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The validation of static program analysis tools is an extremely hard and time consuming process since those tools process
source code of computer programs that are usually extremely large and complex. In this paper we argue that static program
analysis tools can be validated by self-application, i.e. by applying a source code analysis tool to its own source code. Namely,
developers of a complex source code analysis tool are familiar with its source code and consequently in position to more quickly
examine whether obtained results are correct. The idea is demonstrated by the application of SNEIPL, a language-independent
extractor of dependencies between source code entities, to itself.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification—Validation; D.2.7 [Soft-
ware Engineering]: Distribution, Maintenance, and Enhancement—Restructuring, reverse engineering, and reengineering

General Terms: Experimentation,Measurement

Additional Key Words and Phrases: Source code analysis, self-application, validation

1. INTRODUCTION

Static program analysis tools process source code of computer programs in order to extract informa-
tion that can help software engineers in a variety of tasks ranging from program understanding to
fault detection [Binkley 2007]. The automated extraction of information in static program analysis is
done without executing program and relies only on source code or some intermediate representation.
Software validation refers to the process of evaluation of a software system in order to check whether
it works properly and according to its specification. The validation of static program analysis tools is
an extremely important task since those tools are used to understand and improve software systems.
On the other hand, real-world software systems are usually extremely large and hard to comprehend
making the validation hard and time consuming.

The identification of dependencies between source code entities (functions, classes, modules, etc.) is
one of fundamental problems in static program analysis. We use the generic term “software network”
to denote directed graphs of dependencies between source code entities. The importance of software
networks extraction spans multiple fields such as empirical analysis of complexity of software sys-
tems, their reverse engineering and computation of software design metrics [Savi¢ et al. 2014]. In our
previous works [Savi¢ et al. 2012b; 2014] we introduced SNEIPL — a language-independent approach
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to the extraction of software networks representing software systems at various levels of granularity’.
In the experiment described in [Savi¢ et al. 2012b] we showed that SNEIPL extracts isomorphic net-
works from simple, but structurally and semantically equivalent software systems written in different
programming languages. In the subsequent research [Savi¢ et al. 2014] we demonstrated that SNEIPL
is able to extract software networks from real-world software systems written in different program-
ming languages (Java, Modula-2 and Delphi). Moreover, we showed that class collaboration networks
extracted from 10 real-world Java software systems are highly similar to those obtained by a language-
dependent tool which forms networks from byte code, and much precise than the networks obtained
by a language-independent tool which employs a lightweight, fuzzy parsing approach to dependency
extraction. The research presented in this paper follows previously conducted experiments related to
the validation of SNEIPL. More specifically, we used SNEIPL to extract software networks from its
own source code. Due to the familiarity with the implementation of SNEIPL we were in position to
quickly determine whether obtained results are correct.

The rest of the paper is structured as follows. Related work is presented in Section 2. The short
description of the tool is given in Section 3. Experiments and results are presented in Section 4. The
last Section concludes the paper.

2. RELATED WORK

There is a large number of tools that identify dependencies between source code entities. Usually they
are language-dependent (tied to a particular programming language). For example, the overview of
existing static call graphs extractors for C/C++ can be found in [Murphy et al. 1998; Telea et al. 2009].
Software networks can also be extracted from software documentation such as JavaDoc HTML pages
(up to a certain level of precision) or low-level intermediate representations such as Java byte code.
Software networks extractors rely either on traditional parsing techniques or employ more lightweight,
but less precise, approaches based on pattern matching [Kienle and Miiller 2010].

In research works that deal with the analysis of software systems under the framework of complex
network theory software networks are usually extracted using language-specific tools:

—in [Valverde and Solé 2007; de Moura et al. 2003] analyzed networks were extracted by lightweight,
handmade parsers of C/C++ header files,

—in [Jenkins and Kirk 2007; Louridas et al. 2008] by tools that rely on Java bytecode parsers,

—in [Wang et al. 2013] by parsing C source code using a modified version of the GCC compiler,

—in [Taube-Schock et al. 2011] by extending the standard Java parser of the Eclipse IDE,

—in [Wheeldon and Counsell 2003] by using Java Doclet capabilities to inspect the source code struc-
ture,

—in [Puppin and Silvestri 2006] by parsing JavaDoc HTML pages,
—in [Savi¢ et al. 2011; Savi¢ et al. 2012a] by a tool that relies on Java parser generated by JavaCC.

