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Abstract. Many large ontologies have been created which make use of
OWL’s expressiveness for specification. However, tools to ensure that in-
stance data is in compliance with the schema are often not well integrated
with triple-stores and cannot detect certain classes of schema-instance
inconsistency due to the assumptions of the OWL axioms. This can lead
to lower quality, inconsistent data. We have developed a simple ontol-
ogy consistency and instance checking service, SimpleConsist[8]. We also
define a number of ontology design best practice constraints on OWL
or RDFS schemas. Our implementation allows the user to specify which
constraints should be applied to schema and instance data.

1 Introduction

Many Linked Data stores have large amounts of quite variable[7] data
(e.g. DBpedia[3]). Triples can exist in a triple-store which have no asso-
ciated schema or conform to no constraints on the shape or type of data.
Typically such data is considered low quality and is hard to consume.

Earlier work showed that OWL semantics make it ill suited as a lan-
guage of constraints[9]. However maintaining ontology consistency and
conformance is central to high quality data storage. Programmatic con-
sumption of data is simplified if the data is well formed and well typed.
Data management is simplified if inserts, deletes and updates that might
violate well formedness constraints is signalled.

To solve these problems, we use a persistent triple-store in ClioPa-
tria[1] and a plugin constraint checker called SimpleConsist[8], both im-
plemented in SWI-Prolog[11]. SimpleConsist is used to maintain ontolog-
ical consistency and constraints on instance data such that it conforms
to an ontology described in an OWL fragment using a narrower reading
of the OWL semantics. In particular, we make use of a closed world as-
sumption, and a unique names assumption. It is implemented as a REST
service within the Dacura[6] data curation system.



2 Ontology Consistency and Instance Checking

The philosophy for our ontology consistency and instance checking is to
view the ontology as static assertions, which must be self-consistent, and
to which a given instance state must conform. Given some triple-store
state S we check to make sure that our set of constraints C are satisfied.
When updating or inserting into the triple-store, somewhat arbitrary pro-
gram logic can take place, after which the triple-store is in a state S′. If C
does not hold for S’ then we roll-back to the previous state S. We provide
counter-example witnesses L to the failure of the constraint C. These wit-
nesses are useful for debugging schema and instance updates as it gives
information about what precisely went wrong in the constraint check-
ing. The constraint rules are a combination of consistency constraints,
instance type checking and best practices.

2.1 Constraints

SimpleConsist implements our constraints on ontology consistency and
implements instance checking. Because we want witnessing information
of the failure to satisfy the constraints, we write constraints which yield
the witnesses of a failure. These witnesses are realised as resources not
conforming to the constraints. Failure to provide a witness of the negation
of the constraint is viewed as success. The failure witnessing predicates
are briefly described in Table 1.

All witnesses of class cycles are given in the list L. Each element of
the list names both the offending class, and the path through the classes.
The other constraints return information about the reasons for failure.

invalidInstanceRange(L) requires some explanation as it is an im-
plementation of a type checker for literals and class instances and so
requires knowing what a literal can be. The constraint implements type
checking to ensure that all literals are of the appropriate type according
to the ranges specified in properties. These literals can be any RDF literal
types of the XML Schema which are valid for OWL[5]. All ranges which
specify a class have targets which are instances of an appropriate class
(either the class itself or a subclass). Using artificially populated triple
stores we timed the reasoner for various numbers of triples generated from
the instance generator. These timings can be seen in Figure 1.

3 Prior Work

There are many reasoners for fragments of OWL, e.g 17 are mentioned
in [10]. Many are sophisticated, however, the lack of the unique name



assumption can lead to problems for users developing schemata, making
it virtually impossible to use OWL to impose constraints.

CWM (Closed World Machine)[4] is a reasoner which takes our same
pragmatic approach to closed worlds and unique names. It is capable of
expressing the types of constraints we are interested in, in a parsimonious
fashion. However, it functions at the level of transformations of RDF
files rather than being a fully functioning database system. Running the
reasoner would require export of the triple-store which is not practical for
large datasets which are changing in real-time.

There are several tools provided with the Apache Jena[2] system which
facilitate consistency and instance checking. In particular the Eyeball
system is modular and allows the user to introduce new constraints by
adding Java code to perform inspection. However, it does not implement
full type checking of instance data as our constraints do.

4 Future Work and Conclusion

Triple stores may be applied to complex ontologies which have incre-
mental schema changes. However it is a challenge to provide tools which
make publishing OWL-based high quality (consistent) large scale data
easy. This requires constraints on schemata and admin tools to ensure
that updates to datastores maintain integrity. Our SimpleConsist service
has provided practical solutions to these problems. We found it useful to
reduce the expressive complexity which can be found in OWL when con-
structing our interpretation of ontologies, limiting to unique names and
closed worlds and preferring to allow higher level data curation processes
deal with the greater ambiguity often inherent in large scale data.

In future work constraint checks on more OWL features will be ex-
plored. Our priority are OWL features that do not come into conflict
with manageability of the schema and tractability of constraint checking.
We would also like to have a method of checking instance updates which
limits checking to entities which could cause constraint failures. Instance
updates are generally more frequent than schema changes and so checker
execution time will be more important.
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Execution time of constraints
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Fig. 1: Execution time of all constraints.

¬ duplicateClasses(L) No two classes may have the same
name.

¬ orphanSubClasses(L) No subclass can be a child of an
unspecified class.

¬ classCycles(L) No cycles exist in the class
hierarchy.

¬ duplicateProperties(L) No two properties have the same
name.

¬ orphanSubProperties(L) No Subproperty is the child of
an unspecified property.

¬ propertyCycles(L) No cycles exist in the property
hierarchy.

¬ invalidRange(L) Ranges must refer to classes or
types, and must be unique.

¬ invalidDomain(L) Domains must refer to classes or
types, and must be unique.

¬ orphanInstances(L) Instances must be members of a
class.

¬ orphanProperties(L) Instances must not use properties
which are not defined.

¬ invalidInstanceRange(L) An element of the range of a
property must be well typed.

¬ invalidInstanceDomain(L) An element of the domain of a
property must be well typed.

Table 1: List of constraints
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