is satisfied iff the overall probability of the set
of GSPN paths starting in state s0 and accepted by the DTA A, is ./ λ .

Figure 5 shows three CSLTA DTAs, drawn with the notation described in [4]. The
first DTA describes the CSL [7] path property: Φ1 Until[α,β ] Φ2. Locations are drawn

160 PNSE’15 – Petri Nets and Software Engineering



hxi hxi

hxi

hxi hxi

hxi

hxi hxi

hxi

hxi

hxihx++i

hxi hx++i

hxi+hx++i

class Philo = circular pf1::Ng
var x : Philo

hAlli
Fork Philo:

FF1a FF1b

hAlli

Think Philo:

Catch1 Philo: Catch2 Philo:

FF2a FF2b

Eat Philo:

end

hNi

Fig. 4. Model of the N dining philosophers drawn in the SWN formalism.

as rounded rectangles, and the state proposition that the GSPN must satisfy while the
DTA is in a location is written below the location rectangle, in bold. Initial locations are
represented with an entering arrow, and final locations are drawn with a double border.
The editor also allows final rejecting locations, not included in the original definition,
but used in [2]. There are two kinds of edges, boundary, drawn dashed, and inner,
drawn solid. Boundary edges are triggered as soon as the clock condition is satisfied,
and are labeled with a ]. Inner edges specify the set of GSPN actions with which they
are synchronized. Each edge also specify a set of clock constraints, and an optional set
of clock resets.

Act n factg
x < ® factg

x < ®

]
x = ®

x : clock

l0
©0

h©0i hacti h®i

lok
©0

lfail
true

(A) The DTA representing the CSL 
       path  property: �1 U [↵,�] �2

(B) DTA that selects paths where 
   action act happens before time    .↵ (C) Multi-clock DTA.

Act
x < ®

Act
® < x < ¯

Act
® < x < ¯

]

x = ®

]

x = ®

x : clock

l0
©1

l1
©1 ^ :©2

lok
©2

h®i h¯i h©1i h©2i

Act
x2 < ¯

Act
x1 < ®

Act
x2 < ¯

Act
x1 < ®

x2 : clock

l0
Beg ^ :Mid

hBegihOki

l2
Ok

hMidi

l1
Mid ^ :Ok

x1 : clock h®i
h¯i

Fig. 5. Some example of DTA models drawn with the editor.

E. Amparore: Reengineering the Editor of the GreatSPN Framework 161



DTAs are parametric, and are not bound a priori to a specific GSPN model. Instead,
all state propositions, real clock boundaries and action names are declared as template
variables (depicted as 〈var〉). When the DTA is used for computating measures of a
GSPN, these parameters are instantiated to boolean conditions, real values and transi-
tion names of the GSPN, as we shall see in section 5.1.

Clocks are declared as part of the DTA. The DTAs (A) and (B) of Fig. 5 have a
single clock, while the DTA (C) has two clocks. Currently, only single-clock DTAs can
be verified numerically. The DTA (B) accepts all the GSPN where a transition act fires
before time α , while remaining in states that satisfy the condition Φ0.

5 Interactive simulation and inspection of structural properties

The behavior of Petri nets can be experimented interactively inside the GUI. This is
known as the “token game” or “interactive simulation”, and works as follows. The editor
shows the initial marking of the GSPN, and highlights the set of enable transitions of
the model. By click on one of the enabled transitions, the editor responds by firing the
tokens from the input to the output places, showing the behavior of the model. The
reached marking is then shown, and the user can continue firing new transitions.

Change bindingsStart!Close.

N

N

P0

T0

1:0

T1

1:0

P1

t0 P2

P3

D0

T = 1:0

t1

N = 3

GSPN 3

Speed:

Path trace:

1*P0 + 3*P3

2*P0 + 2*P3

3*P0 + 1*P3

4*P0

1*P2 + 3*P0

2*P2 + 2*P0

2*P2 + 1*P0 + 1*P1

3*P2 + 1*P0

Enabled Transitions:

T0

T1

D0

RandomAuto fire

100 %Ok.

Change bindingsClose.

2

2

1

Queue

Fork
2

Wait1

Wait2

work1

work2

2

Finish1

Finish2

Join

¸ = 3:4
¹ = 1:5
N = 5

GSPN 1

Minimal support semiflows:

Queue + 2*Wait1 + 2*Finish1

Queue + 2*Wait2 + 2*Finish2

P-‐‑semiflows:

100 %Ok.

