

Benefits of Using Domain Model Code Generation

Framework in Medical Information Systems

PETAR RAJKOVIC, University of Nis, Faculty of Electronic Engineering

IVAN PETKOVIC, University of Nis, Faculty of Electronic Engineering

DRAGAN JANKOVIC, University of Nis, Faculty of Electronic Engineering

Both in medical information system development and upgrade project, we often face with a challenge of creating large number of

reports and data collection forms. In order to reduce our efforts in this segment of system development, we tried to use various code

generation and reporting tools. The main problem with standardized tools were lack of flexibility. Thus, we decided to develop

domain model based framework that consists of data modeling, inverse engineering, code generation and model interpretation

libraries and tools. Data modeling tool is used to create domain specific model starting from the loaded meta model. Both code

generation and runtime interpretation tools use domain specific model as a basic input, and together with visual templates and

generation/interpretation classes form easily extendable and customizable system. In our medical information systems development

and upgrade projects we use both approaches and tend to define their proper roles in overall information system life cycle – from

requirement collection phase to later system upgrades. In this paper we present basic building blocks of our framework and compare

the effects of its usage against development when no automatic generation component is applied as well as when only standardized

code generation tools are used. We managed to reduce development time in some segments of the system using domain model based

generation tools to about one third of usually needed. The presented framework and its components are developed and tested during

last six years and tested in four different development projects, around ten upgrades and in more than 25 information system

deployment projects.

Categories and Subject Descriptors: H.4.0 [Information Systems]: General; H.5.2 [User Interfaces]1: User interface

management systems (UIMS); I.6.5 [Simulation and modeling]: Model development

General Terms: Human Factors, Design

Additional Key Words and Phrases: Model driven development, Code generation, Model interpretation

1. INTRODUCTION AND MOTIVATION

All major parts of information system’s life cycle depend on a knowledge that come from many areas of

computer sciences. At the same time, it requires the application of domain specific knowledge that should

be incorporated into the system, in order to make developed software useful to its end users. Considering

all levels of complexity, time needed for a system development is, pretty often, much longer than it is

really necessary. Also, this period can be unacceptable for potential end users. The causes for this

situation are very different, but in this paper we want to point one – time spend on a development of

different components that share the same set of basic functionalities, but display different data –

primarily data collection forms and reports.

In order to help developers solving this problem, software development environments offers different

types of wizard-like tools that can load data model and then produce the form containing all required data

entry fields and labels. Even though, these tools can support some complex views (master-detail or MVC),

but when needed to be incorporated into the information system, developer must spend significant time to

adapt their automatically generated logic before fitting the project. Furthermore, if generated forms need

to support some translation mechanism, usually some time must be spent on this too. The similar story

This work is supported by the Ministry of Education and Science of Republic of Serbia (Project number #III47003).

Authors’ addresses: Petar Rajkovic, University of Nis, Faculty of Electronic Engineering – Lab 534, Aleksandra Medvedeva 14,

18000 Nis, Serbia, e-mail: petar.rajkovic@elfak.ni.ac.rs; Ivan Petkovic, University of Nis, Faculty of Electronic Engineering – Lab

534, Aleksandra Medvedeva 14, 18000 Nis, Serbia, e-mail: ivan.petkovic@elfak.ni.ac.rs; Dragan Jankovic, University of Nis, Faculty

of Electronic Engineering – Lab 105, Aleksandra Medvedeva 14, 18000 Nis, Serbia, e-mail: dragan.jankovic@elfak.ni.ac.rs;

Copyright © by the paper’s authors. Copying permitted only for private and academic purposes.

In: Z. Budimac, M. Heričko (eds.): Proceedings of the 4th Workshop of Software Quality, Analysis, Monitoring, Improvement, and

Applications (SQAMIA 2015), Maribor, Slovenia, 8.-10.6.2015. Also published online by CEUR Workshop Proceedings (CEUR-

WS.org, ISSN 1613-0073)

6

mailto:petar.rajkovic@elfak.ni.ac.rs
mailto:ivan.petkovic@elfak.ni.ac.rs
mailto:dragan.jankovic@elfak.ni.ac.rs

6:46 • P. Rajkovic, I. Petkovic and D. Jankovic

can be told for reports. Even many reporting tools and engines can easily generate reports, their

customization and later inclusion into the running software project can require significant amount of

time.

