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Abstract. Knowledge graphs encode semantic knowledge that can be exploited
to enhance different data management tasks, e.g., query answering, ranking, or
data mining. We tackle the problem of predicting interactions between drugs and
targets, and propose esDSG, an unsupervised approach able to predict links from
subgraphs that are not only highly dense, but that comprise both similar drugs and
targets. The esDSG approach extends a state-of-the-art approximate densest sub-
graph algorithm with knowledge about the semantic similarity of the nodes in the
original graph, and then predicts potential novel interactions from the computed
dense subgraph. We have conducted an initial experimental study on a benchmark
of drug-target interactions. Our observed results suggest that esDSG is able to
identify interactions in graphs where existing approaches cannot perform equality
well. Further, a large number of esDSG predictions can be validated using exter-
nal databases as STITCH1 and Kegg2. These results, although initial, reveal how
semantics in conjunction with topological information of the knowledge graph
may have a great impact on pattern discovery tasks.

1 Introduction

Knowledge graphs are networks of semantically related concepts, described in terms
of attributes, types, and relationships. For example, biomedical knowledge graphs rep-
resent relationships among drugs, targets, side effects, and so on. Exploring these se-
mantically rich networks can lead to novel discoveries [3], e.g., interactions between
drugs and targets, or drug side effects. We focus on the problem of suggesting novel as-
sociations between concepts from knowledge graphs where concepts of the same type
are characterized by similarity measures. We apply our approach to predict drug-target
interactions; however, the approach is general enough to be used in other domains.

Different approaches have been proposed to predict interactions in networks [1, 4,
5, 10, 14, 15]; these approaches have been applied to drug-target graphs, where edges
between drugs and targets represent drug-target interactions, and drug-drug and target-
target similarity functions are defined. The prediction hypothesis is that similar drugs
interact with the same targets, and similar targets interact with the same drugs [4]. The
main challenge addressed by existing approaches is the development of strategies that
allow for detecting portions of the network where novel predictions can be suggested.
To illustrate the problem of suggesting drug-target interactions, consider Figures 1(a),

1 http://stitch.embl.de/
2 http://www.genome.jp/kegg/
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Fig. 1: Ion Channel dataset, representing known interactions between targets (yellow)
and drugs (green). Predicted interactions are shown in red-dashed lines.

(b), and (c). Figure 1(a) visualizes the network of drug-target interactions of Ion Chan-
nels in the dataset studied by Ding et al. [3]; drug-drug and target-target relationships
are not drawn. To avoid the pair-wise comparison of all the drugs and targets in the
graph, existing approaches limit the search to dense portions of the graph that com-
prise both similar drugs and similar targets. For example, the semEP [10] approach
represents the network of drug-target interactions as a bipartite graph, and partitions
the edges (interactions) of the graph according to a density function that measures how
similar are the drugs and targets that are placed in one partition. Further, the number
of interactions between drugs and targets in each partition are taken into account by
this measure. semEP is able to explore portions of the search space and suggest pre-
dictions that other state-of-the-art approaches do not discover. However, in graphs such
as the one reported in Figure 1(a), semEP and state-of-the-art approaches do not ex-
hibit as good behavior as in other networks. The Ion Channel graph is composed of 414
nodes and 1,476 edges. It also has three connected components; two of these compo-
nents are comprised of five nodes and three edges. The rest of the nodes are part on
the main connected component, from which the dense subgraph of the original network
can be computed; this dense subgraph is presented in Figure 1(b). We hypothesize that
in graphs with this topology, limiting the search to highly dense components could lead
to better predictions. However, dissimilar drugs or targets may comprise these highly
connected components. We address the problem of identifying subgraphs that are not
only dense, but are composed of highly similar drugs and targets. We name these graphs
edge-similarity dense subgraphs; Figure 1(c) shows an edge-similarity dense subgraph
for the Ion Channel dataset. Evaluating the prediction hypothesis in this subgraph al-
lows for suggesting seven predictions shown in red-dashed lines.



