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Abstract. Several logical formalisms have been proposed in the lit-
erature for expressing structural and semantic integrity constraints of
Linked Open Data (LOD). Still, the integrity of the datasets published
in the LOD cloud needs to be improved, as published data often violate
such constraints, jeopardising the value of applications consuming linked
data in an automatic way. In this work, we propose a novel, fully auto-
matic framework for detecting and repairing violations of integrity con-
straints, by considering both explicit and implicit ontological knowledge.
Our framework relies on the ontology language DL-Lites for express-
ing several useful types of constraints, while maintaining good computa-
tional properties. The experimental evaluation shows that our framework
is scalable for large datasets and numbers of invalidities exhibited in re-
ality by reference linked datasets (e.g., DBpedia).
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1 Introduction

Linked Open Data (LOD) published on the Web of Data are often associated
with various structural (e.g., primary key) and semantic (e.g., disjointness) in-
tegrity constraints. These constraints are usually expressed in ontological [19, 22]
or database [10] logic frameworks. However, LOD sources do not impose such
constraints a priori, when data are created, so violations of integrity constraints
must be detected and repaired a posteriori. As have been reported in [15], ref-
erence LOD sources, such as DBpedia! or LinkedGeoData?, exhibit millions of
violations (this is also verified by our own experiments — see Table 3).

In most of the cases, LOD are manually repaired by their curators or by
their consuming applications, using, at best, diagnosis approaches or tools (e.g.,
[16,19,22], Stardog®, QUONTO [1] etc.) for detecting violations of various types
of integrity constraints. Obviously, the manual repair of millions of violations
is a time-consuming and error-prone task, a fact that seriously limits the data
quality of the available LOD sources. Thus, a major challenge is to automatically

! http://dbpedia.org
2 http://linkedgeodata.org
3 http://stardog.com/
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detect and repair violations of both structural and semantic integrity constraints,
especially when ontology reasoning is involved (i.e., detect and repair violations
of constraints like disjointness, functional constraints etc., taking into account
logical inference and its interaction with those constraints).

In this work, we propose a novel automatic framework for assisting cura-
tors in the arduous task of enforcing integrity constraints in large datasets. We
provide an efficient methodology for detecting invalidities (diagnosis), as well
as for automatically resolving them (repairing), in a manner that has minimal
impact in terms of lost knowledge on the Knowledge Base (KB), according to
the principles set out in earlier works [2, 8].

We consider detecting and repairing of invalidities attributed to constraints
of a purely logical nature (e.g., class disjointness). Constraints are expressed in
the language DL-Lite [4], which belongs to the DL-Lite family of ontology
languages that forms the foundation of the popular OWL 2 QL* language. The
choice of DL-Lite 4 was motivated by the fact that it is arguably rich enough to
capture several useful types of integrity constraints that are used in practice in
LOD datasets, and their interaction with implicit knowledge, while at the same
time supporting efficient query answering [4].

The main contributions of our work are the following:

— We propose a framework for detecting and automatically repairing invalidi-
ties, for constraints that are expressed in D L-Lite 4, namely: concept /property
disjointness constraints, property domain/range disjointness constraints and
functional constraints. Diagnosis of invalidities related to both explicit and
inferred constraints can be performed in linear time with respect to the
dataset size, whereas repairing can be performed in polynomial time with
respect to the number of invalidities.

— We have implemented an operational repairing system for real-world ap-
plications. Our implementation is modular, allowing each component to be
implemented in a manner independent to the other components. This way,
we managed to reuse off-the-shelf, state-of-the-art tools for many of the com-
ponents, such as reasoning, storage, query answering, etc.

— We have experimentally evaluated the scalability and performance of our
algorithms, using real and synthetic datasets. The main conclusion drawn is
that our framework can scale for very large datasets, such as DBpedia, as
well as for large numbers (millions) of invalidities.

The rest of the paper is structured as follows: in Section 2, we motivate the use
of the DL-Lite 4 language for this problem and explain its features; in Section 3,
we describe our framework and explain how we address the problems of detecting
and resolving invalidities; Section 4 describes our algorithms for diagnosis and
repairing; in Section 5, we describe our experimental evaluation and report on
the main conclusions drawn; finally, Section 6 compares our contributions to the
related work and Section 7 concludes.