The identification of dependencies among source code entities in existing language-independent re-
verse engineering tools can be classified into two categories:

—Tools that have separate fact extractors (source code models in terms of software networks) for each
supported language. Examples of such tools are Rigi [Kienle and Miller 2010], GUPRO [Ebert et al.
2002] and Moose [Ducasse et al. 2000].

IThe tool can be downloaded at https://code.google.com/p/ssqsa/
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—Tools that realize partially language-independent fact extraction. This means that for a subset of
supported languages software networks are formed from a low-level (statement-level) language-
independent source code representation, while for other supported languages there are separate
fact extractors. An example of a tool that belongs to this category is Bauhaus [Raza et al. 2006].

The validation of dependency extraction in aforementioned tools was conducted on several real-world
computer programs, none of them being the reverse engineering tool itself.

3. SNEIPL TOOL

SNEIPL has been implemented as one of the back-ends of the SSQSA framework [Rakié et al. 2013;
Budimac et al. 2012]. The whole SSQSA framework is organized around the enriched Concrete Syn-
tax Tree (eCST) representation of source code [Raki¢ and Budimac 2011a; 2011b] that is produced by
the SSQSA front-end known as eCSTGenerator. The eCST representation is a language-independent
source code representation and makes SSQSA back-ends independent of programming language. The
concept of universal nodes introduced in the eCST representation is what makes it substantially dif-
ferent from other tree representations of source code. Namely, eCST universal nodes are predefined
language-independent markers of semantic concepts expressed by concrete language constructs. One
universal node in an eCST denotes particular semantic concept realized by the syntax construction
embedded into the eCST sub-tree rooted at the universal node.

From an input set of eCSTs SNEIPL forms a heterogeneous software network that is known as
General Dependency Network (GDN). GDN shows dependencies among software entities reflecting the
design structure of a software system [Savi¢ et al. 2014]. Nodes in a GDN represent architectural
elements of a software system: packages, classes/modules, interfaces, functions/methods and global
variables/class attributes. GDN links represent various types of relations: CALLS relations between
functions, REFERENCES relations between package-level entities, REFERENCES relations between
class-level entities, relations that represent different forms of class coupling, USES relations between
functions and variables, and CONTAINS relations that reflect the hierarchy of entities.

The set of eCST universal nodes, among others, contains entity-level universal nodes which mark
definitions/declarations of software entities. SNEIPL deduces vertical dependencies (CONTAINS re-
lations) from the hierarchy of entity-level eCST universal nodes in input eCSTs. Calls relations be-
tween functions are recognized by analysis of sub-trees rooted at the FUNCTION_CALL universal
node which marks function calls. Relations among class-level entities are identified by analysis of
sub-trees rooted at the TYPE universal node which marks type identifiers. Finally, relations between
functions and global variables are identified by analysis of sub-trees rooted at the NAME universal
node which marks all identifiers present in the source code. To match an identifier (name of vari-
able, type or invoked function) with its definition SNEIPL uses the name resolution algorithm that
is based on several components: previously identified vertical dependencies, information contained in
import statements (statements that are marked with the IMPORT_DECL universal node), information
contained in local symbol tables that are attached to FUNCTION _DECL (marks function definitions)
and BLOCK_SCOPE (marks block of statements) universal nodes, lexical scoping rules and rapid type
analysis [Bacon and Sweeney 1996] that is adopted for the eCST representation. The more detailed
description of the name resolution algorithm is given in [Savi¢ et al. 2014].

4. EXPERIMENT AND RESULTS

SNEIPL has been written in the Java programming language. The implementation of SNEIPL consists
of 6876 lines of code (without empty lines) which means that SNEIPL is a non-trivial software system
of moderate size. Using eCSTGenerator we transformed the source code into the eCST representation.
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The eCST representation of SNEIPL consists of 54 eCSTs (one eCST correspond to one compilation
unit). Then we employed SNEIPL to extract software networks from the SNEIPL implementation.
Obtained GDN has 584 nodes and 2285 links.