(B) Interactive visualization of a P-semiflow of a GSPN.
   P-semiflow multiplicities are written on the places.

(A) Token simulation screenshot taken
 while firing immediate transition t1.

Fig. 6. Interface of the interactive GSPN simulation and semi-flows visualization.

Figure 6(A) shows this interactive simulation on a GSPN model, taken during the
firing of transition t1. Tokens removed from input places and added to output places
are drawn with a short animation. Token game works in untimed and timed mode. In
untimed mode, no age/duration of the events is considered, and no track is kept for the
advance of time. In timed mode instead, a time is present, and the time for the transition
fire is taken into account. For DSPN models with non-exponential transitions, timing
constraints are resolved. The user may also enable a semi-automatic firing mode, where
interaction is required only if there is a choice between multiple concurrently enabled
transitions, or a random firing mode where the editor picks the next transition randomly
(and the next time in timed simulation), thus simulating without the user interaction.
SWN models are supported in interactive mode: instead of black dots, colored tokens
are shown as color names. When firing a colored transitions, a list of enabling bounds
of the color variables is shown to the user, who can pick the one to fire.

162 PNSE’15 – Petri Nets and Software Engineering



Additionally, the user may visualize the minimal P and T semi-flows that covers a
GSPN model, as shown in Fig. 6(B). The user selects the minimal semi-flow that wants
to visualize from a list, and the editor highlights the involved places and transitions.
Semi-flows are computed with the modified Farkas method of Martinez and Silva [24].
With these tools, the user may inspect the behavior and the structural properties of the
Petri net while modeling, which is useful to verify that the model is drawn correctly.

5.1 Interactive CSLTA simulation

An interactive simulation of the path probability operator of the CSLTA logic is, roughly
speaking, a system where GSPN firings are checked by the DTA. Each GSPN transition
firing has to be matched by a corresponding DTA edge, otherwise the path is rejected.
In addition, boundary edges of the DTA (labeled with a ] and drawn as dashed arrows)
are autonomous and are taken as soon as their timing conditions are met. Before starting
the simulation, the template variables of the models are shown as a list of text boxes,
that must be filled by the user with appropriate values. Values assigned to the parametric
variables of the DTA are shown above the DTA. In the central panel of the window, the
GSPN and the DTA are shown side by side.

Change bindingsStart!Switch to TimedClose.

Act
x < ®

Act
® < x < ¯

Act
® < x < ¯

]

x = ®

]

x = ®

x : clock

l0
©1

l1
©1 ^ :©2

lok
©2

h®i h¯i h©1i h©2i

4 = h¯i

3 = h®i

#Finish1==#Finish2 = h©2i

#Spares>0 = h©1i
Assigned value:Name

WorkNetDTA

2

2

Queue

Fork

Wait1

Wait2

work1

work2

Finish1

Finish2 Join

¸ = 3:4

Spares

select

Interm

T0

¹ = 2:0
½ = 0:6

Fork‑JoinPTRandom automatic firing.

Semi‑automatic firing.

Time elapsed:

Token game is untimed.

Speed:

Path trace:

[l0] Spares=2, Queue=4

[l0] Spares=2, Queue=3, Wait2=1, Wait1=1

[l0] Spares=2, Queue=3, Wait2=1, Wait1=1

[l0] Spares=2, Queue=2, Wait2=2, Wait1=2

[l0] Spares=2, Queue=2, Wait2=2, Wait1=2

[l0] Spares=2, Queue=2, Wait2=2, Finish1=1, Wait1=1

[l0] Spares=2, Queue=2, Wait2=2, Finish1=1, Wait1=1

Enabled Transitions:

work1

work2

Fork

l0 ‑> l1

100 %Ok.

Fig. 7. Interface of the interactive CSLTA model checking simulation.

Figure 7 shows the GUI window for the joint simulation of a GSPN model and
a DTA. The list of enabled GSPN transitions and autonomous DTA edges is shown
in the upper-left corner. In the lower left corner there is the state of the path trace
chosen interactively by the user, starting from the initial marking. Values assigned to
the parametric variables are validated while typing, and their correctness is signaled
with a green tick mark on the right of the corresponding text boxes. When all values
are assigned, the user may press the play button and the joint simulation starts in the
initial state of the GSPN and in the initial location of the DTA. Each time the user
selects a GSPN transition to fire, a DTA inner edge has to be chosen afterwards to
match the GSPN firing. Boundary edges of the DTA may also be independently enabled

E. Amparore: Reengineering the Editor of the GreatSPN Framework 163



(clock condition is evaluated in a timed simulation, and ignored in an untimed one). The
simulation ends when the DTA reaches a final location, or when no DTA edge can match
a GSPN firing.