4 http://www.w3.org/TR/owl2-profiles/#0WL_2_QL
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2 Preliminaries

In DL-Litey [4], concept expressions, hereafter expressed by the letter C', and
role expressions, denoting binary relations between concepts and hereafter ex-
pressed by the letter R, are formed according to the following syntax, where A
denotes an atomic concept and P denotes an atomic role:

C— A|3R R— P| P
A DL-Lite 4 TBox consists of axioms of the following form:

Cl E 02 Cl E ﬁCQ Rl E R2 Rl E ﬁRQ (funct R)
A DL-Lite s ABox is a finite set of assertions of the following form:
A@)  Pley)

In order to guarantee good complexity results for reasoning tasks like con-
sistency checking, DL-Lite o imposes a limitation in the TBox, namely that a
functional role cannot be specialized by using it in the right-hand side of a role
inclusion assertion. This means that if a DL-Lite 4 TBox contains an axiom of
the form R’ C R, then it cannot contain (funct R) or (funct R™) [5]. Note that
DL-Lite4 assertions can be also expressed in OWL syntax.

DL-Lite 4 follows the standard reasoning semantics of DLs [4-6]. A DL-Lite 4
KB K = (T, A) is called inconsistent iff T U A is inconsistent (in the standard
logical sense). It is called consistent otherwise.

With respect to performance, DL-Lite 4 has the important property of FOL-
Reducibility [5], which essentially means that one can reduce the process of in-
consistency checking and query answering to the evaluation of First-Order Logic
(FOL) queries over the ABox, considered as a database; this makes both tasks
tractable (in LOGSPACE with respect to the data) [5].

3 Diagnosis and Repair

3.1 Constraints in DL-Lite 4

For the purposes of diagnosis and repair, we can distinguish three different types
of DL-Lite 4, TBox axioms, namely positive inclusions (of the form C; T Cs,
Ry C Ry), negative inclusions (of the form C; C —Cy, Ry C —Rs) and function-
ality assertions (of the form funct R). This distinction is important for diagnosis
and repair due to the fact that the ABox is viewed under the Open World As-
sumption (OWA), which is considered for Description Logics and the ontology
languages of the Semantic Web in general (such as OWL — but see [22] for an
effort to understand OWL under the Closed World Assumption, and the NRL
language® for a similar analysis). Due to the OWA, a TBox consisting of positive
inclusions only can never lead to an inconsistent KB; therefore, the only interest-
ing (from the diagnosis perspective) constraints are the negative inclusions and
the functionality assertions. In the following, the term constraint will be used to
refer to negative TBox inclusions and functionality assertions.

® http://www.semanticdesktop.org/ontologies/2007/08/15/nrl
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Despite that, positive inclusions are still relevant for the diagnosis process,
because they may generate inferred information that should be taken into ac-
count. As an example, assume that the TBox contains the constraint A; C —A3
and the axiom Ay T Az (where Ap, As, A3 are atomic concepts), and suppose
that the ABox contains both A;(z) and As(z) for some x. Even though no
constraint is explicitly violated, the combination of the ABox contents with the
aforementioned TBox would lead to inferring both As(z) and —As(z), i.e., an
invalidity. Note that the positive inclusion Ay C Aj, albeit not violated itself,
plays a critical role in creating this invalidity.

Rather than capturing such invalidities via the obvious method of computing
the closure of the ABox, it is more efficient to identify the constraints implied
by the explicitly declared constraints and the positive inclusions in the TBox. In
our example, we could identify that the constraint A; C — A5 is a consequence of
the two explicit axioms in the TBox, so the presence of A;(x) and As(x) violates
this implicit constraint.