We propose a novel technique named esDSG, that is able to produce edge-similarity
dense subgraphs and to suggest novel associations from these subgraphs. We have con-
ducted an experimental study on the benchmark of drug-target interactions studied by
Ding et al. [3]. Interactions suggested by semEP and five state-of-the-art machine learn-
ing based techniques are compared to the interactions produced by esDSG. The ob-
served results suggest that the search spaces explored by all these approaches are dif-
ferent. Further, esDSG identifies interactions in graphs where existing approaches can-
not perform equality well. More importantly, a large number of the esDSG predictions
can be validated using the external databases STITCH and Kegg. These results suggest
that considering the topology in conjunction with semantics encoded in the graph, e.g.,
similarity values, can have a positive impact on the effectiveness of discovery tasks.

The rest of the paper is as follows: Section 2 describes the esDSG approach and
Section 3 summarizes related approaches. Experimental results are presented in Section
4. Finally, we conclude in Section 5 with an outlook to future work.

2 Edge-Similarity Densest Subgraph Problem

Our goal is to discover novel drug-target interactions by exploiting relationships among
existing interactions and values of similarity between both drugs and targets. However,
to effectively suggest such interactions, the prediction hypothesis should be evaluated in
graphs that maximize: i) graph density, and ii) drug-drug and target-target similarities.
We cast the problem of generating these graphs into a single-objective optimization
problem, called the edge-similarity Densest Subgraph (esDSG) problem.

Let D = {d1, d2, . . . , dn} be a set of drugs, and let sd(di, dj) ∈ [0 . . . 1] be the
similarity score function defined between every two drugs in D. Similarly, let T =
{t1, t2, . . . , tm} be a set of targets, and let st(ti, tj) ∈ [0 . . . 1] be the similarity score
function defined between every two targets in T . Given the sets T and D, we call E the
set of interactions between targets and drugs, where E ⊆ T × D. These interactions
can be naturally represented as a bipartite graph G = (T,D,E).

For each node v in the subgraph, the goal is to maximize not only the number of
interactions (i.e., the degree), but also the average of the pair-wise similarity values of v
with respect to the rest of the nodes in the subgraph. To do this, we define the similarity
measure of a single node v as follows:

Definition 1 (Single-node similarity). Consider a bipartite graph G = (T,D,E) of
drug-target interactions. The single-node similarity of v ∈ T (resp., v ∈ D) corre-
sponds to the arithmetic mean of the similarity measure values of v with every node
v′ ∈ T (resp., v′ ∈ D). This is denoted as sn(v).

sn(v) =


1
|T |
∑
t∈T

st(v, t) if v ∈ T

1
|D|

∑
d∈D

sd(v, d) if v ∈ D
(1)

Figure 2(a) presents a subgraph of the Ion Channel dataset. Similarity values allow
for computing the single-node similarity of each node. For example, the drug D00332



is dissimilar to the rest of the drugs in the subgraph. This is represented with low values
of the single-node similarity, i.e., sn(D00332) = 1

3

(
1 + 0.16 + 0.17

)
. On the other

hand, the drug D05077 is highly similar to the rest of the drugs in this subgraph; thus,
a higher value of single-node similarity is assigned to D05077, i.e., sn(D05077) =
1
3

(
1 + 0.97 + 0.17

)
. Note that single-node similarity values depend on the context in

which they are computed, i.e., only the nodes in a particular subgraph are considered.

(a) (b)

Fig. 2: Subgraphs of drug-target interactions of the Ion Channel dataset, where (b) is
subgraph of (a). Drug-Drug and Target-Target similarities in yellow, single-node simi-
larities in blue, and edge similarities in red.

We can characterize edges in a graph based on the single-node similarity values of
the nodes that connect each edge. For example, because D00332 is less similar than
D05077 to the rest of the drugs in the subgraph of Figure 2(a), the interaction that
relates D00332 with the target SCN5A is not as important in terms of similarity as the
interaction between D05077 the same target SCN5A. We model the importance of an
interaction in terms of similarity as a function named edge similarity, that averages the
single node similarities of the target and the drug that are related with this interaction.