4.1 Recovery of SNEIPLs architecture

Package collaboration networks (PCN) show dependencies among packages and thus represent the
architecture of software systems at the highest level of abstraction. Figure 1 shows the SNEIPL PCN
extracted using SNEIPL. Due to the familiarity with the implementation of SNEIPL we were in posi-
tion to extremely quickly validate that the extracted PCN is actually correct.

svc.sr@ij)l.filter

svc.ecst.u

svc.e:&isualise

Fig. 1. The package collaboration network of SNEIPL.

The package sve.sneipl encompasses core SNEIPL's classes — classes which identify software en-
tities and dependencies between them relying on input eCSTs. This package depends on all other
SNEIPL packages except the sve.ecst.visualise package. svec.ecst.visualise contains source code of
a simple and standalone GUI application that visualizes eCST trees. We mainly used it during the
development and testing of SNEIPL when it was necessary to have input XML files visually observ-
able. In contrast to sve.sneipl, sve.util groups simple utility classes. Therefore, this package does not
depend on any other package.

The package sve.ecst contains classes which provide functionalities related to the eCST representa-
tion. The eCST representation of one compilation unit is internally stored as an object of svec.ecst.-
ECSTTree class. This class defines methods which load eCST from an input XML file produced
by eCSTGenerator and holds the reference to the root node. Each node in loaded eCST is repre-
sented as an object of sve.ecst. ECSTNode class which holds the content of the node, the reference
to the parent node and the list of references to child nodes. The package svec.ecst.universalNodes
groups classes that represent different eCST universal nodes used by SNEIPL. One eCST universal
node is represented by a class that directly or indirectly extends svec.ecst. ECSTNode class. Class
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sve.ecst. ECSTTree makes objects representing universal nodes and consequently sve.ecst depends
on svc.ecst.universalNodes. The dependency between svc.ecst and svec.ecst.universalNodes is
reciprocal because universal nodes are instances of svc.ecst. ECSTNode.

SNEIPL recognizes software entities and dependencies among them according to the language-
independent procedure that relies only on eCST universal nodes. Thus, the core package depends
on svc.ecst.UniversalNodes. When an entity/dependency is recognized the appropriate node/link
in the GDN is created. Thus, the core package depends on sve.sneipl.gdn. Each GDN node cor-
responds to one eCST universal node marking the definition/declaration of an software entity and
consequently sve.sneipl.gdn depends on sve.ecst and sve.ecst.universalNodes. The dependency
between sve.sneipl.gdn and sve.ecst.universalNodes is reciprocal since local symbol tables can be
attached to some universal nodes. Local symbol tables contain local variables defined in functions and
block statements. Those variables can have types that correspond to GDN nodes and consequently
sve.ecst.universalNodes depends on sve.sneipl.gdn.

Finally, the main SNEIPL class contained in the core package instantiates filters from sve.sneipl.-
filter to isolate specific software networks from the formed GDN. Thus, the core package depends on
the filter package, while the filter package depends on the gdn package.

4.2 Isolated entitites

Isolated nodes in extracted software networks can indicate missing links, and thus can point to errors
in the implementation of software networks extraction tool. Therefore, we determined and examined
characteristics of isolated nodes in the networks representing SNEIPL. The package and class collab-
oration network of SNEIPL do not contain isolated nodes (unused packages and classes). On the other
hand, isolated nodes can be observed in the SNEIPL static call graph (SCG) and FUGV (Function Uses
Gloval Variable) network.