View log... Compute All

Measures:

Compute =  3° E{ #Queue }

Plot of the Reachability Graph with vanishing markings. Compute 2°

All place distributions and transition throughputs. Compute 1°

Measure:Pos:

Solver parameters:

1.0at:Steady state Simulation TransientCTMC solution is computed in:

10000Max iterations:1.0e‑7

SWN OrdinarySolver mode:

Epsilon:

Template parameters:

1step:8to:1from: ranges hni
Assigned Value:Name:

GreatSPNSolver:Database CPNTarget model:

CommentAdd measureEmpty GSPN

CiardoFMS

MeasuresFMS

Fork‑JoinPT

WorkNet

WorkNetDTA

MeasuresForkJoin

CSLTA Measure

ALL FJPT

100 %Ok: delete selected.

Fig. 8. The interface for specifying and computing a batch of measures.

6 Computing measures

The GUI integrates an interface for specifying, computing and visualizing measures
on Petri net models. A project may contain multiple measure pages, and each page
specifies:

– The target Petri net model;
– The selected numerical solver, from a list of supported solvers;
– The instantiation of the parameters of model, if any;
– Solver-specific parameters and flags;
– A table of target measures that will be computed.

The GUI is currently integrated with three solvers. The first is the GreatSPN toolchain,
that can evaluate standard performance measures (mean number of tokens in a place,
transition throughputs, etc...) on GSPN/SWN models using an extensively tested imple-
mentation. Index can be computed in steady-state or in transient with a numerical solver,
or by using a simulator. The second solver is the MC4CSLTA stochastic model checker,
that can evaluate standard performance measures for GSPN and DSPN models [6], as
well as CSL and CSLTA queries. The third solver is RGMEDD [3], the symbolic CTL
model checker of GreatSPN [8].

164 PNSE’15 – Petri Nets and Software Engineering



Figure 8 shows a measure page editor for a GSPN model with one parametric mark-
ing parameter 〈n〉 and with three measures (at the bottom). The GSPN model is evalu-
ated multiple times for different values of n, from 1 to 10 (template parameters section),
with increments of 1. The numerical solution is computed by invoking the command-
line solvers with the specified solver parameters (solution in steady-state, maximum
number of iterations, use the ordinary SWN solution, etc..). The table of measures lists
what will be computed. Entry ALL specifies that all basic GSPN measures will be com-
puted, which are the distributions of tokens in each place, and the transition throughputs.
RG and TRG specify that the (Tangible) Reachability Graph will be generated by the
GreatSPN tools, and a graphical representation will be drawn. Queries in a given lan-
guage (CTL, CSL, CSLTA, Performance measures) can be specified textually. A PERF
query expresses a performance measure on places and transitions, using the syntax of
the measure language of GreatSPN.

Close.

0:693277

Queue

2:35714
Fork

¸

2:35714

Wait1

2:35714

Wait2

2:35714
work1

1:0
2:35714

work2

1:0

2:94958

Finish1

2:94958

Finish2

2:35714
Join

1:0

¸ = 3:4

hni

Fork-‐‑Join

Token distribution:

000:  0.0582317

001:  0.197978

002:  0.301353

003:  0.262264

004:  0.136055

005:  0.0392653

006:  0.00485315

2.35714Average token count:

Wait1Place: 

Distribution:

nn

1

2

3

4

5

6

7

8

9

10

Variables binding:

100 %Ok.

Fig. 9. The interface that shows the ALL results computed on a parametric GSPN in steady-state.

When the user clicks on the “Compute” button, the GUI calls the command-line
numerical solvers, and shows the output to the user. To use the command line tools di-
rectly, the user can export the GSPN/DTA models as separate files. Currently supported
formats are the GreatSPN format and the APNN format [20].

Computed solutions are shown interactively to the user. Figure 9 shows the interface
that is used to show the results of the ALL measure, computed with parameter 〈n〉 that
ranges from 1 to 10. Places and transitions show their expected number of tokens and
throughputs, respectively, for the value selected by the user (in this case n = 6). When
the user selects a place, its token distribution is shown in the bottom-left corner.