Definition 2 (Edge similarity). Consider a bipartite graph G = (T,D,E) of drug-
target interactions, and the single-node similarity value of every drug and target in
the graph. The edge similarity score of an interaction (t, d) ∈ E, denoted as se(t, d),
corresponds to the arithmetic mean of the single-node similarity values of t and d.

se(t, d) =
1

2

(
sn(t) + sn(d)

)
(2)

Based on this definition, the edge similarity of the interaction between D00332
and SCN5A is 0.63, while the edge similarity of the interaction between D05077 and
SCN5A is 0.76. These values of the edge similarity function indicate the importance of
these two interactions in terms of the similarity of the drugs and targets that they relate,
with respect to the rest of the drugs and targets in the subgraph.

Normally, the definition of density for a bipartite graph, denoted as D(G), is given
by D(G) = |E|√

|T ||D|
. Using this definition, each edge of the graph is equally relevant

in terms of the density of the graph. Our approach relies on the importance of edges in
terms of similarity, i.e., the edge similarity, to compute a similarity-based density.



Definition 3 (Edge-Similarity Density). Consider a bipartite graph G = (T,D,E),
where T represents the set of targets, D the set of drugs, and E the set of drug-target
interactions. Let se(t, d), for (t, d) ∈ E, be the edge similarity value for every edge in
the graph. The Edge-Similarity Density of G can be defined as:

Des(G) =

∑
(t,d)∈E

se(t, d)√
|T ||D|

(3)

Using the edge similarity values computed for every edge in the subgraph in Figure
2(a), the edge-similarity density is equal to 1.19, while the graph density for this sub-
graph is 1.63. Removing the drug D00332 from this subgraph results in the subgraph
G′ in Figure 2(b) with a decreased density value of 1.50. However, the edge-similarity
density in this new graph is higher, i.e., Des(G

′) = 1.35. Applying the prediction hy-
pothesis to this subgraph would result in the prediction of an interaction between the
target SCN2A and the drug D05077; this interaction can be validated in Kegg.

Based on the definition of the edge-similarity density, we define the Edge-Similarity
Densest Subgraph problem (esDSG) as follows:

Definition 4 (Edge-Similarity Densest Subgraph problem (esDSG)). Given a bipar-
tite graph G = (T,D,E) as described above, representing the set of interactions be-
tween targets and drugs, esDSG identifies the subgraph G∗ ⊆ G such that the edge-
similarity density of G∗, Des(G

∗), is maximized.

2.1 A greedy approximate algorithm for esDSG

We propose a greedy approximate algorithm to the esDSG problem. The resulting sub-
graphs are both highly dense and similar, and they will be used to predict novel interac-
tions between targets and drugs. The edge-similarity density is used to guide the greedy
algorithm into spaces of dense and similar subgraphs.

The greedy decision of removing the nodes that contribute the least to the edge-
similarity density may result in higher values of the measure. For example, as shown
in Figure 2, removing the drug D00332 with both minimum single-node similarity
and degree values, as well as removing the interaction between this drug and the target
SCN5A, leads to an increase of the edge-similarity density from 1.19 to 1.35.

After applying the definition of edge similarity and some algebraic manipulation,
the edge-similarity density can be reformulated as a function of the degree values and
the single-node similarity of each node in a graph G, as follows:

Des(G) =

∑
v∈T∪D

degree(v) · sn(v)

2
√
|T ||D|

(4)

We propose a modification of the densest subgraph 2-approximation algorithm pro-
posed by Khuller and Barna [7]. In our algorithm, the greedy decision will be made
not only in terms of the degree, but also the single-node similarity of the nodes of the
graph. Along with the use of the edge-similarity density, this constitutes the most impor-
tant difference with Khuller & Barna’s algorithm, where the greedy strategy indicates



the removal of nodes, according only to the degree.

