
Certifying the interoperability of
RDF database systems

Karima Rafes1, Julien Nauroy2, and Cécile Germain3

1 INRIA-Saclay / BorderCloud karima.rafes@inria.fr
2 INRIA-Saclay julien.nauroy@inria.fr

3 University Paris Sud and CNRS cecile.germain@lri.fr

Abstract. In March 2013, the W3C recommended SPARQL 1.1 to re-
trieve and manipulate decentralized RDF data. Real-world usage re-
quires advanced features of SPARQL 1.1. recommendations As these are
not consistently implemented, we propose a test framework named TFT
(Tests for Triple stores) to test the interoperability of the SPARQL end-
point of RDF database systems. This framework can execute the W3C’s
SPARQL 1.1 test suite and also its own tests of interoperability. To help
the developers and end-users of RDF databases, we perform daily tests
on Jena-Fuseki, Marmotta-KiWistore, 4Store and three other commercial
databases. With these tests, we have built a scoring system named SPAR-
QLScore and share our results on the website http://sparqlscore.com.

Keywords: Linked Data Quality, interoperability, SPARQL

1 Introduction

The current W3C recommendation SPARQL 1.1 has been published in its fi-
nal form in May 2013 [11]. The W3C has defined tests for the compliance of
RDF databases to this recommendation. Most editors of RDF databases claim
to support this latest recommendation but the official implementation report
for SPARQL 1.1 [10] shows that none of them pass all the official W3C tests.
Moreover, software vendors explicitly forbid the disclosure of test compliance
results. There exists some reference performance benchmarks, e.g., the Berlin
Sparql Benchmark [2], and for ontology support, e.g., the University Ontology
Benchmark [5] (even though it may be argued that this second type of bench-
marks is not representative of real-world applications [13]). Surprisingly enough,
it seems that there exists no exhaustive and up-to-date benchmarking facility of
the W3C tests for evaluating RDF databases with respect to interoperability.

Thus, predicting beforehand the support of a particular SPARQL 1.1 fea-
ture in a given RDF database was impossible. This is generally damaging the
deployment of the Semantic Web, and has particularly pernicious consequences
in scientific research ecosystems.

In the CDS (Center for Data Science) project of Paris-Saclay University, we
develop an integrated framework that offers a seamless facility to run and exploit
exhaustive testing of RDF databases, in order to help our scientific communities

2

to choose the best solution to share their data. Our panel is broad: large and
well-organized communities such as High Energy Physics (CERN experiments)
as well as local communities that just discover the need to share beyond short-
lived experiments, and many more; it includes both hard and soft science.

Our current TFT workflow automatically compiles, deploys and tests ev-
ery night several hand-picked RDF databases from their sources as well as one
SPARQL endpoint offered by a software vendor. It maintains a database of test
results accessible from a web interface. The workflow will shortly be integrated
within a platform as a service (PaaS), where TFT will be used to evaluate the
conformity of a virtual image hosting an open source RDF database to the latest
SPARQL standards, thus providing the scientific end users with critical informa-
tion for a better informed choice of database based on their needs (performance,
support for a particular ontology, etc.), including SPARQL federated queries.
The vendors will also be able to propose virtual machines including their own
RDF database system, which will then be automatically evaluated using the
TFT software before being proposed to researchers.

2 Innovation

2.1 Is interoperability impossible?

The Semantic Web, or Web of Data, aims among other things to share readable
information between humans and machines. When this exchange will be possible,
new machines will be born to help the humans to use all the information on the
Web. This huge amount of information is already unusable by humans but the
majority of the machines are also unable of handling it alone.

The machines on the Web become specialized: collector, calculator, semantic
parser, databases, etc. The availability of APIs with the WebService technology
was the first response to the need to communicate between machines. Unfortu-
nately, there are as many APIs as developers. This heterogeneity makes impossi-
ble the implementation of autonomous agents able to discover and consume the
Web data, as it had set a simple API and a unique protocol. Enabling such agents
is the aim of SPARQL, by making them capable to discover the data across the
Web without downloading them beforehand. This is also a major issue for the
Web of Things, where every object becomes a potential Web Agent.

Lack of interoperability causes two complications that are critical to widespread
adoption of RDF by large and organized scientific communities such as HEP
(High Energy Physics): migration between databases and their updgrades and
the development of agents, as experienced manpower is scarce.

Total interoperability might still be a long way to go. Should we wait until
it happens? Instead, a medium term strategy can take into account the fact
that, in practice, the end-users could cope with some limitations. However, their
tradeoffs are different, thus a first-order requirement is to be able to precisely
assess the strengths and flaws of databases with respect to interoperability. The
tool for evaluating interoperability did not exist. TFT answers this critical
need.

