
Scalable Semantic Version Control
for Linked Data Management

Claudius Hauptmann, Michele Brocco, and Wolfgang Wörndl

Technische Universität München, 85748 Garching, Germany
{hauptmac,brocco,woerndl}@cs.tum.edu

Abstract. Linked Data is the Semantic Web’s established standard for
publishing and interlinking data. When authors collaborate on a data
set, distribution and tracking of changes are crucial aspects. Several ap-
proaches for version control were presented in this area each focusing
on different aspects and bounded to different limitations. In this pa-
per we present an approach for semantic version control for dynamic
Linked Data based on a delta-based storage strategy and on-demand re-
construction of historic versions. The approach is intended for large data
sets and supports targeted and cross-version queries. The approach was
implemented prototypically on top of a scalable triple store and tested
with a generated data set based on parts of DBpedia with several million
triples and thousands of versions.

Keywords: Linked Data, Version Control, SPARQL, Revision, Query,
Provenance, Named Graphs

1 Introduction

Linked Data provides essential mechanisms to efficiently interlink and integrate
data using the Resource Description Framework (RDF) as base model [5, 9]. RDF
stores information as directed graph. Edges are defined by triples consisting
of subject, predicate and object and nodes are defined implicitly through the
edges and are referenced by URIs. Edges can be grouped to named graphs to
facilitate the administration or to store additional information by assigning a
context, which transforms triples to quads. SPARQL (SPARQL Protocol And
RDF Query Language) can be used as query language for Linked Data using
pattern matching, filtering, aggregation and even distributed query execution to
query several data sources at once.

A missing feature not covered by the Linked Data standard so far is version
control. Especially when several authors are involved (which is obviously the
case for the data amounts addressed by Linked Data) tracking and distribution
of changes and rolling back to previous revisions are crucial aspects for any kind
of data management [5, 9, 6]. Recent research projects created several approaches
for version control of Linked Data with focus on different aspects. They cover
versioning of data of OWL ontologies, lightweight RDFS ontologies and Linked
Data, support different workflows and enable knowledge workers to run different



query types on versioned data. Some are limited in scalability regarding the
number of triples, the number of versions or because of space efficiency. Some
solutions hide the version information from the Linked Data layer preventing
the access of version information by SPARQL queries.

Since Linked Data is designed to handle and publish large data sets we focus
on scalable semantic version control. This comes with new limitations, especially
the variety of query types that can be handled. Because of the amounts of data
we want to handle, we use a delta-based strategy. Triples of historic versions
that are used for query evaluation are reconstructed on-demand. This comes
at the cost, that global queries (which require the whole dataset for a specific
version to be constructed) can hardly be supported. The construction of versions
occurs very frequently, thus the version construction performance is the critical
factor[6].

The goal of this paper is to propose an approach for scalable semantic version
control for dynamic Linked Data based on partial on-demand reconstruction of
historic versions. We focus on query optimization for targeted queries on random
versions stored in a delta-based, distributed storage. Like Graube et. al. [5] we
want the version control information itself to be accessible by SPARQL queries.

We prototypically implemented a semantic version control system on top of
a scalable triple store and analyzed query execution plans and their performance
using several million triples. We optimized queries accessing historical informa-
tion and added a module to the query engine that constructs and caches relevant
triples on-demand. The implemented approach was evaluated in terms of space
efficiency and query performance.

Section 2 of this paper shows related work, Section 3 describes our approach
and Section 4 a performance test. Section 5 closes with a summary and an
outlook to future work.

2 Related Work

Stefanidis et. al. [10] discuss storage strategies and recommend hybrid strate-
gies over pure version-based or delta-based strategies. They distinguish between
modern, historical and cross-version queries, global vs. targeted queries and
version-centered vs. delta-centered queries. Graube et. al. [5] show an approach
for semantic version control targeting medium sized data sets supporting both
version-specific queries and cross-version queries. They use a delta-based and a
version-based store holding the latest version. By applying changesets, versions
are temporarily adapted on the fly to the version specified by the query. The
approach is limited by the number of changes that can be applied to an index on
the fly. Tzitzikas et al. [12, 8] develop storage index structures based on partial
orders that store several overlapping versions of RDF datasets. Im, Lee and Kim
[6] argue that this approach is not scalable if a query needs to fully construct
a specific version. They use a relational database to store deltas separately in
a delete and an insert table. They construct logical versions on the fly using a
SQL statement that joins the original version and the relevant delta tables. To