The problem is not limited to the development phase, but also to later phases of upgrade and

information system maintenance. Table 1 shows the statistic we extract from the project of medical

information system (MIS) development for Primary and Ambulatory Care Center situated in Nis

[Rajkovic et al 2009]. Nis is the biggest city in southern part of Serbia with population of about

250,000.Since it is a regional center, more than one and a quarter of a million of people from southern and

eastern Serbia gravitates to our target institution for more complex medical examinations. The initial

project has been running from 2009 till 2013, and during this period system was built incrementally. First

departments started to use the system in second part of 2010 and system entered full service in all

departments till the end of 2012. In this period, overall daily load of the system rose from about 3000

registered medical services daily to more than 13500. During 2013 and 2014 system was upgraded upon

separate change requests. After the developed MIS was successfully deployed in Nis, the system was

deployed in primary care centers of another 25 towns in southern and eastern Serbia. Furthermore, the

extended and modified version was also used for Neurology Clinic in Nis supporting different set of initial

system requirements [Milenkovic et al 2010].

Increased number of registered medical services was followed with the increase in number of requested

reports and data collection forms. As it has been stated before, the primary care center has between 10

and 15 thousands of medical services (including examinations, therapeutic threatens and laboratory

analysis) daily. Total number of different offered services is around 300, while around 250 are requested

by government authorities. Many of them use standard data collection forms, but for significant number

of services separate forms had to be developed. Next, medical personnel has to generate various reports

and send them to Ministry of Health (MoH), insurance funds and other government agencies. Moreover,

there are internal reports needed for covering internal business process as well as different medical

research reports.

Table 1. Increase of the number of required reports and data collection forms per year

Calendar year Medical examinations

(daily)

External

reports

Internal reports Data collection

forms

Required

medical services

2011 2990 17 7 14 170

2012 7322 27 40 63 194

2013 13599 35 73 74 231

2014 13696 39 139 91 245

At the moment, our MIS dedicated for primary care facilities supports around 100 different data

collection forms and almost 200 reports. Having in mind previous experience in information system

development, and facing the constantly rising number of requested data collection forms and reports we

tried two different approaches for making GUI development process more effective – use standard

generation components that come with development environment and use domain model based custom

built code generation and model interpretation tools. We are going towards a definition of a domain

model-based framework that will help us when needed to automatically generate, test and deploy series of

similar visual components. The framework, which was developed for initial project for Nis Primary Care

Center, was intensively used to support specific requests for deployments in other medical facilities. The

framework and its components were used in 4 development project (primary care MIS, hospital MIS,

laboratory IS and radiology IS), around 10 upgrade and in more than 25 deployment projects.

In this paper we will presents the basic design elements of our framework and show its effect on the

information system development process. Concepts of specific domain model creation, domain model

extension and update are presented as basic building blocks of the framework. Furthermore automatic

code generation and model interpretation are presented in following chapter. At the end, the comparison

of results is presented and discussed.

 Domain Model Code Generation Framework in Medical IS • 6:47

2. RELATED WORK

The main elements of our model driven development framework are tool for domain specific data

modeling, database structure check and inverse engineering library, code generation module and code

interpretation library. Literature related to model driven engineering is pretty voluminous, but we can

point out the paper [Meixner 2011] that elaborates and compares different approaches in model based

GUI development along with past and current trends. Looking at the definitions, our approach could be

categorized as holistic model driven GUI development process.

The base component of our framework is a modeling tool. It can be used for creation new and

validation of existing models. Validation is based on design space exploration (DSE) principle and

concepts based on dependency analysis described in [Hegedus et al 2011]. Our modeling tool is extended

with reverse engineering library used to extract entities from legacy systems. In [Ramon 2014] the

authors were focused on finding implicit layout and then generate appropriate GUI model. We follow this

philosophy, but applied it on data definition level and the used generated model to generate not only GUI

but various other components. We extended the inverse engineering tool with the component able to

generate database administration application used for better understanding the structure of a legacy

database. Our approach is based on environment named Teallach [Barclay et al 2003], which interface

generation and environment customization concepts are partly reused. When working with legacy

databases one problem that we often faced were vendor-specific functions and structures for databases. To

overcome this problem we used the approach described in [El Akkaoui 2011]. This paper describes model

driven framework that supports ETL (extract-transform-load) processes for data warehousing projects.

The major part that we acquired were approach for creating vendor-independent sub-models and

transformation based on a set on common interfaces.