This process amounts to computing all explicit and implicit constraints of
the TBox (denoted by cln(T)) [5], i.e., the set of all the functionality assertions
and the explicit and implicit negative inclusions present in the TBox. In fact,
it has been proven that, in order to check the consistency of a DL-Lite 4 KB,
one has to take into account only the constraints in ¢ln(7) [6]. More formally, a
DL-Litey KB K = (T, .A) is inconsistent iff there is a constraint ¢ € ¢ln(7T) and
a pair of assertions ay, as € A such that the DL-Lite 4 KB K’ = ({c}, {a1,a2}) is
inconsistent [6]. In the following, the triple (a1, ag, ¢) will be called an invalidity
of K. It is obvious by the above result that in order to render a KB consistent,
for each invalidity (a1, as,c), one of a1, as has to be removed from the ABox.

Ezample 1. Consider the following DL-Lite 4 KB K = (T, A):

T: {(funct Pl)7 A1 E _|A2, 3P2 E Al}
A={A1(x1), As(x1), Pa(21,91), P1(23,92), Pi(23,93), Pi(23,94) }

The closure of negative inclusions and functionality assertions of T (cln(T)),
computed in the way that was presented in [6], is the following:

cln(T) - {(funct Pl), A1 E _\AQ, EIPQ E _|A2}

From the computed closure, we can easily deduce that (A;(z1), Aa(x1), 47 C
—A5) is one of the invalidities in the KB. O

3.2 Approach for Diagnosis and Repair

Diagnosis amounts to identifying the invalidities, i.e., the data assertions and
the (possibly implicit) constraint that are involved in an invalidity. Using the
property of FOL-Reducibility, the identification of invalidities in a DL-Lite4
KB can be reduced to the execution of adequately defined FOL queries over a
database [5] — see also Table 1. Exploiting this property, diagnosis is performed
by simply executing the queries corresponding to the constraints in cln(7), to
get all the invalidities of the KB under question.
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Repairing is based on the aforementioned property that restoring consistency
requires eliminating all invalidities from a KB via removing either one of the two
data assertions that take part in each invalidity; formally:

Definition 1. Given a DL-Litey KB K = (T, A) a repairing delta of K is a
selection of data assertions RD, such that K' = (T, A\ RD) is consistent. A
repairing delta RD is called minimal iff there is no repairing delta RD’, such
that RD' C RD. g

The notion of minimality is important, as many authors have proposed the
identification of minimal repairing deltas (under different forms of minimality)
as one of the main concerns during repairing [2, 8]; as is obvious by Definition 1,
minimal repairing deltas correspond to subset repairs in the terminology of [2].

Identifying the minimal repairing delta(s) is not trivial. The computation
of such delta(s) is based on the fact that constraints expressed in DL-Litey
allow the presence of interrelated invalidities, i.e., data assertions being involved
in more than one invalidities. This implies that potential resolutions of such
invalidities coincide, and that there exist resolutions which resolve more than
one invalidity at the same time.

To help in the process of identifying the minimal repairing delta, the diag-
nosed invalidities are organized into an interdependency graph, which is used to
identify assertions involved in multiple invalidities. Formally:

Definition 2. The interdependency graph of a DL-Litey KB K = (T, A) is an
undirected labelled graph IG(K) = (V,E) such that V = {a | (a1,a2,¢) is an
invalidity of I and a = a1 or a = az} and E = {(a1,a2,¢) | (a1,az2,¢) is an
invalidity of K}. O

The use of the interdependency graph as a structure to represent the inva-
lidities that are diagnosed in the KB gives the ability to get a better grasp of
the form and complexity of the invalidities and their interrelationships, as well
as to use methods and tools that come from graph theory in order to facilitate
the repairing process. Note that an interdependency graph is different from a
conflict-graph [9], as the interdependency graph does not contain every assertion
in the ABox, having an obvious impact in the algorithm time-cost.

In terms of the interdependency graph, resolving an invalidity amounts to
removing one of the two vertices that are connected by the edge representing this
invalidity. Therefore, a minimal repairing delta is essentially the minimal vertex
cover of the corresponding interdependency graph, which reduces the problem
of repairing to the well-known problem of VERTEX COVER [11]. This fact forms
the basis of our algorithms presented in the next section.