E. Amparore: Reengineering the Editor of the GreatSPN Framework 165



Template parameters can be bound to a single value, a list of values or a range of
values. If the performance measures are computed in transient, it is possible to specify
that the transient time t is template variable, thus computing a sequence of solutions
at different time steps. This allows the user to setup a batch of parametric tests with a
certain degree of flexibility.

7 Use case

We now present a simple use case to show how the tool functionalities can be used
to support model analysis with standard performance measures as well as with CSLTA

queries.

N

Pallets

load

0:4
StartM1

sw1 M1on

M1

ew1

¸1

M2bu® sw2 M2on

M2

ew2

¸2

M3bu® sw3 M3on

M3

Completed

M2go

failM2

½2
M2ko

repM2

Spares

SpareBroken

repSpares
¼=2

SpareRepairing

repSpareE

0:1

Ready

goIdle goReady

0:6

Idle

EndRep

goReady2
0:5

M3go

failM3

½3

M3ko

repM3
¼=3

M3repairing

repM3E

0:15

ew3

¸3

restart

0:2

¸1 = 1:2
¸2 = 1:8
¸3 = 1:9

½2 = 0:02
½3 = 0:07

hti

hNi

Fig. 10. The GSPN of a Flexible Manufacturing System (FMS).

Figure 10 shows an instance of a Flexible Manufacturing System (FMS) taken
from [9], modeled with the GUI and exported as PDF. The model represents a sys-
tem where N pallets are treated in a sequence of three machines, M1, M2 and M3. Each
machine can treat one pallet at a time. Machine 2 and 3 are subject to breakages, and
a repairman continuously checks the machine for repairs. Machine 2 has a set of spare
parts that can be used to replace the broken parts, without losing work time. Machine 3
instead always requires a stop to do the repair. The model is parametric in the number
N of circulating pallets.

Figure 11 depicts two DTAs drawn with the GUI that express two path properties on
the FMS model. The first accepts the system behaviors where three completion events

166 PNSE’15 – Petri Nets and Software Engineering



DTA 2: Accepts paths that completes
 two repairs in t time units.

Act n ffailM2; failM3; ew3g
x < ®

Act n ffailM2; failM3; ew3g
x < ®

few3g
x < ®

Act n ffailM2; failM3; ew3g
x < ®

few3g
x < ®

few3g
x < ®

x : clock hfailM3ihfailM2i

l0
true

h®ihew3i

l1
true

l2
true

l3
true

DTA 1: Observe three ew3 events and no failM2/failM3 events.

Act
x < t

Act
x < t

Act
x < t

Act
x < t

Act
x < t

Act
x < t

x : clock

l0
:EndRep

hEndRepi hti

l1
EndRep

l 01
:EndRep

l2
EndRep

Fig. 11. The Two DTAs used in the analysis of the FMS model.

ew3 are observed before time α , having not seen any failure of the machines M2 and
M3. The second DTA accepts the paths where at least two repairs have been completed
in t time units.

To carry on the analysis from the editor, it is sufficient to create a new set of mea-
sures for the FMS model, that are parametric in the number N of pallets and on the
time t of the DTA. Figure 12 shows the results of the analysis of the FMS model by
computing the steady state solution and the model checking of the two DTAs. Datas are
computed using the GUI, and then exported from the GUI in Excel Open XML format
to plot the diagrams.

t X=1 X=2 X=3 X=4
0 0 0 0 0
1 0,099505043 0,002849348 2,96093E-05 1,20554E-07
2 0,442325637 0,088624305 0,008389993 0,000375258
3 0,724448358 0,333258521 0,090658277 0,01379917
4 0,865090232 0,592700687 0,288640903 0,091623185
5 0,92095403 0,761875241 0,514881636 0,258930038
6 0,940657186 0,846520585 0,683561652 0,457185273
7 0,947159235 0,882796132 0,780634568 0,618465563
8 0,949224125 0,896932765 0,828062726 0,721048281
9 0,949865376 0,902118614 0,848885562 0,776354577