Our code generation approach is based mostly on [Badreddin et al 2014], while widget based code

interpretation was influenced by [Wanderman-Milne et al 2014] and [Ren et al 2010].Comparing code

generation and interpretation approach, the biggest drawback of interpreted component is lack of

standardized test cases [Schlegel 2010], but the comparative advantage is their flexibility. Thus, we

believe that both approaches have the right place in system development and can be used for different

purposes.

3. DATA MODELING FRAMEWORK

Our data modeling framework is developed around initial meta model appropriate for MIS development.

As a starting point we used OpenEHR meta model. Next, we adapted it and define extension points –

entities that can be used as heading elements for newly defined items. Next step was to develop modeling

tool that could be easily used both by developers and potential end users. The importance of the user

friendly modeling tool is not only technical, but also project management related. This can help involving

future users from the beginning of development process which eventually will lead to better results during

system acceptance process.

The starting point in our project was to develop the extensions of domain specific model in a modeling

tool. Modeling tool was used to define model extensions that will corresponds to future entities that will

represent separate medical examinations or reports. Initially, we identified entities in starting model that

can be further specialized (and call them extension points) and then use the modeling tool to define

derived entities. The extension points can be configured including base entity name and specifying

extension rules. These model extensions will be used as an input for generation tool that will be described

in next section.

Another dimension to the modeling process is brought by legacy software and legacy data. In many

cases, clients already have large amounts of data collected over the years which want to integrate into a

new system. To complete the set of needed developing components, reverse engineering tool is a next that

is needed (Fig. 1). Its main aim is to analyze existing data structures and automatically expand the

model. Reverse engineering tool will initially load legacy data structure and examine it against existing

meta model and extension point definition. Furthermore, reverse engineering tool can generate database

administration application that helps in visualizing data structures in legacy database and helps in

understanding relations between data entities.

6:48 • P. Rajkovic, I. Petkovic and D. Jankovic

Fig. 1. Main functional block of data modeling and reverse engineering tool

Fig. 2. Comparison of interpretation and generation processes based on domain specific model

When identify data tables that can satisfy extension point conditions, it will generate new entities that

can be integrated in domain specific model. Before the extracted entities can be generated for domain

specific model, they will be compared to the entities that already exist in order to find potential conflicts.

Potential conflicts are examined on two cases, named Case A and Case B. Case A is a situation when two

entities of the same name are found (one in the existing model, and another in the set of generated

entities) – then the structure will be further examined. Case B is a situation when two entities of the

same structure, but different names are found.

In case A, the tool will first check if the entities are defined under the same extension point. If so, user

will be prompted with merging tool where can decide if should discard new version of the entity (extracted

from legacy database), overwrite the existing entity definition with new version or pick which properties

from the original and which from the final model should be included in a merge result. In case B, user

must change the name of one of the entities to maintain naming convention in end model. At the moment

there is a constraint that all entities must have different names.

Automatic conflict resolution can be enabled, and then it can be defined per extension point. Available

strategies for merging in case A are:

- Keep existing entity. In this scenario changes from loaded entities will be ignored.

- Overwrite with loaded entity. Loaded entity will overwrite existing one.

- Merge properties. Properties that appear only in loaded entity will be added to existing entity.

In case B, only one automatic merge scenario is supported – change the name of loaded entity by

adding the prefix that corresponds to extension point name.

 Domain Model Code Generation Framework in Medical IS • 6:49

Generated model is used then as a pivot element both for code generation and component

interpretation engines (Fig. 2). Both of them use domain specific model as the main input and combine its

structure with already prepared configurations and templates in order to produce final component.

4. COMPONENT GENERATION AND RUNTIME MODEL INTERPRETATION

Domain model, extension points and template components are used as the input for the next important

step – automated software components generation. For this purpose specific highly customized generation

tool has been developed. Generation tool loads domain model, template component, generator class and by

using them creates a new software component that can be included in a software project or compiled and

immediately used as a library [Rajkovic et al 2014]. Beside it is based on general approach, the system is

optimized for Microsoft .NET platform.