4 Algorithms for Diagnosis and Repairing

4.1 Diagnosis Algorithm

The diagnosis algorithm is used to detect all the invalidities in a KB, and provide
them as output in the form of an interdependency graph. The steps needed to
perform diagnosis are illustrated in Algorithm 1.
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Algorithm 1 Diagnosis(K)

Input: A DL-Lite4s KB K =
Output: The interdependency graph of K, IG(K) =
1:

9:
10:
11:

V,E+ 0
Compute the cln(T)
for all c € cln(T) do
ge < 6(c)
Ansg, + q

for all (a1, a2) € Ans,, do

V «— VU{G,1,CL2}
E + EU{(a1,a2,¢)}
end for
end for

return IG(K) = (V, E)

(T, A)

(V. E)

The diagnosis algorithm starts by computing the closure c¢ln(7T) of negative
inclusions and functionality assertions of the TBox (line 2 of Algorithm 1), in
order to get the full set of constraints that need to be checked over the ABox.
Each of the constraints in ¢ln(7T) is then transformed to a FOL query (line 4)
using predefined patterns, as defined in Table 1 (see also [5]), whose answers
determine the invalidities. These queries are executed over the ABox in line 5
(Ansg, contains pairs (ai, ag) such that (a1, a2, c¢) is an invalidity). Note that
these FOL queries can be easily expressed as SPARQL queries over an ABox
stored in a triple store, so that off-the-shelf, optimized tools can be used for
query answering. The last step of the algorithm encodes the invalidities in the
form of an interdependency graph (lines 6-9) as specified in Definition 2.

[Constraint (c)

| Transformation (4(c))

|

c=A1 C -4 6(c) = q(z) « Ai(z), A2(x)
¢c=A; C 3P (or c =3P C A1) |§(c) =q(z) « Ai(z), Pi(z,y)
¢c=A, C 3P (or c=3P C —A41)|d(c) = q(z) + Ai(z), Pi(y, )
c=3P C -3, 0(c) = q(z) + Pi(z, 1), Pa(z,y2)
c=3P C 3P, §(c) = q(z) < Pi(y1, ), P2(yz2, )
c=3P C-3P; 6(c) =q(=) < Pi(z,41), Pa(y2, @)
c=PiC P (orc=P C=Py) [6(c) =q(z,y) + Pi(z,y), P(z,y)
c=P E Py 6(c) = q(z,y) + Pi(z,y), P (y,2)
¢ =(funct P) 0(c) = q(x) « P(z,y1), P(x,y2)
¢ =(funct P7) d(c) = q(x) + P(y1,x), P(y2, )

Table 1: Transformation of DL-Lite 4 constraints to FOL queries.

The following example illustrates the diagnosis algorithm in action:
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Ezample 2. Consider the KB K and the cln(7) of Example 1. The corresponding
FOL queries to check for invalidities, according to Table 1 are:

q1(x) <P (z,y) NPi(z,2) Ny # 2
g2(x) Ay (z) N\ As(x)
q3(x) <Pa(x,y) A Az(w)

From the execution of the above three queries over the ABox of Example 1, we
get the following answers (each of which corresponds to an invalidity):

Ansg, ={(P1(x3,v2), Pi(x3,y3)),
(Pr(w3,92), P1(73,94)),
(Pr(z3,y3), Pr(23,94)) }

Ansg, ={(A1(z1), A2(71))}

Ansg, ={(A2(x1), Po(x1,91))}

Figure 1 shows the corresponding interdependency graph. ad

funct(P;)

3P2;_‘A2

funct(P,)

funct(P,;)

Fig. 1: Example of an interdependency graph.

As already mentioned, computing cln(7) (line 2) is in LOGSPACE with re-
spect to the data [5], whereas the remaining steps of the algorithm are linear
with respect to the invalidities and the constraints in cln(7).

4.2 Repairing Algorithm

The repairing algorithm (Algorithm 2) takes as input the interdependency graph
and is responsible for automatically repairing the KB. As explained in Sec-
tion 3.2, the main idea behind the repairing algorithm is the computation of the
vertex cover of the interdependency graph.