10 0,950061937 0,903947011 0,857393935 0,80297381
11 0,950121735 0,904574597 0,860702223 0,814807587
12 0,950139847 0,904786011 0,861943948 0,819778253
13 0,95014532 0,904856267 0,862398074 0,821781348
14 0,950146971 0,904879377 0,862560913 0,82256384
15 0,950147469 0,904886919 0,862618405 0,822862258
16 0,950147619 0,904889364 0,862638449 0,822973908
17 0,950147664 0,904890152 0,862645365 0,823015032
18 0,950147678 0,904890405 0,86264773 0,82302998
19 0,950147682 0,904890486 0,862648532 0,823035352
20 0,950147683 0,904890512 0,862648803 0,823037264

t N=2 N=4 N=6 N=8
0 0 0 0 0
2 0,110138615 0,108270753 0,106778717 0,10560685
4 0,292400334 0,287854683 0,284223034 0,281370368
6 0,458367802 0,451914828 0,446758757 0,442708322
8 0,591155395 0,58369733 0,577737618 0,573055596

10 0,692913213 0,685149632 0,67894538 0,674071036
12 0,769664884 0,762066572 0,755994085 0,751223105
14 0,827220738 0,820075277 0,814364488 0,809877591
16 0,870302371 0,863765931 0,858541755 0,8544371
18 0,902542605 0,896682224 0,891998295 0,888318061
20 0,926680964 0,921505843 0,917369536 0,914119543
22 0,944767762 0,940251365 0,936641505 0,933805134
24 0,958333311 0,954428618 0,951307659 0,948855408
26 0,968518938 0,965168716 0,962490907 0,960386844
28 0,976175906 0,973319386 0,971036165 0,969242146
30 0,981939398 0,979516525 0,977579913 0,976058224
32 0,986283658 0,984237632 0,98260223 0,981317213
34 0,989563002 0,987841674 0,986465798 0,985384701
36 0,992042372 0,990598854 0,989445029 0,988538408
38 0,99392005 0,99271285 0,991747916 0,990989713
40 0,995344564 0,994337416 0,993532383 0,992899824

X N=2 N=4 N=6 N=8 N=10 N=12
0 1 1 1 1 1 1
1 0,82939964 0,906936078 0,92095403 0,925506197 0,927642723 0,928875518
2 0,399067257 0,694261274 0,761875241 0,783757443 0,793748529 0,799407953
3 0,021956912 0,373742898 0,514881636 0,563577365 0,585144119 0,597035304
4 0,00034334 0,106754682 0,258930038 0,324888334 0,354154987 0,369816869

TwoRepai
rsBeforeT
t N=1 N=2 N=3 N=4 N=6 N=8 N=10

0 0 0 0 0 0 0 0
20 0,001385011 0,005208658 0,010716799 0,017248404 0,031276999 0,044220322 0,054594732
40 0,009810017 0,034374097 0,067282116 0,103983854 0,177241068 0,240091617 0,288162784
60 0,025494054 0,084242397 0,156800628 0,231775394 0,366936154 0,470188259 0,542182445
80 0,047101742 0,146995886 0,260230392 0,368012447 0,541924085 0,658341253 0,731159484

100 0,073382814 0,21652028 0,365065322 0,49491813 0,681752065 0,790462963 0,850973635
120 0,10325798 0,288410608 0,464060078 0,604818931 0,785127999 0,875862498 0,920582205
140 0,135808719 0,359607824 0,553502083 0,695772649 0,857950036 0,928281228 0,958866094
160 0,170258145 0,428067743 0,631915749 0,768758842 0,907595163 0,959345189 0,979147861
180 0,205952674 0,492497866 0,699175687 0,826034326 0,94065018 0,977293428 0,989604924
200 0,242345671 0,552154481 0,755920756 0,870228418 0,962271063 0,987467567 0,9948869
220 0,278983044 0,606687955 0,80317684 0,903881093 0,976218262 0,99314979 0,997512387
240 0,315490597 0,656025717 0,842121094 0,92923587 0,98511594 0,996285799 0,998800715
260 0,351562967 0,700284481 0,87394041 0,948172759 0,990740871 0,997999835 0,999426254
280 0,386953919 0,739704938 0,899751657 0,962213411 0,994269986 0,998929136 0,999727317
300 0,421467883 0,774603774 0,920561509 0,972559493 0,996470017 0,999429555 0,999871137
320 0,454952539 0,805338848 0,937251001 0,980142705 0,997833984 0,99969746 0,999939404
340 0,487292382 0,832284395 0,950574873 0,985675226 0,998675592 0,999840165 0,99997163
360 0,518403112 0,85581376 0,96116924 0,989695293 0,999192729 0,999915847 0,999986769
380 0,548226727 0,876287791 0,969563423 0,992605931 0,999509323 0,999955829 0,99999385
400 0,57672732 0,89404739 0,976193357 0,994706606 0,999702511 0,999976879 0,999997151