The SNEIPL SCG contains 34 isolated nodes (10.36% of the total number). Table I shows the list of
isolated nodes. To each method SNEIPL assigns a name that can be described by the following regular
expression:

F>M (@T) % R,

where F' denotes the fully qualified name of a class/interface which declares/defines the method, m is
the name of the method, T" denotes the type of a formal argument of m, while R is the return type of
m. Seven methods listed in the table are methods that are unused — methods that are never called by
other methods, nor they call other methods defined in the SNEIPL source code. Those methods can
be safely removed from the SNEIPL source code distribution. Three isolated nodes represent method
declarations from SymTab — the only interface defined in SNEIPL. The SymTab interface is imple-
mented by classes representing eCST universal nodes to which local symbol tables can be attached.
Those three nodes are isolated simply because in-coming links are given to the nodes representing
implementations of those declarations in classes that implement the SymTab interface. Three isolated
methods listed in Table I are so called call-back methods — methods defined in the SNEIPL source
code that are called only from methods contained in external frameworks. Namely, SNEIPL defines
four transform methods that are called by the JUNG library to export extracted software networks in
the Pajek network file format. One of those methods calls one method defined in SNEIPL, and conse-
quently it is represented by a non-isolated node in the SNEIPL SCG. Other three transform methods
do not rely on SNEIPL methods and consequently they are isolated nodes. One method listed in the
table is GUI method — method that is activated when a button is clicked in the GUI application that
visualizes eCST trees.
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Table 1. Isolated nodes in the SNEIPL static call graph.
Method name Explanation
sve.ecst. ECSTNode.disposeChilds#void Unused
sve.ecst. ECSTNode.emptySubtree#boolean Unused
svc.ecst. ECSTNode.findAllAtFirstLevel @String#LinkedList Unused
sve.ecst. ECSTNode.findFirstAtFirstLevel@String#ECSTNode Unused
sve.ecst. ECSTNode.rewriteToken@String#void Unused

sve.ecst. ECSTTypedNode. ECSTTypedNode@String@ECSTNode@boolean@boolean#void
svc.ecst.universalNodes.Argument.Argument@String@ECSTNode#void
sve.ecst.universalNodes.ArgumentList.ArgumentList@String@ ECSTNode#void
sve.ecst.universalNodes.AttributeDecl. AttributeDecl@String@ECSTNode#void
sve.ecst.universalNodes.BlockScope.BlockScope@String@ECSTNode#void
sve.ecst.universalNodes.ConcreteUnitDecl.ConcreteUnitDecl@String@ECSTNode#void
svc.ecst.universalNodes.Extends.Extends@String@ECSTNode#void
svc.ecst.universalNodes.FormalParamList.FormalParamList@String@ECSTNode#void
svc.ecst.universalNodes.FunctionCall. FunctionCall@String@ECSTNode#void
sve.ecst.universalNodes.FunctionDecl. FunctionDecl@String@ ECSTNode#void
svc.ecst.universalNodes.Implements.Implements@String@ECSTNode#void
sve.ecst.universalNodes.ImportDecl.ImportDecl@String@ECSTNode#void
svc.ecst.universalNodes.Instantiates.Instantiates@String@ECSTNode#void
sve.ecst.universalNodes.InterfaceUnitDecl.InterfaceUnitDecl@String@ ECSTNode#void
svc.ecst.universalNodes.Name.Name@String@ ECSTNode#void
sve.ecst.universalNodes.PackageDecl.PackageDecl@String@ ECSTNode#void
svc.ecst.universalNodes.ParameterDecl. ParameterDecl@String@ECSTNode#void
svc.ecst.universalNodes.SymTab.getType@String#GDNNode
svc.ecst.universalNodes.SymTab.getTypeAsStr@String#String
svc.ecst.universalNodes.SymTab.nameDeclaredHere@String#boolean
svc.ecst.universalNodes.Type. Type@String@ ECSTNode#void
svc.ecst.universalNodes.TypeDecl. TypeDecl@String@ ECSTNode#void
svc.ecst.universalNodes.VarDecl.VarDecl@String@ECSTNode#void
svc.ecst.visualise.Visualiser.browseBtnClicked#void

sve.sneipl.filter.SoftNet.Link Transformer.transform@SNLink#Number
sve.sneipl.filter.SoftNet.NodeTransformer.transform@SNNode#String
sve.sneipl.filter.SoftNet.SNNode.getType#GDNNodeType
sve.sneipl.FuncCallResolver.dumpCandidates@LinkedList#void
sve.sneipl.gdn.GDN.LinkTransformer.transform@GDNLink#Number