To do so, the repairing algorithm first breaks the interdependency graph
IG(K) into the set of its connected components (line 2). Note that the compu-
tation of the vertex cover for each of the connected components is independent
to the others, and can be parallelized for better performance.

This computation (vertex cover) is performed in lines 3-5. Recall that VERTEX
COVER is a well-known NP-COMPLETE problem [20], but many approximation
algorithms have been proposed, such as the 2-approzimation algorithm [20], or
the approximation algorithm presented in [14].
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Algorithm 2 Repair(IG(K), A)

Input: An interdependency graph IG(K) and a DL-Lite4a ABox A
Output: K in a consistent state

1: repairing_delta < 0
CC <+ ConnectedComponents(I1G(K))
for all cc € CC do

repairing_delta < repairing_delta U GreedyV ertexCover(cc)

end for
A < A\ repairing_delta

For our implementation and experiments below, we chose (for efficiency) to
compute the vertex cover in a greedy manner, as presented in [20] (but any
other algorithm for VERTEX COVER could be used instead). Greedy means that,
in each step of the computation, the vertex that is chosen to be included in
the cover is the vertex with the highest degree (in other words, the invalid
data assertion that is part of the most invalidities). If there exist more than
one vertices with the same degree, one of those vertices is arbitrarily chosen;
this arbitrary choice avoids the need for complex and time-consuming selection
conditions and guarantees that a single vertex cover is returned by the algorithm.
This computation is performed in the GreedyVertexCover subroutine, which is
omitted for brevity.

The output of lines 3-5 (repairing_delta) contains the data assertions to be
removed from the dataset in order to render it valid. The actual repairing is
performed in line 6, through a single SPARQL-Update statement® requesting
the deletion of all the assertions in the repairing delta.

The correctness of our algorithms is guaranteed by our analysis in Section 3
and the results in [6]. The computational complexity of Algorithm 2 is dominated
by the computation of the vertex cover, which is proven to achieve O(logn)
approximation of the optimal solution (where n is the number of vertices of the
graph), with a time complexity of O(nlogn) [20].

The following concludes the running example for our framework:

Ezxample 3. Consider the interdependency graph of Figure 1. The repairing al-
gorithm will compute the following repairing delta:

repairing-delta = {As(x1), P1(23,y2), P1(23,93)}
After the application of the repairing delta, the ABox A is in the following state:
A =A{A1(z1), Pa(z1,51), Pr(73,94)}
which can be easily verified to be a consistent KB with respect to 7. a

5 http://www.w3.org/TR/2013/REC-sparqlll-update-20130321/
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5 Experimental Evaluation

5.1 Overview of Experimental Evaluation

We have implemented our framework as a Java web application. More specifi-
cally, we have created a system that uses a triple store, which lies on a Virtuoso
Open-Source Edition Server” version 07.10, as a storage for the ABox instances
and as an endpoint for query answering. For storing the set of constraints, we
used a main memory model, which, along with the communication with the Vir-
tuoso Server, are handled by the Apache Jena® framework. Apache Jena is also
used for the various reasoning tasks (e.g., computation of cin(7)). The system
used for the experiments was an AMD Opteron 3280, 8-core CPU with 24GB
RAM (we allocated 8GB for the JVM), running Ubuntu Server 12.04.

We have performed several experiments in order to measure the performance
and scalability of our framework, as well as to determine the decisive factors
for the performance of the different phases of the process. More specifically, we
performed three sets of experiments: (7) the first set verified that our framework
can handle millions of violations in real-world ABoxes that scale up to more
than 2 billion triples, considering hundreds of thousands of constraints; (i¢) the
second set of experiments quantified the impact of ABox size on performance, by
using real Thoxes with constraints and synthetic ABoxes of varying sizes; and,
(#4i) the third set quantified the impact of the number of invalid data assertions
on performance, by using real TBoxes with constraints and synthetic ABoxes
with varying number of invalid data assertions.

In all of the above sets of experiments, we measured the time needed to
run the diagnosis algorithm and produce the interdependency graph (diagnosis
time), the time needed by the repairing algorithm to compute the repairing delta
(repair computation time) and the time needed to apply this repairing delta on
the dataset, using a SPARQL-Update query (repair application time). All of our
experiments were run in sets of 5 hot runs and the average times were taken.