3

2.2 The last version is always the better

Interoperability is not enough for scientific communities. The most advanced
ones want to use the latest database technology (inferences, velocity, cluster-
ing and so on). These innovations are rarely available in the stable versions of
databases before several months or even several years. The unstable versions are
often available for free download and researchers can install these latest versions
very quickly with tools like Git. Moreover, for the small communities, the com-
promise between compliance to standards and cutting-edge performance is often
arbitrated more or less blindly in favor of the latter. The TFT software provides
a simple solution to make a better informed decision, creating an incentive for
selecting the more interoperable technology within the user requirements.

2.3 IaaS for the researchers

For a Chief Information Officer (CIO) in the academic world providing services
to multiple small and poorly organized scientific communities, the condition of
interoperability is not enough to deploy a software in an information system.
The CIOs have strong Quality of Service constraints (QoS). The solution of CIO
is to offer an IaaS (Infrastructure as a Service, typically a local cloud). With
this IaaS, the researcher can create or disappear a virtual machine in a few
clicks, and can install her preferred tools without bothering with QoS, security
and interoperability. After evaluation of the research results by the peers, the
resources may disappear fairly quickly because the corresponding data are still
rarely integrated in a long term archiving plan.

These careless methods are doomed. The scientific agencies are enforcing the
requirement to linking data to results, with reproducibility as the ultimate goal.
Nobody can replace the researchers to save their work and share their findings,
with mechanisms such as the Digital Object Identifier (DOI) System [7]. How-
ever, our PaaS will help: it will facilitate the transition from small ephemeral
silos to permanent repositories within clouds, without sacrificing the agile devel-
opment that is essential to a significant part of real-world good research.

2.4 Wrap-up

The TFT software certifies the last version of RDF database system using a
continuous delivery workflow. By providing seamless choice of the last best in-
teroperable databases, our innovation facilitates data sharing within and across
scientific communities. Beyond selection, our PaaS contributes to the advent of
reproducible science.

3 Detailed features and function

3.1 Overview

The TFT has 4 parts: 1) upload the benchmarks into our RDF database, 2) run
the tests, 3) compute a score for each database systems, and 4) share the results
in RDF via SPARQL.

4

Delivery team

Official
acceptance tests

from the W3C

User-defined
acceptance tests

Virtual Machine s
image repository

Validation Cloud

release

Trigger

Feedback
release

Trigger

Feedback

Trigger

Feedback

(a)

(b)

List of certified
Triplestore

images
End user

Production Cloud

Select/Choose

List of certified images in function of features

Install

Feedback : Database ready to use

(c)

(d)

Fig. 1. Certification workflow

Currently TFT offers a score on interoperability of software and also provide
a RDF database of detailed test results. In the near future, these results can
power tools in the cloud that will facilitate the provision of solution of latest
generation databases for the researchers and will be maintained by CIOs, by
ensuring interoperability of data, and will facilitate their work of preserving
data by being able to simply migrate data from one system to another. TFT can
also be integrated into continuous integration environments of database editors,
in order to improve their products and the CIOs can check the RDF database
system in their environments. Fig. 1 summarizes the workflow. After a new
release of a given RDF database, software is made available in the form of a
virtual appliance, the image is run on a validation cloud and a set of tests is
performed over this new database instance. According to the results of the tests,
the validation can either (a) fail and a feedback is provided to the appliances
publisher or (b) user-defined tests are run to validate their specific needs.

3.2 The benchmarks

Upload the tests. For now, there are two collections of tests: the SPARQL 1.1 test
suite (453 tests) [9], and a test suite (6 tests) from the GO [3] project. The file
config.ini defines the collection of tests and can be extended when necessary.
Each collection of tests has a separate folder in the project TFT-tests on GitHub
[12]. Each folder contains a file named manifest-all.ttl containing pointers to the
files related to the test, according to the W3C format. Fig. 2 shows an example
of a test with a federated query. This test needs to have two remote endpoints
to execute the query. The file pbs.tll contains the input to be loaded into the
first remote endpoint and the file bdii.ttl contains the input to be loaded into

5

: t e s t 1 0 rd f : type mf : QueryEvaluationTest ; #Type o f t e s t
mf : name ”Query to c a l c u l a t e ERT−ART” ;
dawgt : approval dawgt : Approved ;
#Type o f t o o l to run the t e s t
mf : f e a tu r e sd : BasicFederatedQuery ;
mf : ac t i on

[qt : query <q10 . rq> ;

qt : s e rv i ceData [
qt : endpoint <http :// example1 . org / sparq l> ;
qt : data <pbs . t t l >

] ;
qt : s e rv i ceData [

qt : endpoint <http :// example2 . org / sparq l> ;
qt : data <bd i i . t t l >

]
] ;

mf : r e s u l t <q10 . srx> .