Algorithm 1: Edge-Similarity Dense Subgraph
Input: A bipartite graph G = (T,D,E)
Output: A subgraph H∗ ⊆ G

1 i← |T |+ |D|, Hi ← G
2 while Hi 6= ∅ do
3 Let v be a vertex with minimum value degree(v) · sn(v) in Hi

4 Delete all incident edges in v
5 Delete all nodes with no incident edges
6 Update single-node similarity values of all nodes
7 Call the new graph Hi−1, i← i− 1

8 return H∗, a graph with maximum edge-similarity density, Des(H
∗), from all the Hi’s

Algorithm 1 performs an ordered removal of the nodes of a bipartite graph, remov-
ing a node v with minimum product of the single-node similarity and degree values,
i.e., a node such that degree(v) · sn(v) is the minimum value. Further, the incident
edges on v are removed from the graph. The algorithm iteratively performs this greedy
decision until no more edges can be removed. In each iteration i of the algorithm (while
loop in lines 2 to 7), a subgraph Hi is created; the algorithm outputs the subgraph H∗

with the maximum value of Des(H
∗). Predictions correspond to the missing edges in

H∗. For example, consider the subgraph in Figure 1(c), this is a dense graph produced
by Algorithm 1 for the Ion Channel dataset; seven red-dashed lines represent missing
edges in this subgraph and correspond to the interactions predicted by our approach. It
is important to highlight that four out of the seven predicted interactions could be vali-
dated in STITCH with prediction score greater than 0.16; only two of these interactions
were among the top-10 predictions of semEP.

Finally, for a bipartite graph G = (T,D,E), Khuller’s algorithm requires O(|E|+
|T ∪ D|) time, while the time complexity of Algorithm 1 is O(|T |2 + |D|2). The in-
creased complexity is a consequence of the need to compute the single-node similarity
values. i.e., after each removal the sets of drugs and targets changes, thus, the single-
node similarity values of the nodes in the graph need to be updated.

3 Related Work

We briefly describe existing approaches for graph data mining and link prediction.
Graph mining approaches focus on the problem of detecting patterns in graphs by
conducting clustering and ranking methods on knowledge graphs [6, 9, 12]. RankClus
[12], GNetMine [6], and JointCluster [9] apply clustering techniques to place multi-
typed concepts in the same cluster. RankClus exploits link analysis-based ranking with
clustering to assign highly ranked entities to highly ranked clusters. GNetMine applies
learning based methods on different graph properties, e.g., graph topology, type at-
tributes, or edge labels, to classify and partition nodes in a graph. Finally, JointCluster
[9] is a simultaneous clustering such that nodes within each cluster in the partition are
highly connected, and the number of inter-cluster edges is minimized. These clustering



methods have shown to be effective, but they cluster nodes instead of edges. Further,
they mainly focus on the topology of the graph and do not exploit any semantics, con-
straints, or similarity information between the nodes to enhance the quality of the clus-
tering. Dissimilar nodes may be placed in a cluster, reducing thus the chances to predict
edges whenever the prediction hypothesis is evaluated.

Several approaches have been proposed for link prediction, and particularly, to sug-
gest annotations for genes [11, 13] and interactions between drugs and targets [1, 4, 5,
10, 14, 15]. Techniques to identify dense subgraphs [11] and graph summarization [13]
have been extended to predict Gene Ontology annotations of genes that comprise a
clique or from super nodes in a summary of a graph, respectively. These approaches
have shown to successfully analyze patterns in graphs. However, because they do not
consider semantics encoded in the graph or similarity between the graph concepts, they
may be grouping dissimilar concepts in a dense graph or a summary of a graph. Thus,
applying the prediction hypothesis graphs produced by these approaches may lead to a
small dataset of predictions or just to produce no predictions at all.