5.2 Real and Synthetic Datasets Used

For the TBox, we used two versions (3.6, 3.9) of the DBpedia ontology, which
is a reference dataset for LOD, already containing different amounts and types
of constraints; this is illustrated in Table 2, which shows information on how
many functional and (concept/domain/range) disjointness constraints exist in
the original TBox, as well as how many of these exist in the closure of negative
inclusions (cIn(7T))?, and how many queries need to be executed for diagnosis.
Property disjointness is the only type of constraint supported by DL-Lite 4 that

" http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/

8 http://jena.apache.org/

9 The big difference in the amount of disjointness constraints between the original
DBpedia 3.9 and its closure is caused by the many positive inclusions and their
interaction with the negative inclusions during the computation of the closure.
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TBox version Constraints Constraints in cin(7) Queries
Functional|Disjointness|Functional | Disjointness
DBpedia 3.6 18 0 18 0 18
DBpedia 3.9 26 17 26 323.389 | 323.415

Table 2: Constraints in DBpedia versions 3.6 and 3.9.

was not considered in our experiments, because we were unable to find any real
TBoxes with this constraint (so it seems irrelevant for practical applications).

For running our experiments, we used the above TBoxes, together with both
real and synthetic ABoxes. Real ABoxes were used to evaluate our system in
realistic conditions, whereas synthetic ABoxes allow controlling the important
factors for the performance of our algorithm, such as size and number of inva-
lidities, and the appropriate evaluation of their effect on performance.

Real ABoxes were taken by the two DBpedia versions corresponding to the
two aforementioned TBoxes, stored in a local Virtuoso instance. The DBpedia
3.6 ABox contains around 541 million triples, whereas the DBpedia 3.9 ABox
contains more than 2 billion triples.

To generate synthetic ABoxes, we started from each TBox and an empty
ABox, and added data and property instances of the classes/properties of the
corresponding TBox, making sure to include some invalid pairs of assertions as
well (taking into account the constraints). For the first set of generated ABoxes
we created a fixed number of invalid data assertions (10K) and a varying ABox
size (500K-5M triples, with a step of 500K triples). The second set of ABoxes
had a fixed size (10M triples) and a varying number of invalid data assertions
(50K-500K, with a step of 50K). The above two sets of ABoxes were used in the
second and third set of experiments respectively.

5.3 Scalability and Performance Evaluation

The first set of experiments aimed at verifying the scalability of our framework
in real-world settings, with ABoxes of billions of triples and with large numbers
of constraints (up to hundreds of thousands). For this purpose, we used DBpedia
versions 3.6 and 3.9 (TBox and real ABox). For each version, we measured the
diagnosis time (identifying invalidities and creating the interdependency graph),
the repair computation time (computing the repairing delta), the repair applica-
tion time (applying the repairing delta) and the total time (sum of the above).
We also measured the number of invalid data assertions that appear in the
datasets, to see how well our framework scales with respect to that, as well as
the size of the repairing delta, to verify that a manual repair by the curator
would be infeasible in this context.

The results of this set of experiments are illustrated in Table 3. In the table,
IDA denotes the number of invalid data assertions, Delta is the size of the repair-
ing delta (in triples), ¢4 denotes the diagnosis time, ¢, .. the repair computation
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Version lTripleslIDA lDelta ltd ltr,c, ltr,a, t

DBpedia 3.6/541M |1.109 749 2.440 402 219 3.061
DBpedia 3.9|>2B |1.020.199(717.798|9.610.319(27.190.191|1.415.329(38.215.839
Table 3: Experiments performed on real datasets.

time, t,,. the repair application time and ¢; the total time needed for diagnosis
and repairing. All times are in milliseconds.

The results show that our framework is scalable, for both large datasets and
big numbers of invalid data assertions, and that it can be applied in real-world
settings. It also proves that already deployed and massively used reference KBs,
such as DBpedia, don’t have sufficient mechanisms for preventing the introduc-
tion of invalid data or for detecting and repairing such invalid data. Moreover,
our experiments illustrate that the number of invalid data assertions and the
size of the repairing delta would be prohibitive for manual repairing.