Sta
te 

N States
Transition

s
Visited 

Vanishings Iterations Time
2 259 734 324 161 0,01
4 1460 5565 2414 258 0,08
6 4858 21280 9246 325 0,34
8 12225 58047 25420 380 1,04

10 25861 129426 57168 501 2,67
12 48594 252369 112354 634 6,25
14 83780 447220 200474 793 15,02
16 135303 737715 332656 1297 41,91
18 207575 1150982 521660 1854 122,34

GMRES

!0.2%

0%

0.2%

0.4%

0.6%

0.8%

1%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15% 16% 17% 18% 19% 20%

Pr
ob

ab
ili
ty
*

Time*

Plot*1:*X*comple3ons*without*breakages*
(N=6)*

X=1%

X=2%

X=3%

X=4%

0%

0.2%

0.4%

0.6%

0.8%

1%

1.2%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22% 24% 26% 28% 30% 32% 34% 36% 38% 40%

Pr
ob

ab
ili
ty
*o
f*r
ep

ai
ri
ng
*in
*3
m
e*

Time*

M3*repaired*in*t*3me*units*aDer*a*breakage*

N=2%

N=4%

N=6%

N=8%

0%

0.2%

0.4%

0.6%

0.8%

1%

1.2%

0% 1% 2% 3% 4%Pr
ob

ab
ili
ty
*o
f*X

*re
pa

ir
es
*b
ef
or
e*
3
m
e*
t*

Number*of*repairs*(X)*

Plot*2:*Probability*of*X*repairs*in*total*before*
3me*t=5*

N=2%

N=4%

N=6%

N=8%

N=10%

N=12% 0%

0.2%

0.4%

0.6%

0.8%

1%

1.2%

0% 20
%

40
%

60
%

80
%

10
0%

12
0%

14
0%

16
0%

18
0%

20
0%

22
0%

24
0%

26
0%

28
0%

30
0%

32
0%

34
0%

36
0%

38
0%

40
0%

Pr
ob

ab
ili
ty
*o
f*2

*re
pa

ir
s*
be

fo
re
*3
m
e*
t*

Time**

Plot*3:*Observing*at*least*2*repairs*in*t*3me*
units.*

N=1%

N=2%

N=3%

N=4%

N=6%

N=8%

N=10%

        GMRES 

N States Transitions 
Visited 

Vanishings Iterations Time 
2 259 734 324 161 0,01 
4 1460 5565 2414 258 0,08 
6 4858 21280 9246 325 0,34 
8 12225 58047 25420 380 1,04 

10 25861 129426 57168 501 2,67 
12 48594 252369 112354 634 6,25 
14 83780 447220 200474 793 15,02 
16 135303 737715 332656 1297 41,91 
18 207575 1150982 521660 1854 122,34 
!

State space of the FMS net and time/iterations required to
 achieve convergence of the steady-state solution.

Fig. 12. Results of the FMS model analysis, visualized in Excel.

E. Amparore: Reengineering the Editor of the GreatSPN Framework 167



The table in the upper-left corner shows the size of the FMS model state space, the
number of transitions, the number of vanishing states visited by the numerical solver,
and the iterations/time needed to compute the steady state solution on a 2.4Ghz Intel
machine with accuracy of 10−7.

Plot 1 represents the result of DTA 1 on the FMS with N=6 pallets for 1,2,3,4 com-
pletions (the DTA of Figure 11 represents the case X=3). The plot shows the probability
of having enough time to do X completions, and for large values of t converges to the
probability of observing a failure. Plot 2 shows the results of DTA 1 by variating the
number of circulating pallets N with a fixed time t = 5. The x-axis plots the number
of completions, while the y-axis shows the overall probability of completing X tasks
before time t. A larger number of pallets increases the throughput of the system, re-
sulting in an increased probability. Finally, Plot 3 shows the results of DTA 2, i.e. the
probability of observing two repairs in t time units. Time is plotted on the x-axis and
probability on the y-axis, for various numbers of circulating pallets. Since the machine
may break when it is under usage, the probability increases for higher values of N.