Along with domain specific model entity, another base input for generation tool are template

components. Our approach is to take already developed and tested software component, such as windows

form, and then identify the parts of the code that can be used as general. Then, replace form specific parts

with the specially marked comments that will be replaced during component generation process with a

code generated on the base of the entity taken from the model. Since its generation process is based on

templates, it has been used within our projects for automatic creation of several different classes of

components – Windows forms, value selection components, translation resources and access privilege

lists. Another benefit of this approach is improvement in component testing. For automatically generated

component, automatic tests can be defined. For each of the fields and actions, set of predefined tests can

be included. This will be the addition to the initial set of the tests loaded with chosen template

component. After generation and testing, newly created components can be used for the extension of

existing applications. On the base of mentioned model extension, and previously developed template

software components (such are forms and reports), our generation tool will generate GUI elements that

can be incorporated into information system project.

As it has been stated before, one big advantage in this approach is if users are involved from the initial

stages of the project they can much easier accept the developed software later. This is not a new

conclusion, even in a case study [Linberg 1999] the lack of communication with future user can lead to a

project fall. Further analysis can be found in [Agarwal 2006] and [MacLeod et all 2011]. Also, we

published our results and observation on this topic in [Rajkovic et al 2013].

Model based component generation is not the only way of domain model usage used within our framework

during information system development process. The next approach is runtime model interpretation. For

this purpose, special set of Web components is developed (Fig. 2).

The model interpretation library uses basically the same approach as the component generator – it

loads entity from the model and the template in order to create a component that will be displayed in the

browser. The main difference between this and the approach with code generation is that users can have

two additional tools that can use online – configurator and the template definition tool. In the template

definition tool users can define the visual elements of the displayed components – its arrangement,

positioning, colors fonts etc. Configuration tool lets user further specify the appearance and the content of

particular elements of the chosen template.

5. RESULTS AND DISCUSSION

Both presented approaches can be effectively used during information system development process. We

had an opportunity to test them on many different types of components so we are able to present some

relevant results and to define guidelines when to use which approach. Immediate effects that we get from

our framework is reducing the time needed for component development (Table 2). In the table below, we

presented the time needed for specific steps in component development process in cases when no

optimization is used, then when we used only standard components and at the end when we used model

driven approach through our framework. The data that we presented are gathered as a result of

surveying our development team members, so they cannot be marked as fully accurate and objective, but

they are indicative enough to compare the results in different approaches. We have interviewed twelve

6:50 • P. Rajkovic, I. Petkovic and D. Jankovic

developers currently involved in development projects that actively use our framework. Interviewed

colleagues have at least two years long experience in information system development, while some of

them work more than a decade in this field.

As the basic measurement unit we define T, which is a time that needed to define the structure of one

entity and to create corresponding database table. All the other measurements are in correlation with

mentioned T. After the creation of the database table, next step is defining a class in the object model.

When using no optimization in development process, these two actions took the approximately the same

time. But, in case when some object-relational model (ORM) is enabled in the project it is enough to create

only one entity definition and it will be automatically used for creation both of the table and the entity.

Table 2. Comparison of time spent on developing single windows/web form using different approaches in development

Step No optimization

process applied

Using standard reports and

component generators

Model driven

dev.

Database table definition T 0 0

Defining class in object model T T T

Developing visual form 3T 0.1T 0.05T

Data validation methods implementation 3T T 0.1T

Implementation of a logic specific for a form 2T 2T 2T

Defining configuration parameters 1T 1T 0.1T

Testing 6T 3T 0.5T

Overall time 15T 8.1T 3.75T

Next step is developing of visual form. It is related to pure creation of visual elements of the form and

their connection to values retrieved by ORM classes. Since a developer needs to define label translations,

data displaying components and to develop/inherit the logic to connect the form with the rest of the

system we assumed that needed time is around 3T. When using some generation tools, we would get

instantly created form and some simple adjustment is needed then. In case when we use our

generation/interpretation tools this time is even shorter since no changes in visual style are usually

required.

The component generation step is followed by implementation of data validation methods and the

implementation of form-specific logic. While form-specific logic can hardly be replaced with automatically

generated code (since it is a consequence of specific stakeholder requests) implementation of data

validation method can be significantly tuned up. Standard component generators usually have check on

the data type level, while our generation/interpretation tool can include also range checks that can be

directly taken from used domain specific model.

Predominantly, our framework was used to create components for medical information systems, and

many requirements specific for this area are included. We often have special requests to support data-

field level configuration. In many cases the end users request the possibility to define which actions are

possible for each field in some forms. Those requests lead to definition of specific configuration

parameters. Depending on the number elements of the form, the process of defining and integrating

configuration is process that lasts at least as the initial form definition. When our framework is used, we

are able to define special generator class and template component so we could automatically generate

configuration parameters at the same time while generating the form and therefore significantly reduce

required time.