Machine learning methods [1, 4, 5, 14, 15] have been exploited to identify the por-
tions of the knowledge graph where the application of the prediction hypothesis can lead
to the discovery of drug-target interactions; a detailed evaluation of all these approaches
can be found at [3]. Additionally, semEP [10] implements an unsupervised method able
to partition edges that represent drug-target interactions; the prediction hypothesis is
applied to each component of the partition to predict new interactions. Components of
a partition maximize the graph density and pair-wise similarity of the drugs and the
targets. Although all these approaches are able to suggest drug-target interactions that
can be validated, they may not exhibit the same good performance in graphs as the one
illustrated in Figure 1(a). We hypothesize that because esDSG reduces the prediction
search to the space of edge-similarity dense graphs, the overlap between the esDSG pre-
dictions and the ones suggested by the other approaches will be small; further, esDSG
may be able to exhibit better performance from this type of graphs.

4 Evaluation of esDSG and State-of-the-Art Methods

Dataset: We use the dataset created by Bleakley et al. [1] to evaluate esDSG quality.
This dataset is used in the comparison of existing interaction prediction methods [3,
10]. The dataset comprises 900 drugs, 1,000 targets, and 5,000 interactions from KEGG
BRITE3, BRENDA4, SuperTarget5, and DrugBank6. The dataset provides a drug-drug
chemical similarity score based on the hashed fingerprints from the SMILES resource,
and a target-target similarity score based on the normalized Smith-Waterman sequence
similarity score. Data is divided into four groups: Nuclear receptors (NR), Gprotein-
coupled receptors (GPCR), Ion channels (IC) and Enzymes (E); details in Table 1.
State-of-the-art Methods: We use semEP [10] and the following machine learning
methods reported in [3] to evaluate the quality of the esDSG predictions: i) BLM:

3 http://www.genome.jp/kegg/brite.html
4 http://www.brenda-enzymes.de/
5 http://bioinf-apache.charite.de/supertarget_v2/
6 http://www.drugbank.ca/



Table 1: Statistics for the Drug-Target Interaction Dataset [1].
Statistics NR GPCR IC E
Number of drugs 54 223 210 445
Number of targets 26 95 204 664
Interactions 90 635 1,476 2,926
Average interaction count per target 3.46 6.68 7.23 4.4
Average interaction count per drug 1.66 2.84 7.02 6.57
Density 2.40 4.36 7.13 5.38

Bipartite Local Method [2]; ii) LapRLS: Laplacian Regularized Least Squares [15];
iii) GIP: Gaussian Interaction Profile [14]; iv) KBMF2K: Kernelized Bayesian Matrix
Factorization with twin Kernels [5]; and v) NBI: Network-Based Inference [2]. Addi-
tionally, Khuller & Barna’s algorithm is used as baseline.

4.1 Dense Subgraphs and Edge-Similarity Dense Subgraphs

We compare the dense subgraphs, DSG and esDGS, produced by Khuller & Barna’s
algorithm and our approach, respectively. Table 2 describes these subgraphs in terms
of number of drugs, targets, interactions, density, and average similarities. We can ob-
serve that DSGs are larger than esDSGs and also have greater values of the standard
density. For datasets NR, IC, and E, the esDGS graphs are denser in terms of edge-
similarity density, and result on less interactions but all predicted from similar drugs
or targets. However, although the DSG approximation algorithm does not maximize

Table 2: Statistics of the Dense Subgraphs and Edge-Similarity Dense Subgraphs com-
puted for each graph in the Drug-Target Interaction Dataset [1].

Statistics NR GPCR IC E
DSG esDSG DSG esDSG DSG esDSG DSG esDSG

Targets 6 5 9 9 74 8 61 13
Drugs 3 3 16 13 53 20 37 13
Interactions 18 15 107 87 815 153 994 168
Predictions 0 0 37 30 3107 7 1263 1
Density 4.24 3.87 8.91 8.04 13.01 12.09 20.92 12.9
Edge-Similarity Density 1.94 2.01 2.66 2.65 1.79 6.88 3.47 5.53
Average Target Similarity 0.40 0.52 0.33 0.33 0.06 0.69 0.10 0.54
Average Drug Similarity 0.50 0.50 0.25 0.32 0.21 0.43 0.23 0.31

edge-similarity density, DSG has higher values of this measure than esDSG on GPCR.
Further, DSG and esDSG have 24 common predicted interactions. This suggests that
GPCR regions that are dense or similar are the same, i.e., the search spaces of the ap-
proximation algorithms for DSG and esDSG overlap.