Fig. 2. A test for a federated query in the project TFT-tests [12].

[SERVICE]
endpoint [” http :// example . org / spa rq l ”] = ”http :// o1 . in2p3 . f r / spa rq l /”
endpoint [” http :// example1 . org / spa rq l ”] = ”http :// o2 . in2p3 . f r / spa rq l /”
endpoint [” http :// example2 . org / spa rq l ”] = ”http :// o3 . in2p3 . f r / spa rq l /”

Fig. 3. During the tests the remote endpoints are replaced by their real URLs (file
config.ini in the software TFT [8])

g i t c l one −−r e c u r s i v e https :// github . com/BorderCloud/TFT. g i t
cd TFT

#upload the t e s t s u i t e s in a database
. / t f t−t e s t s u i t e −a −t f u s e k i −q http :// example . com:3030/ t e s t s /query \

−u http :// example . com:3030/ t e s t s /update

#execute the t e s t s u i t e s on the other database and save the r e s u l t s .
. / t f t \
−t f u s e k i −q http :// example . com:3030/ t e s t s /query \

−u http :// example . com:3030/ t e s t s /update \
−t t f u s e k i −tq http : / / 1 2 7 . 0 . 0 . 1 / ds/query \

−tu http : / / 1 2 7 . 0 . 0 . 1 / ds/update \
−o . / j un i t \
−r ${BUILD URL} \
−−softwareName=Fuseki \
−−so ftwareDescr ibeTag=v${VERSIONFUSEKI} \
−−so f twareDesc r ibe=”${BUILD TAG}#${FILEFUSEKI}”

Fig. 4. This script downloads TFT, uploads, passes and saves the tests and the results
in a RDF database.

the second remote endpoint. During the tests, TFT will replace the URIs of the
remote endpoints with the URI contained in the file config.ini (Fig. 3).

Pass the tests. We use Jenkins, a continuous integration server, because the
database systems are often Open Source and in a Git repository. Fig. 4 shows an

6

example of a script execution by our continuous integration server. It follows the
same workflow for each test: 1) delete all data from the main test database and
the remote test database(s); 2) load initial data to define the initial state in the
main database and the remote database(s); 3) run the tests in the main database;
in case of federated queries, the main database is responsible for contacting the
remote ones (this is the normal behavior of federated queries) ; 4) Monitor the
response to the test and/or control the final state obtained in the databases.
After the tests have been run, the script tft saves and shares the results.

Compute a score. Choosing a particular weight for each of our 459 tests would
be highly debatable. We calculate a simple global score for each RDF database
system: one point is given for each passed test. The script tft-score calculates
this score and shares these scores and the results of tests.

Fig. 5. Jenkins and SparqlScore use the test results

3.3 Share the results

After the compliance tests have been run, we share three results with various
actors

With the editors. TFT creates a report in JUnit format compliant with the
Jenkins software (Fig. 5, left). Jenkins can check the last push in the Git repos-
itory about a software and can give a feedback to developers in real-time. If a
software editor integrates TFT in its Jenkins server, he will also be able to reject
automatically the last delivery if a test shows a regression of interoperability. An
example of tests is available in the project TFT-tests on GitHub [12] and the
developers can see the tests of the end-users and can reproduce the same tests.
They can also add their own tests easily.

With the machine. After the compliance tests have been run, TFT generates
two reports: one in JUnit format for our own Jenkins server and one in RD-
F/EARL (Evaluation and Report Language) format [1]. The report in EARL
format is saved in an RDF database exposing a SPARQL endpoint. Thus an-
other machine can check easily the compliance of RDF database systems. So,
we can integrate new software almost in real-time following the last deliveries of

7

developers in our PaaS and check the compatibility. The continuous integration
platform can alert if there is a regression in the software and the machine can
detect the improvements, propose the last best stable databases and migrate
automatically the database in the best last stable solutions for the researchers.

With the end-users The SparqlScore.com website, Fig. 5 (right), illustrates
the reuse of the test results and database scores. In order to improve the user’s
experience of the website and to relieve our database, we use the Smarty [6]
library to cache the results of the SPARQL queries to build the report in HTML5.
With this website, the end-users can see the real interoperability of database and
in the future, others indicators.

4 Design choices

We integrate the linked data technologies where the input are the tests in the
turtle format with the ontology defined by the SPARQL 1.1 WG; the output is
a RDF database that is fed by a SPARQL Update query after each test.