Our second set of experiments evaluated the effect of ABox size on perfor-
mance using synthetic ABoxes of varying sizes and a fixed number of invalid data
assertions. The results of this set of experiments appear in Figure 2. Note that
some of the curves in the graphs are difficult to distinguish, either because they
are too close to the start of the x-axis (e.g., the repair computation time and
the repair application time in the left figure), or because they are too close with
another curve (e.g., the diagnosis time and the total time in the right figure).
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Fig. 2: Performance for DBpedia 3.6 (left) and 3.9 (right) with 10K invalidities.

From the results of this set of experiments, we conclude that diagnosis time
grows linearly with respect to the ABox size and that it is the dominating factor
of the total time, when the number of invalid data assertions is fixed. This is
an important conclusion because it shows that, overall, our framework scales
linearly with respect to the dataset size.

The third set of experiments evaluated the effect of the number of invalidities
using ABoxes of fixed size, but with a varying number of invalid data assertions.
The results of this set of experiments are illustrated in Figure 3.
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From these results, we can conclude that the number of invalid data asser-
tions has no immediate impact on the diagnosis time. On the contrary, it is
the main impact factor of the repair computation time. That was an expected
behaviour, as the repair computation is done by computing the vertex cover of
the interdependency graph. A bigger number of invalid data assertions leads to
a bigger graph and this leads to a more costly computation of the vertex cover.

Another significant impact factor of the repair computation time is the
amount of interdependencies in the interdependency graph. We can see that
the repair computation time increases with a higher rate in the left graph of
Figure 3 than in the right one, which can be explained by the fact that the DB-
pedia 3.6 TBox contains only functional constraints, which form cliques in the
interdependency graph (thus, more interdependencies), whereas the DBpedia 3.9
TBox contains mainly disjointness constraints, which cause less interdependen-
cies, therefore less “touching” edges in the interdependency graph.

Moreover, the repair application time seems to be negligible in all of the
experiments. This is due to the fact that the repair application is performed
by executing a single SPARQL-Update query requesting the deletion of all the
triples in the repairing delta, which is very efficient due to the optimizations for
batch operations of Virtuoso.

z ---Diagnosis time

#—Repair computation

Time in ms (x1074)

5 . 800 -~ Repair application
==Diagnosis time

600 —Total time
4—Repair computation

** ‘Repair application

—Total time

50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
Number of invalid data assertions (x10%3 triples) Number of invalid data assertions (x10%3 triples)

Fig. 3: Performance for DBpedia 3.6 (left) and 3.9 (right) with 10M triples.

The last significant conclusion comes from the comparison of the times mea-
sured for the two different DBpedia TBox versions. We see that the diagnosis
times for version 3.9 are two orders of magnitude higher compared to the respec-
tive times of version 3.6. This is due to the fact that the closure of version 3.9
contains 323.415 constraints, whereas the closure of version 3.6 only 18; more
constraints require the generation of more queries to be executed by the diagnosis
algorithm, eventually causing this big difference in the measurements.

The following main conclusions can be distilled from our evaluation:

— Diagnosis can be performed in linear time with respect to the ABox size.
— Repair computation can be performed in polynomial time with respect to
the number of invalid data assertions that appear in the dataset.
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— Our implementation enjoys a decent performance in real-world settings with
large datasets, numbers of constraints and invalidities, being able to repair
the huge DBpedia 3.9 (>2B triples) in about 10 hours, which is a reasonable
amount of time, given that repairing is expected to be an offline process.

It should be noted that the experimental evaluation of the only other work
in the literature that performs automated repairing of inconsistent DL-Lite4
KBs ([18] — see Section 6), only considers datasets of size up to 30.000 triples,
whereas we consider datasets of up to 5 orders of magnitude larger; thus, the
results are not comparable.