Called only via Reflection API
Called only via Reflection API
Called only via Reflection API
Called only via Reflection API
Called only via Reflection API
Called only via Reflection API
Called only via Reflection API
Called only via Reflection API
Called only via Reflection API
Called only via Reflection API
Called only via Reflection API
Called only via Reflection API
Called only via Reflection API
Called only via Reflection API
Called only via Reflection API
Called only via Reflection API
Called only via Reflection API
Interface declaration
Interface declaration
Interface declaration

Called only via Reflection API
Called only via Reflection API
Called only via Reflection API
GUI method

Call back method

Call back method

Unused

Unused

Call back method

As it can be observed the majority of isolated nodes given in Table I are actually constructors defined
in classes that represent different eCST universal nodes. The main characteristic of those classes is
that they only define a constructor which invokes the constructor of the super class. At the moment
SNEIPL resolves only explicit function calls (calls for which the name of invoked is explicitly stated),
while indirect function calls (e.g., through function pointers, variables of procedural data types or via
language-specific keywords such as super and this in the case of Java) are not yet supported. Objects
representing universal nodes in eCSTs are instantiated using configurable factory pattern and the
Java Reflection API:

—There is a mapping of SNEIPL relevant eCST universal nodes to fully qualified names of SNEIPL
classes representing eCST universal nodes.
—The class that loads an eCST relies on the previously mentioned map to determine the name of the

class representing currently processed eCST node. The constructor of the class is invoked using the
Java Reflection API.

In other words, the calls to constructors which instantiate universal nodes of loaded eCSTs cannot be
detected by any static source code analysis method. Generally speaking, function calls via reflection
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are hard to detect statically. On the other hand, static analysis tools should be able to detect indirect
function calls made via language-specific keywords. In the case of SNEIPL, the problem of indirect
function calls via language-specific keywords can be solved by introducing new eCST universal nodes
that are specializations of the FUNCTION_CALL universal node or even more simply by eCST post-
processing which does not change the structure of eCST: each this/super token in an eCST can be sim-
ply rewritten by the name of class/super-class (those names are marked by CONCRETE _UNIT DECL
and EXTENDS universal nodes, respectively) in order to make the call explicit by name.

The SNEIPL FUGV network contains 82 isolated nodes (15.81% of the total number of nodes in
the network). 4 isolated nodes represent variables, while 78 nodes represent functions. Table II lists
isolated nodes that represent class attributes in the SNEIPL FUGV network. As it can be seen only
one class attribute defined in SNEIPL is actually unused, while the other three are automatically
generated serialization identifiers that are not used by SNEIPL methods.

Table II. Isolated class attributes in the SNEIPL FUGV network.

Attribute name Explanation
svc.ecst. ECSTTypedNode.typeResolved Unused
svc.ecst.visualise.Show.serialVersionUID Serial version UID
sve.ecst.visualise.Visualiser.serial VersionUID Serial version UID

sve.ecst. ECSTLoaderException.serialVersionUID  Serial version UID

We manually inspected 78 nodes representing methods that are isolated in the FUGV network:

—20 of them represent methods that are defined in classes which do not define any class attributes. A
majority of them are nodes representing constructors of classes that correspond to eCST universal
nodes (classes that only define a constructor). Other nodes from this category correspond to method
declarations in the only interface contained in SNEIPL (SymTab).

—Other 58 methods (17.68% of the total number) are methods that are defined in classes which have
class attributes, but do not use them. Those are local (private) methods which only process their
arguments, methods which do not use class attributes but invoke other methods which access to
class attributes, and simple static utility methods.

5. CONCLUSIONS

In this paper we demonstrated that the source code of a static program analysis tool can be used to val-
idate the tool. More specifically, we applied SNEIPL, extractor of software networks, to its own source
code. The analysis of extracted package collaboration network from SNEIPL source code showed that
SNEIPL is able to recover its own architecture on the highest level of abstraction. We also performed
the analysis of isolated nodes in obtained networks. This analysis revealed unused software entities
defined in SNEIPL enabling us to improve its implementation.
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