reduce overhead they introduce aggregated deltas. Im et. al [7] use a hypergraph
that exploits hyperedges and vertices for RDF version management. In contrast
to Tzitzikas et al. [12, 8] versions do not have to be constructed per query since
the hypergraph allows to store the relations between edges and versions. The
approach is limited in scalability since a combination of several million edges
and several thousand versions is demanding in terms of space and the addition
of a version will also be time consuming. Auer and Herre [1] focus on ontology
evolution by tracking and classifying changes made to RDF stores. Cassidy and
Ballantine [4] use a delta-based storage and a working storage backed by rela-
tional databases on both server and client that synchronize changes. Sande et
al. [9] store deltas in a quad-store. Versions can be queried by SPARQL through
virtual graphs. An interpretation layer transforms SPARQL queries to recon-
struct the versions in the quad store on the fly to a triplestore. SemVersion
[13] is a RDF-based ontology versioning system supporting historic queries. The
information about versions is hidden from SPARQL queries and the space over-
head limits scalability. Lee and Conolly [2] focus on comparing and updating
RDF graphs by generating sets of differences and propose an update ontology
for patches of RDF files. We are looking for a solution for large data sets that
recreates historic versions on-demand and therefore accept limitations regarding
global queries [10] which require the whole data set for a version to be con-
structed. Our focus is different in contrast to previous work and needs its own
optimizations which are discussed and tested in the following sections.

3 On-demand Version Reconstruction

Like Cassidy and Ballantine [4] and Graube et. al. [5] we handle versioning
on the level of complete graphs and we model the delta-sets as Linked Data.
Each version of a graph is referenced by a commit and, except the first one,
each commit references (ref) a previous commit (prev). Since several commits
can reference the same previous commit it is possible to work on branches in
parallel. Merging two branches is done by creating a commit that is referencing
two previous commits. All edges are defined by triples and as these triples belong
to the same graph, we can store them as quads and use the context information
as identifier for the triple. The commits either add or remove triples stored as
edges that reference these triples having a predicate of type add or delete. Merge
commits store only those triple modifications that are ambiguous and would lead
to conflicts. We store branches and tags as edges that link a branch URI to their
current commit. The branches and tags are referenced by an edge connecting
them to a graph. Figure 1 shows an example instance of this model.

To access historic versions we use virtual graphs that specify the version we
want to use in our query. In the following targeted query [10] we use data in a
branch called branch1 to load triples of the graph http://graph1 by accessing
the virtual graph http://graph1/branches/branch1 :



Fig. 1. delta-based storage schema

SELECT ?object WHERE {
GRAPH <http://graph1/branches/branch1> {

?subject :predicate2 ?object .
}

}

As delta-based storages store only differences between versions, we cannot
run this query directly. One way solving this issue would be to reconstruct the
data and to run the query afterwards. Another way is to adapt the query to
the actual data structure by rewriting the original query in order to use the
delta-based storage:

SELECT ?object WHERE {
GRAPH ?identifier {

?subject :predicate2 ?object .
}
GRAPH <http://graph1> {

<http://graph1/branches/branch1> versioning:references ?branchCommit .
?branchCommit versioning:hasPrevious* ?addCommit .
?addCommit versioning:adds ?identifier .
FILTER NOT EXISTS {

?branchCommit versioning:hasPrevious* ?deleteCommit .
?deleteCommit versioning:hasPrevious* ?addCommit .
?deleteCommit versioning:deletes ?identifier .

}
}

}

Like predicted by Sande et. al. [9], we measured that this query is very time
consuming because of an computational overhead for this type of queries. First,
most triple stores reconstruct the whole desired version in the first step and
then run the original query that in fact reuses only small parts of this very large
intermediate result. We solved this by giving query hints to the query engine.
Second, the arbitrary path length operators that traverse the commit graph (like



versioning:hasPrevious* ) are executed very often - once per triple per possible
solution, to check whether the binding set is part of the version. Third, the
associations between triples and versions are not cached. This is especially useful
when joins are used in queries and a triple is matched against other triples several
times.

Once per query we load the commit graph into an in-memory index which
takes few seconds for 28,000 commits. Instead of using arbitrary path length
operators we create and use our indexes to check whether the triples used in
possible results are in fact part of the specified version and the result should be
returned. Query engines of scalable triple stores work pipelined [14]. While the
first iterator is performing an index scan it sends first results to the following
iterator (e.g. a hash join). We work on chunks of up to 100 triple identifiers
for which we load the associations to commits into an index. We traverse the
commit graph once per chunk and select and return the triple identifiers that
are part of the specified version.