At the end of development process, testing and bug fixing lasted much longer when no generation

component is used. Manual form building is process that many developers consider as less interesting and

many different bugs came out when testing started. The most common problems are fields that are not

connected to ORM properties and missing data validity checks. When using automated test generators,

the time needed for this segment is halved. Using our framework, we managed to reduce this time

significantly due to the fact that automatically generated and tested components are usually prone to

mentioned errors. The segment of time that cannot be reduced is the one related to testing and fixing bugs

from form-specific logic.

 Domain Model Code Generation Framework in Medical IS • 6:51

Table 3. Comparison the effects of different approaches in GUI components development on overall system development process

Category Standard reports and

component generators

Generated components Interpreted

components

Number of user sessions per module 4.33 2.76 2.08

Iterations before accepted solution 6.66 2.75 2.5

Mockup generation time 4 days <1 day <1 day

Average bug reports per module 9.65 3.74 3.35

The improvements related to visual components generation are not the only benefit we got. The side

effect was improvement of overall development process (Table 3). Before start using our framework we

relied our development process on standard report and component generation tools. Using modeling tool

both by us and our customers reduced number of requirement collection session with users. Without

modeling tool we have 4-5 sessions before final agreement per module. With modeling tool we reduced

that number to around 2. Using interpreted components with some default templates made us possible

that we can show initial form overview even during the first session. Also, using functionality from our

reverse engineering tool, we are able to deliver application mockup for less than a day. Mockup

application usually have uniform visual style and it is based on a single display template, but its main

aim is to verify defined data structures and help arrange them logically. So, initial forms will have default

view, but will be able to display all needed data with corresponding types and ranges. After initial session,

we are focused on developing GUI templates in order to have proper preview of future functionalities.

During second session with potential users we are usually able to demonstrate them GUI components

mockup and to finalize stakeholder document in the sections related to user interface and required data

structure.

Considering this, our users initially know what to expect, so when the project come to system

acceptance and testing the number of change requests and bug reports is significantly lower if our

framework is used. Comparing our two approaches – generated vs interpreted components – we can state

that users have better response to Web solution based on interpreted components than to Windows

interface based on generated forms. The main reason is the fact that the users do need to install any

additional piece of software (they need only Web browser). Also, with installed template designer, the

advanced users can develop their own templates and extend the existing system. On the other hand, the

advantage of Windows forms based solution is faster response than Web applications.

After few years of system exploitation we realized that both approaches have their place in overall

medical information system lifecycle. Windows applications are used by doctors and nurses in ordination

and next to the medical instrumentation – in places when system needs to collect and process data. On

the other hand, Web based components look like more desirable when data access, formatting and

presenting is needed – in Web application offering medical record overview and in report generation.

6. CONCLUSION

This paper presents domain driven approach in automatic code generation process. To support this

approach we have developed specific framework. The framework is actively used within our development

team. We interviewed team members in order to get an estimate of the process improvement using the

framework. Following their responses we can assume that the best effect we have in requirement

collection phase where overall time needed is reduced to roughly 30-40%. When the project reaches

development phase overall estimate based on mentioned survey is that the total time needed could be

reduced to 25-30% of the time needed initially. The significant effect is visible on GUI based components,

but core system components still need to be programed. When the project comes to deployment phase, the

number of reported bugs is significantly lower than with the approach when no component generation

tools are used. The main reason for this is that developers have initially generated forms with trusted

functionalities, so they can focus primarily on the form’s specific logic.

Our automatically generated/interpreted components helped not only development but also whole

information system lifecycle, from initial mockup solution generation, through the development to later

system upgrades and finally to deployment and maintenance. In all of these steps automatically

6:52 • P. Rajkovic, I. Petkovic and D. Jankovic

generated components reduced needed time. In combination with usage of modeling tools that improve

communication with the customers and keep them involved during system development, they make

eventual system acceptance easier and reduces number of customer reviews before final goal is reached.

REFERENCES

Petar Rajković, Dragan Janković, and Aleksandar Milenković. 2013 ―Developing and deploying medical information systems for

Serbian public healthcare: Challenges, lessons learned and guidelines." Computer Science and Information Systems 10.3 (2013):

1429-1454.