8 Related work

While the GreatSPN framework with the new interface provides a solid base for edit-
ing, verifying and computing quantitative/qualitative measures of GSPN/SWN models,
there are other tools that provide similar features. Before reimplementing a new GUI,
we have explored various alternatives. An (incomplete) list is given.

Möbius : The aims of the Möbius tool [18], developed at the University of Illinois,
are similar to those of GreatSPN. It supports multiple formalisms, multiple solvers, and
provides a complete analysis workflow, from design to verification to the numerical
solution. It supports analysis of discrete and continuous time Markov chains, Markov
regenerative processes and a powerful simulator. However, the central formalism is the
SAN, not the stochastic Petri net, so it is not directly suitable for GreatSPN (even if
SAN nets can be converted to GSPN). In addition, no SWN and no stochastic model
checking is available.

Snoopy : The tool Snoopy [21] is a proprietary software developed at Cottbus TU. It
provides a unified editor for Petri net models, with support for hierarchical composition
and multiple solvers. Snoopy supports hybrid Petri nets (HPN), colored Petri nets, as
well as other extensions. The main solver is Marcie, based on MTBDD/MTIDD (deci-
sion diagram variants) techniques.

Coloane : Coloane [17] provides support for both Petri net and Timed Automata, but is
currently not focused on stochastic formalisms. It is designed to provide a GUI around
the standard PNML format [12], an XML-based exchange format for Petri net models.

CPNtool : CPN is a powerful toolkit for the design and evaluation of colored Petri
nets [22]. The formalism adopted by CPN includes a color algebra, expressions in ML.
The tool is supported by a flexible simulation engine. The specific mix of ML code

168 PNSE’15 – Petri Nets and Software Engineering



and Petri net graphics is very compact and powerful, but unfortunately is far from what
GreatSPN solvers expect. In addition, the tool has some portability concerns. There-
fore,a conversion between CPNtool models and GreatSPN models appears difficult.

TimeNet A successor of the DSPN-express tool developed at TU Berlin, TimeNET is a
modern tool for editing stochastic and colored Petri nets. It is still being developed, and
it has been recently updated with heuristic optimization techniques [13].

The specific characteristic of the GreatSPN models, and the vast number of solvers
lead to the decision of designing a specific GUI for it. Additionally, some features like
the DTA specification and the support to the CSLTA stochastic logic are, to the best of
our knowledge, a unique feature of the GreatSPN GUI, and are not found on other tools.
The tool is available at http://www.di.unito.it/~greatspn/index.html, in the “New
Java GUI” section, either as a part of GreatSPN or as a standalone version. A virtual
machine with all the tools installed is also available, at request.

9 Conclusions and Future works

This paper presents an in-depth analysis of a new graphical user interface for the Great-
SPN framework. The GUI is designed around a complete workflow for the model-
ing of Petri nets and DTAs, and includes graphical interactive analysis, specification
of measures, computation and interactive visualization of the results, and an integra-
tion with multiple solvers/simulators/model checkers/optimizer/translators including a
CSLTA stochastic model checker and GreatSPN. A small use case has been also pre-
sented, to show the effectiveness of the GUI modeling capabilities and analysis with
measures from the user point of view.

Since the tool architecture is scalable and customizable, we plan to extend the tool in
various directions. First of all, the Petri net formalism can be augmented to support other
extensions, like compositional formalism. Similarly, DTAs can be extended to cover
more complete statistical control automata, like Linear Hybrid Automata [10]. Solvers
and file formats of other framework can also be considered, like PNML, and there is an
ongoing work to support solvers[11] of the APNN-Toolbox of TU-Dortmund.

References

1. Ajmone Marsan, M., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the
performance evaluation of multiprocessor systems. ACM Transactions on Computer Systems
2, 93–122 (May 1984), http://doi.acm.org/10.1145/190.191

2. Amparore, E., Donatelli, S.: Improving and assessing the efficiency of the MC4CSLTA model
checker. In: EPEW 2013 (2013)

3. Amparore, E.G., Beccuti, M., Donatelli, S.: (Stochastic) model checking in GreatSPN. In:
Application and Theory of Petri Nets, LNCS, vol. 8489, pp. 354–363. Springer (2014)

4. Amparore, E.G.: State, action, and path properties in Markov chains. Ph.D. thesis, Diparti-
mento di Informatica, Università di Torino, Italy (2013)