6 Related Work

The problem of inconsistencies appearing in KBs can be tackled either by provid-
ing the ability to query inconsistent data and get consistent answers ( Consistent
Query Answering - CQA) [3], or by actually repairing the KB, which leads to a
consistent version of it [12]. Both these approaches have attracted researchers’
attention, mostly in the context of relational databases and, lately, in the context
of linked data and ontology languages as well.

In the context of relational databases, CQA has been studied in various
works dealing with different classes of conjunctive queries and denial constraints,
mainly key constraints (e.g., [13,23]). These works underline the main advan-
tages of using First-Order query rewriting for the validation of integrity con-
straints. Note that CQA techniques systematically drop all information involved
in a constraint violation, whereas repairing techniques, like ours, make explicit
decisions on what to keep and what to drop, in accordance with the principles
set out in [2], that require preserving as much information as possible.

Different semantics have been studied for the repairing of inconsistent re-
lational databases, considering different kinds of constraints. For example, [9]
studied the problem of repairing by allowing only tuple deletions and, in this
way, resolving violations of denial constraints and inclusion dependencies, which
is a more expressive set of constraints than the one we consider in this work.
However, as proven in [9], the unrestricted combination of those constraints leads
to intractability issues.

In the context of linked data and the corresponding languages and technolo-
gies, there has been research on the topic of using ontological languages to encode
integrity constraints (ICs) that must be checked over a dataset. In [22], the au-
thors present a way to integrate ICs in OWL and they show that IC validation
can be reduced to query answering, for integrity constraints that fall into the
SROZ DL fragment. A similar approach has been followed in [19]. In [16], the
presented approach integrates constraints that come from the relational world
(primary-key, foreign-key) into RDF and provides a way to validate these con-
straints. IC validation is also an important part of some of the current OWL
reasoners, such as Stardog'®. The above approaches address, essentially, only

19 http://stardog. com/
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the KB satisfiability problem and do not consider detection and repairing of
invalidities.

In the field of diagnosis for DL-Lite KBs, there has been some work regarding
inconsistency checking. The DL-Lite reasoner QUONTO [1] has the ability
to check the satisfiability of a DL-Lite4 KB. However, it does not detect the
invalid data assertions in the ABox, neither repairs it. A problem very similar
to repairing (but in a different setting) is addressed in the context of DL-Lite
KB evolution (e.g., [7], [21]), where the objective is to identify the minimal
set of assertions to remove in order to render a DL-Lite KB consistent during
evolution.

Recently, there has also been some research on CQA for inconsistent knowl-
edge bases expressed in Description Logic languages, using query rewriting tech-
niques. For example, [17] deals with different variants of inconsistency-tolerant
semantics to reach a good compromise between expressive power of the semantics
and computational complexity of inconsistency-tolerant query answering.

Finally, [18] is (to our knowledge) the only work addressing the automatic
repairing of an inconsistent DL-Lite 4 KB, and thus the closest to our work. It
is based on the inconsistency-tolerant semantics studied in [17] and resolves each
invalidity by removing both data assertions that take part in it. On the contrary,
our repairing algorithm considers the removal of only one of two involved data
assertions. Thus, [18] removes more information than necessary from the original
KB. In addition, the work of [18] has only been evaluated with datasets that are
unrealistically small (up to 30.000 triples).

7 Conclusion and Future Work

We presented a novel, fully automatic and modular diagnosis and repairing
framework, which can be used on top of already deployed datasets to assist
the curators in the task of enforcing the validity of logical integrity constraints,
taking into account logical inference, in order to maintaining their consistency.
Our experimental evaluation showed that our framework is scalable for large
dataset sizes, often found in real reference linked datasets such as DBpedia.

As future work, we will try to improve the scalability properties of our al-
gorithms, possibly using a parallel implementation relying on the MapReduce
model. In addition, we will consider different models of interaction with the cu-
rator, to allow him to influence the repairing process (e.g., via user guidelines
or preferences) without being overwhelmed with the complete set of invalidities;
the ultimate goal is to develop an interactive repairing process that will com-
bine the quality of manual curation with the efficiency of automatic repairing.
Another possible extension is to experiment with more LOD datasets, and pro-
vide a comprehensive study of the number and types of violations that exist in
different popular datasets.
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