This design offers the possibility to write quickly a new test and everybody
can propose a new test or fork the tests via a project in the GitHub’s Service
[12].

The TFT software is under a Creative Commons Attribution-ShareAlike 4.0
International License. The aim of this license is to share the same software to
test and compare objectively the databases on the market. TFT and TFT-tests
(the collections of tests) are available via their repositories [8][12].

The SparqlScore software is also available via its repository [12] and every-
body can read the last results with our continuous integration plateform on the
website http://sparqlscore.com/ (Fig. 5).

5 Conclusion

Benchmarking without testing the protocol is insufficient
The SPARQL update protocol is not identical across databases. Developing a
Web agent with SPARQL without knowing the exact server software is quite
difficult. The reason is simple: the protocol concerning update queries is fuzzy in
the SPARQL recommendation thus each database implements a different flavor
of the protocol. TFT can test five RDF databases because we have to implement
the specificities of each database in order to execute the same queries.
An open benchmark is possible and can help to converge
Very quickly after the launch of the sparqlscore.com website, four vendors con-
tacted us to include their software in our tests and three accepted to open their
results. Three vendors have a specifically set-up a SPARQL endpoint for our
tests. The editors started to discuss how to interpret the recommendation and
several fixed some interoperability problems.
The SPARQL 1.1 is a recommendation but not the tests
The official test suite is a great job as a starting point. Each difference in the
result of a SPARQL query in an RDF database is an obstacle to the deployment
of Linked Data in public institutions or a simple company. But interoperability is

http://sparqlscore.com/

8

not an option in the Linked Data, it’s the first aim. Moreover, a lot people want
use the Linked Data’s technologies and the classical access control problems are
resolved separately by the different editors. The editors have to diverge from the
recommendation in order to resolve the security needs of their customers.
Help to create a really interoperable ecosystem ?
The W3C has launched the Test the Web Forward[4] initiative in 2013. The main
goal of this action is to incentive web developers to ensure better interoperabil-
ity on the Web. For the moment, this initiative tests the technologies related
to Web browsers. With the TFT solution, the developers can also propose new
tests as like “Test the Web Forward”. So, it would make sense to extend the
‘Test the Web Forward” to SPARQL to begin and after to continue with the
other technologies of Semantic Web.

We hope TFT can be useful for the possible evolution of the “Test the Web
Forward” initiative to create a really interoperable ecosystem for the Linked
Data.

Acknowledgments

This work has been partially funded by the TIMCO project, by the Paris-Saclay
Center for Data Science (funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-
02), and by France Grilles.

References

1. Abou-Zahra, S., W3C/WAI: Evaluation and Report Language (EARL) 1.0 Schema
(2011)

2. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. Jal. On Semantic Web
and Information Systems 4(2), 1–24 (2009)

3. Germain-Renaud, C., al.: The grid observatory. In: Cluster, Cloud and Grid Com-
puting (CCGrid), 11th IEEE/ACM Int. Symp. on. pp. 114–123. IEEE (2011)

4. Langel, T.: Testing the open Web platform (2013)
5. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL

ontology benchmark. Springer (2006)
6. New Digital Group, Inc: What is Smarty? (2014)
7. Paskin, N.: Digital object identifier (doi) system. Encyclopedia of library and in-

formation sciences 3, 1586–1592 (2008)
8. Rafes, K.: Repository Git of software TFT (2014)
9. W3C SPARQL Working Group: SPARQL1.1: Test case structure (2012)

10. W3C SPARQL Working Group: Official implementation report for SPARQL 1.1
(March 2013)

11. W3C SPARQL Working Group: Recommendations of the W3C : SPARQL 1.1
(Protocol and RDF Query Language) (March 2013)

12. W3C SPARQL Working Group and The grid observatory: Repository git TFT-
tests with the test suite of SPARQL1.1 and Grid Observatory (2014)

13. Weithöner, T., Liebig, T., Luther, M., Böhm, S.: Whats wrong with OWL bench-
marks. In: Proc. of the Second Int. Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS 2006). pp. 101–114. Citeseer (2006)

http://www.w3.org/TR/EARL10-Schema/
http://www.w3.org/blog/2013/02/testing-the-open-web-platform/
http://www.smarty.net/docs/en/what.is.smarty.tpl
https://github.com/BorderCloud/TFT
http://www.w3.org/2009/sparql/docs/tests/
http://www.w3.org/2009/sparql/implementations/
http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/TR/sparql11-overview/
https://github.com/BorderCloud/TFT-tests
https://github.com/BorderCloud/TFT-tests
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.6934&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.6934&rep=rep1&type=pdf

	Certifying the interoperability of RDF database systems