5. Amparore, E.G.: A New GreatSPN GUI for GSPN Editing and CSLTA Model Checking.
In: Norman, G., Sanders, W. (eds.) Quantitative Evaluation of Systems, Lecture Notes in
Computer Science, vol. 8657, pp. 170–173. Springer International Publishing (2014)

E. Amparore: Reengineering the Editor of the GreatSPN Framework 169



6. Amparore, E.G., Donatelli, S.: Revisiting the Iterative Solution of Markov Regenerative Pro-
cesses. Numerical Solution of Markov Chains (NSMC) (2010)

7. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time Markov
chains. ACM Trans. Comput. Logic 1(1), 162–170 (2000)

8. Babar, J., Beccuti, M., Donatelli, S., Miner, A.S.: GreatSPN Enhanced with Decision Di-
agram Data Structures. In: Lilius, J., Penczek, W. (eds.) Petri Nets. LNCS, vol. 6128, pp.
308–317. Springer (2010)

9. Balbo, G., Beccuti, M., De Pierro, M., Franceschinis, G.: First Passage Time Computation
in Tagged GSPNs with Queue Places. The Computer Journal (2010), first published online
July 22, 2010.

10. Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: HASL: An expressive language
for statistical verification of stochastic models. In: Proceedings of VALUETOOLS’11. pp.
306–315. Cachan, France (May 2011)

11. Bause F. and Buchholz P. and Kemper P.: Hierarchically combined queueing petri nets. In:
In Proc. 11th Int. Conf. on Analysis and Optimization of Systems, Discrete Event Systems,
Sophie-Antipolis. pp. 176–182. Sophie-Antipolis,France (1994)

12. Billington, J., Christensen, S., Van Hee, K., Kindler, E., Kummer, O., Petrucci, L., Post, R.,
Stehno, C., Weber, M.: The petri net markup language: Concepts, technology, and tools. In:
Proceedings of the 24th International Conference on Applications and Theory of Petri Nets.
pp. 483–505. ICATPN’03, Springer-Verlag, Berlin, Heidelberg (2003)

13. Bodenstein, C., Zimmermann, A.: Timenet optimization environment: Batch simulation and
heuristic optimization of scpns with timenet 4.2. In: Proceedings of the 8th International Con-
ference on Performance Evaluation Methodologies and Tools. pp. 129–133. VALUETOOLS
’14, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications En-
gineering), ICST, Brussels, Belgium, Belgium (2014)

14. Chen, T., Han, T., Katoen, J.P., Mereacre, A.: Quantitative Model Checking of Continuous-
Time Markov Chains Against Timed Automata Specifications. Logic in Computer Science,
Symposium on 0, 309–318 (2009)

15. Chiola, G.: A software package for the analysis of generalized stochastic petri net mod-
els. In: International Workshop on Timed Petri Nets. pp. 136–143. IEEE Computer Society,
Washington, DC, USA (1985)

16. Chiola, G.: A Graphical Petri Net Tool for Performance Analysis. In: Third Int. Workshop
on Modeling Techniques and Performance Evaluation. pp. 323–333. Paris, France (1987)

17. Coloane webpage. https://coloane.lip6.fr/
18. Courtney, T., Daly, D., Derisavi, S., Gaonkar, S., Griffith, M., Lam, V., Sanders, W.: The

Mobius modeling environment: recent developments. In: International Conference on Quan-
titative Evaluation of Systems (QEST). pp. 328–329 (2004)

19. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with
CSLTA. IEEE Trans. Softw. Eng. 35(2), 224–240 (2009)

20. F. Bause, P.K., Kritzinger., P.: Abstract Petri nets notation. In: Petri Net Newsletter. vol. 49,
pp. 9–27 (1995)

21. Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy: A unifying petri net tool.
In: Application and Theory of Petri Nets, LNCS, vol. 7347 (2012)

22. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of Concurrent
Systems. Springer Publishing Company, Incorporated, 1st edn. (2009)

23. M. Ajmone Marsan, Chiola, G.: On Petri nets with deterministic and exponentially dis-
tributed firing times. In: Advances in Petri Nets. vol. 266/1987, pp. 132–145. Springer Berlin
/ Heidelberg (1987)

24. Martinez, J., Silva, M.: A simple and fast algorithm to obtain all invariants of a generalized
Petri net. In: Selected Papers from the First and the Second European Workshop on Appli-
cation and Theory of Petri Nets. pp. 301–310. Springer-Verlag, London, UK, UK (1982)

170 PNSE’15 – Petri Nets and Software Engineering