The proposed approach was prototypically implemented and is based on
Blazegraph (formerly Bigdata) [11], a scalable, distributed triple store which
implements the Sesame API [3]. Currently we did not automate the rewriting
process. To access historical data we implemented a custom service that is called
from queries via the SERVICE keyword as a virtual service. Since Blazegraph
contains several virtual services that extend the functionality of SPARQL, this
seemed to be an appropriate way. The service gets the version identifier from the
original query as triple patterns inside the service query and the triple identifiers
via bindings (Bindings are comparable to query parameters in SQL). For each
triple pattern we check the version association and use a hash table to cache this
information. If the triple is part of the version we return that triple identifier
as a binding to the original query that called the virtual service. The rewritten
query from the last section with our approach changes into:

SELECT ?object WHERE {
GRAPH ?identifier {

?subject :predicate2 ?object .
}
SERVICE versioning:service {

versioning:version versioning:value <http://graph1/branches/branch1> .
versioning:binding versioning:value ?identifier .

}
}

4 Performance Tests

Widely used metrics for evaluation of version control concepts are response time
and storage space consumption [5]. We measured the response time for complete
queries as well as the response time for single steps of our approach. We ran
each query 100 times and calculated average durations. First, we measured the
duration for the generation of the commit graph index which is built once per
query. Second, we measured the duration for the generation of an index storing
the relationships between commits and triple identifiers. Third, the duration and



the average path length (average number of edges traversed per triple identifier)
for the graph traversal that checks which triples are part of the specified version.
The triple store we used called the virtual service we created once per chunk of
100 triple identifiers. We measured the storage space consumption by cumulating
the file sizes of the index segments rather than calculating the number of triples.
As dataset we used the English mapping-based types of DBpedia which con-
tains 28,031,852 triples (release 2014). We generated 4 delta-based datasets with
100, 1000, 10,000 and 100,000 triples per commit. The changes were distributed
equally to the commits and the history consisted of a single timeline with one
branch. We also ran the test queries on a triple store which contained the latest
version without any version control as baseline. As test queries we loaded the
list of types assigned to Slovenia and the list of instances of type country from
the latest commit which contains all triples:

SELECT * WHERE { <http://dbpedia.org/resource/Slovenia> ?p ?o }

SELECT * WHERE { ?s ?p <http://schema.org/Country> }

Table 1 shows the disk space consumption, table 2 and 3 show the measured
durations for the test queries.

#triples/commit baseline 100 1,000 10,000 100,000

#commits - 280,319 28,032 2,804 281

Disk space consumption [MB] 2,774 11,237 10,910 10,447 10,438

Table 1. Number of commits and disk space consumption

#triples/commit baseline 100 1,000 10,000 100,000

Query response time [ms] 48 5,076 2,685 2,434 2,382

Index creation for a graph of commits [ms] 0 4,610 2,355 2,090 2,067

Index creation for a chunk of 100 triples [ms] 0 161 167 173 152

Graph traversal for a chunk of 100 triples [ms] 0 144 13 1 1

average path length 0 279,782 27,980 2,800 282

Table 2. Average durations [ms] for the first test query returning 7 results

The results show that we can run targeted queries on a delta-based storage
with on-demand creation of historic versions. The first test query uses an index
of the version-based storage of the baseline and is hundred times faster than
a delta-based storage. In the second test query a version-based storage would
be four times faster than a delta-based storage. The disk space consumption is
about four times higher than without version control. Our approach is limited
by the number of versions that increase the time spent for graph traversal and
by the size of the results or intermediate results. Global queries (like looking for



#triples/commit baseline 100 1,000 10,000 100,000

Query response time [ms] 2,105 14,094 7,508 6,878 6,689

Index creation for a graph of commits [ms] 0 4,597 2,327 2,071 2,051

Index creation for a chunk of 100 triples [ms] 0 3,752 3,564 3,878 3,620

Graph traversal for a chunk of 100 triples [ms] 0 4,386 327 44 6

average path length 0 276,515 27,629 2,768 278

Table 3. Average durations [ms] for the second test query returning 3,108 results

the average number of friends [10]) will be faster on a version-based approach.
If these query types are important, a version-based approach is preferrable over
a delta-based approach. If the number of versions used for global queries is
limited, a hybrid approach could be used or specific versions could be extracted
into additional triple stores. We did not analyze the behaviour of the approach
under a more realistic history containing several branches, merges and several
changes on the same value (e.g. same subject and predicate) as well as more
complex queries with several graph patterns.

5 Conclusion and Outlook

In this paper we present an approach for scalable semantic version control for
Linked Data based on a delta-based storage and on-demand reconstruction of
historic versions. Versions are handled on a graph level and random versions of
graphs can be accessed transparently within SPARQL queries through virtual
graphs. We showed that targeted queries on random versions that reconstruct
necessary parts of the datasets on-demand are possible. The optimization we
propose is based on the query execution order, using in-memory indexes and
caching of intermediate results, that are frequently used within a query.