4.2 Validation using STITCH and Kegg

We evaluate the quality of esDSG predictions in terms of the number of interactions
that can be validated. We use the latest online version of STITCH [8] and Kegg to



validate each drug-target interaction predicted by esDSG. Table 3(a) reports on both the
number of esDSG validated drug-target interactions, and the total number of predicted
interactions. We can observe that esDSG predicted 12 out of 30 predictions that could
be validated in STITCH and Kegg; while the 57% of the esDSG predicted interactions
in the Ion Channel dataset can be also validated. As observed in Table 2, the IC esDSG
is the one with the highest values of edge-similarity density, and average target and drug
similarities. Furthermore, Table 3(b) reports on the number of validated interactions out
of the top-5 novel predicted interactions of all methods; novel interactions are not in
the original datasets and have the highest prediction score; these scores are computed
by each prediction method. It is clear that esDSG outperforms existing approaches in
the Ion Channel dataset. This supports our hypothesis that novel interactions can be
predicted from highly dense graphs composed of similar drugs and targets.

Table 3: (a) Number of esDSG predicted interactions and the number of those interac-
tions that can be manually validated with STITCH and Kegg. (b) Top-5 novel interac-
tions manually validated with STITCH; entries highlighted in bold correspond to the
largest number of novel validations

(a) esDSG Validated Predictions

Dataset Number of
predictions

Validation
STITCH Kegg Total

NR 0 - - -
GPCR 30 11 3 12
IC 7 4 0 4
E 1 0 0 0

(b) Validated Predictions of State-of-
the Prediction Methods

Method NR GPCR IC E
semEP 4 5 1 4
BLM 2 1 0 0
NBI 1 1 1 2
GIP 3 3 1 1
LapRLS 5 3 2 2
KBMF2K 3 4 2 2

4.3 Effectiveness of esDSG Predictions

Effectiveness of esDSG is also measured as the overlap between the esDSG predicted
interactions and the top-10 interactions predicted by semEP [10], and the machine learn-
ing methods: BLM, NBI, GIP, LapRLS, and KBMF2K [3]. Top-10 predictions corre-
spond to the interactions with the highest prediction score. Table 4 compares esDSG and
the corresponding prediction method in terms of both: i) the number of interactions that
both methods predicted, labelled as Equal, and ii) the number of interactions predicted
by esDSG and that are not part of the top-10 predictions of the corresponding method,
labelled as Diff. We can observe that esDSG predicts interactions that are not predicted
by any of the other methods. These results suggest that the edge-similarity subgraphs
from where esDSG generates the predicted interactions, correspond to portions of the
search space that none of the other approaches is able to explore.

5 Conclusions

We defined the edge-similarity densest subgraph problem to predict drug-target inter-
actions. We extended Kuller & Barna’s algorithm with the greedy decision of removing
the nodes that contribute less to the edge-similarity density values. Experimental results
suggest our approach is able to predict novel drug-target interactions from highly dense



Table 4: Overlap of esDSG predictions and the top-10 predictions generated by existing
methods [3, 10]. Entries in bold indicate that all esDSG predictions are different

Method NR GPCR IC E
Equal Diff. Equal Diff. Equal Diff. Equal Diff.

semEP 0 0 0 30 3 4 0 1
BLM 0 0 0 30 0 7 0 1
NBI 0 0 4 26 0 7 1 0
GIP 0 0 2 28 4 3 1 0
LapRLS 0 0 0 30 3 4 1 0
KBMF2K 0 0 0 30 0 7 0 1

subgraphs composed of both similar drugs and targets. We plan to extend esDSG to
traverse the different connected components and identify esDSGs from each one.
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