Petar Rajković, Dragan Janković, Aleksandar Milenković 2014, Improved Code Generation Tool for Faster Information System

Development, SAUM 2014, Nis, Serbia, 12 - 14 November 2014, pp. 273 -276, Conference Proceedings, ISBN: 978-86-6125-117-7.

Aleksandar Milenković; Petar Rajković; Dragan Janković; Tatjana Stanković; Miroslava Živković 2010: Software Module for Clinics

of Neurology as a Part of Medical Information System Medis.NET, ICEST 2010, Ohrid, Makedonija, 23 - 26 Jun 2010;

Proceedings, Vol. 1, br. 0, str. 323-326; ISSN: 978-9989-786-57-0;

Petar Rajković; Dragan Janković; Tatjana Stanković 2009: An e-Health Solution for Ambulatory Facilities 2009, 9th International

Conference on Information Technology and Applications in Biomedicine, ITAB 2009, Larnaca, Cyprus, November, 2009;

Proceedings, Vol. 1, br. 1, str. Fr. 1.5.1 1-4; IEEE Publishing 2009, ISSN: 978-1-4244-5379-5

Badreddin, Omar, Andrew Forward, and Timothy C. Lethbridge. 2014 "Improving Code Generation for Associations: Enforcing Mul-

tiplicity Constraints and Ensuring Referential Integrity." Soft-ware Engineering Research, Management and Applications.

Springer International Publishing, 2014. 129-149.

Wanderman-Milne, Skye, and Nong Li. 2014 "Runtime Code Generation in Cloudera Impala." IEEE Data Eng. Bull. 37.1 (2014): 31-

37.

Ramón, Óscar Sánchez, Jesús Sánchez Cuadrado, and Jesús García Molina. (2014) "Model-driven reverse engineering of legacy

graphical user interfaces." Automated Software Engineering 21.2 (2014): 147-186.

Linberg, Kurt R. "Software developer perceptions about software project failure: a case study." Journal of Systems and Software 49.2

(1999): 177-192.

Agarwal, Nitin, and Urvashi Rathod. 2006 "Defining ‘success’ for software projects: An exploratory revelation." International journal

of project management 24.4 (2006): 358-370.

McLeod, Laurie, and Stephen G. MacDonell. 2011 "Factors that affect software systems development project outcomes: A survey of

research." ACM Computing Surveys (CSUR) 43.4 (2011): 24.

L. Ren, FengTian, X. Zhang and LinZhang, "DaisyViz 2010: A model-based user interface toolkit for interactive information

visualization systems," Journal of Visual Languages and Computing 21, Elsevier, p. 209–229, 2010.

P. Barclay, T. Griffiths, J. McKirdy, J. Kennedy, R. Cooper, N. Paton and P. Gray, 2003 "Teallach — a flexible user-interface

development environment for object database applications," Journal of Visual Languages & Computing, Elsevier, vol. 14, no. 1,

p. 47–77, 2003.

Meixner, Gerrit, Fabio Paternò, and Jean Vanderdonckt. 2011, "Past, Present, and Future of Model-Based User Interface

Development." i-com Zeitschrift für interaktive und kooperative Medien 10.3 (2011): 2-11.

T. Schlegel 2010, "An Interactive Process Meta Model for Runtime User Interface Generation and Adaptation," in Fifth

International Workshop on Model Driven Development of Advanced User Interfaces, Atlanta, 2010.

Zineb El Akkaoui, Esteban Zimànyi, Jose-Norberto Mazón, and Juan Trujillo. 2011. A model-driven framework for ETL process

development. In Proceedings of the ACM 14th international workshop on Data Warehousing and OLAP (DOLAP '11). ACM, New

York, NY, USA, 45-52. DOI=10.1145/2064676.2064685 http://doi.acm.org/10.1145/2064676.2064685

Abel Hegedus, Akos Horvath, Istvan Rath, and Daniel Varro. 2011. A model-driven framework for guided design space exploration.

In Proceedings of the 2011 26th IEEE/ACM International Conference on Automated Software Engineering (ASE '11). IEEE

Computer Society, Washington, DC, USA, 173-182. DOI=10.1109/ASE.2011.6100051 http://dx.doi.org/10.1109/ASE.2011.6100051

http://doi.acm.org/10.1145/2064676.2064685