There are several aspects we did not analyze yet. The index for a graph
of commits can be cached and reused for several queries to the same graph
which would save a remarkable amount of time. In our implementation we did
not operate on the internal identifiers or the storage engine but on the URIs
which have to be loaded from an additional index which leaves also room for
optimization. BlazeGraph also has an optimized storage option for statement
identifiers that might save space for the delta-based storage. The size of the
indexes that have to be traversed could also be reduced by a hybrid storage
strategy. To automate the creation of the materialized versions for a hybrid
approach a cost model is necessary to decide which versions to create. This idea
is comparable to lazy materialization of indexes for relational databases [15].
We did not implement or evaluate the creation of merge commits which involves
checking for conflicts. Yet, we focused on querying random versions of graphs in
delta-based storages but did not propose an approach to use SPARQL update
queries without a materialized version that has change listeners attached. This
is also an important feature that needs further research.



References

1. Auer, S., Herre, H.: A Versioning and Evolution Framework for RDF Knowledge
Bases. In: Virbitskaite, I., Voronkov, A. (eds.) 6th Intl. Andrei Ershov Memorial
Conference, PSI 2006. pp. 55–69. Springer Berlin Heidelberg, Novosibirsk (2006)

2. Berners-Lee, T., Connolly, D.: Delta: an ontology for the distribution of differences
between RDF graphs (2001), http://www.w3.org/DesignIssues/Diff

3. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In: Prcoeedings of the First In-
ternational Semantic Web Conference. Springer Berlin Heidelberg, Sardinia (2002)

4. Cassidy, S., Ballantine, J.: Version Control for RDF Triple Stores. In: Filipe, J.,
Shishkov, B., Helfert, M., Maciaszek, L. (eds.) Proceedings of the 2nd International
Conference on Software and Data Technologies. pp. 5–12. Springer-Verlag Berlin
Heidelberg, Barcelona (2007)

5. Graube, M., Hensel, S., Urbas, L.: R43ples: Revisions for Triples - An Approach
for Version Control in the Semantic Web. In: Knuth, M., Kontokostas, D., Sack,
H. (eds.) 1st Workshop on Linked Data Quality co-located with 10th International
Conference on Semantic Systems. CEUR Workshop Proceedings, Leipzig (2014)

6. Im, D.H., Lee, S.W., Kim, H.J.: A Version Management Framework for RDF Triple
Stores. International Journal of Software Engineering and Knowledge Engineering
22(01), 85–106 (Feb 2012)

7. Im, D.H., Zong, N., Kim, E.H., Yun, S., Kim, H.G.: A hypergraph-based storage
policy for RDF version management system. 6th International Conference on Ubiq-
uitous Information Management and Communication - ICUIMC ’12 p. 1 (2012)

8. Psaraki, M., Tzitzikas, Y.: CPOI : A Compact Method to Archive Versioned RDF
Triple-Sets (Ic), 1–25 (2010)

9. Sande, M.V., Colpaert, P., Verborgh, R., Coppens, S., Mannens, E., Walle, R.V.D.:
R & Wbase : Git for triples. In: Bizer, C., Heath, T., Berners-Lee, T., Hausenblas,
M., Auer, S. (eds.) Proceedings of the WWW2013 Workshop on Linked Data on
the Web. pp. 1–5. CEUR Workshop Proceedings, Rio de Janeiro (2013)

10. Stefanidis, K., Chrysakis, I., Flouris, G.: On Designing Archiving Policies for Evolv-
ing RDF Datasets on the Web pp. 43–56 (2014)

11. Thompson, B., Personick, M., Cutcher, M.: The Bigdata RDF Graph Database.
In: Wagner, A., Hose, K., Schenkel, R. (eds.) Linked Data Management, chap. 8,
pp. 193–237. CRC Press, Boca Raton (2014)

12. Tzitzikas, Y., Theoharis, Y., Andreou, D.: On storage policies for Semantic web
repositories that support version. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) 5th European Semantic Web Conference. pp. 705–719.
Springer Berlin Heidelberg, Tenerife (2008)

13. Völkel, M., Groza, T.: SemVersion: An RDF-based ontology versioning system. In:
Proc. 5th IADIS International Conference on WWW/Internet. IADIS Press (2006)

14. Wang, X., Tiropanis, T., Davis, H.C.: LHD: Optimising Linked Data Query Pro-
cessing Using Parallelisation. In: Bizer, C., Heath, T., Berners-Lee, T., Hausenblas,
M., Auer, S. (eds.) Proceedings of the WWW2013 Workshop on Linked Data on
the Web. vol. 996. CEUR Workshop Proceedings, Rio de Janeiro (2013)

15. Zhou, J., Larson, P.A., Elmongui, H.G.: Lazy Maintenance of Materialized Views.
In: Proceedings of the 33rd international conference on Very large data bases. pp.
231–242. VLDB Endowment, Vienna (2007)


