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Abstract When users query a SPARQL endpoint, they normally face an empty
text box in which they have to write the desired queries. This obstructs the process
of obtaining the data they want, since users rarely have any assistance in query-
ing a (possibly huge) RDF database. In this paper we report a deep analysis of the
server log files that record the queries that users send to the SPARQL endpoints,
focusing in the Bio2RDF cluster. This log analysis reveals the large number of
repeated queries that users submit, and how they pursue a trial and error process
by adding and removing operations from the submitted queries to obtain the de-
sired results. We also show how users try to connect to other RDF datasets in the
Linked Open Data cloud. Our results offer insight into the interaction between
users and a schema-light RDF dataset, and secondly, suggest improvements to
SPARQL server optimizations in terms of optimization and results caching.

1 Introduction

Querying Semantic Web data is a difficult task. Normally the databases are publicly
available and they can be accessed via a web service called SPARQL endpoint. This
service is made available through a web application with a single text box, allowing
users to enter arbitrary SPARQL queries. That text box generally contains an exam-
ple query, which is the only assistance that users have for accessing the data stored in
the RDF database. That default query may point them to some useful data but most
probably the results obtained will be meaningless for specific tasks. This situation is
more problematic if instead of a single RDF database, users wants to access a cluster
of databases like in the Bio2RDF [9,3] project. Bio2RDF is an open source project that
provides over 30 biomedical datasets as Linked Data. Each dataset is made available for
download and is available for querying in a dataset-specific SPARQL endpoint. In this
case users not only face the difficulty of accessing the data in every dataset separately,
but they also face the difficulty of combining results from several databases.

In this paper we propose to analyze the server log files from the datasets in the
Bio2RDF project. This log analysis shows that there is a large amount of repeated
queries, and that users follow a trial and error process, varying the complexity of the
queries for obtaining the results they want. We also show how users try to connect to



external RDF datasets in the Linked Open Data cloud, and we try to understand and
explain the users’ intentions when they query a SPARQL endpoint. The log analysis we
show in this paper is driven by two goals: first to help users in obtaining useful results
from a semi-unknown RDF database and second, improve the performance of SPARQL
servers by looking in detail how users access them.

Related Work There have been several attempts to obtain useful research results from
SPARQL endpoints query logs. Most of them have been published in the workshop
series Usage Analysis and the Web of Data (USEWOD) [5,4,6,7], which is the leading
initiative for encouraging research in SPARQL endpoints log analysis. These research
works vary from analyzing the usage frequency of the main SPARQL operators [2],
characterizing machine agents [15] or identifying browsing and query patterns by using
Description Logics ontologies [10]. Further research works include a more in-detail
analysis of the FILTER operator usage [1], a log analysis towards caching and pre-
fetching SPARQL query results for improving performance [11], and a work that used
the USEDOWD dataset to differentiate queries generated by software applications from
those generated by users [16]. Other works outside the USEWOD workshop include an
analysis of the SPARQL queries submitted to DBpedia [14], statistics about the access
to RDF datasets in the Linked Data Cloud in 2010 [13] and a method to detect errors or
weaknesses within ontologies used for Linked Data population based on statistics and
network visualizations [12].

2 Log Processing

We analyzed the log files generated by the Bio2RDF servers maintained by the Dumon-
tier Lab over an 18 month period (from May 12th 2013 until September 28th 2014).
These logs included every valid HTTP GET/POST request that was received by each
Bio2RDF endpoint. The total amount of requests received was 115,119,540. We first
parsed these log files generating, for each request, a tuple containing the user’s IP ad-
dress (used as user ID), the time and date in which the HTTP request was received, the
string in the HTTP request unquoted, the user agent which submitted the request, the
Bio2RDF server targeted, the HTTP response code, and the size of that response. Out
of the 115,119,540 valid HTTP requests received, 90,938,804 of them corresponded
to SPARQL queries. This is natural since the studied servers also serve websites and
further services. The queries were characterized as SELECT, ASK, CONSTRUCT and
DESCRIBE queries. The next step was to remove duplicate queries. We parsed the tu-
ples generated in the previous file and we obtained that (surprisingly) only 6,538,280
queries were unique, having thus a total of 84,400,524 repetitions. As our log study is
intended to analyze the users’ behavior, repetitions were only counted under the same
user, meaning that the same query issued by two different users is not considered as a
repetition. Next, we transformed the 6,538,280 queries into an algebraic representation,
using the SPARQL Syntax Expressions1 format from Apache Jena. This transformation
facilitated a detailed analysis of the queries. For the generation of the SSE expressions

1 https://jena.apache.org/documentation/notes/sse.html



we used the Ruby library Ruby-RDF2, which was unable to parse 174,011 of the queries
(possibly due to syntax errors). For 1,289,134 of the remaining 6,364,269, we were un-
able to generate the corresponding algebraic expression, in some cases due to syntax
errors that were not captured by the SSE parser (e.g. not using <> for URIs). Finally
this process generated a total of 4,901,124 unique queries for analysis.

3 Complexity Analysis

To gain insight into what users formulate against Bio2RDF SPARQL endpoints, we
tabulated combinations of operators mentioned in the queries. We first decomposed
each query into its operators, number of triple patterns, and expressions used in FILTER
clauses.

Our results, summarized in Table 1, show that the most submitted query pattern
is a SELECT query with a single triple pattern, scoring more than 820,000 submis-
sions out of the 4,901,124 unique queries. The second most submitted query pattern is
a CONSTRUCT query with a single triple pattern and a FILTER expression (rep-
resenting more than 540,000 unique queries) followed by a DESCRIBE query (which
represent about 440,000 unique queries). The three patterns mentioned above charac-
terize a 36.8% of the analyzed queries. This shows that the general usage of SPARQL is
very basic and the patterns in the body of the queries are rather simple, but users know
about the language given they use distinct query forms (SELECT, CONSTRUCT and
DESCRIBE). We can conclude that there is a fair understanding of the query language,
but the datasets are not known by the users. Hence, they issue basic queries to gain some
insight on how data is structured.

Figure 1 represents the previous situation in more detail, showing how the decreas-
ing amount of queries submitted is directly related with the increasing amount of oper-
ators in the queries. The less common query patterns contained several operators (e.g.
3 OPTs, 3 joins and 7 triples), which is by no means surprising. We can also see how
only the first 20 query patterns represent a 90% of the queries submitted, which can be
an interesting fact to consider when optimizing a SPARQL endpoint. Figure 1 contains
the first 50 query patterns, with labels for some of them. In total there are almost 1,000
different query pattern types. The data used to generate Figure 1 and a more detailed
figure is available at https://plot.ly/%7Ecbuil/31.

4 Iterative Analysis

Next, we examined the behavior of users in terms of how they increased/decreased the
amount of operators and triple patterns in SPARQL queries over time. We hypothesized
that if an initial query returned a large set of results, users might then refine the query
with additional SPARQL operators to reduce the result size. In contrast, if a user ob-
tains too few results, she might generalize the query by removing some operations in
order to increase the number of results. To evaluate this we defined a query complex-
ity measure which assigns a weight of 1 to each operator and each triple pattern. For

2 https://github.com/ruby-rdf/sparql
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Figure 1. Query patterns ordered by number of repetitions. The most common pattern is
SELECT v WHERE t, being v a set of variables (or the symbol ∗) and t a triple pattern.

instance, a query of the form DESCRIBEu (where u is a URI) has complexity 1 bea-
cause of the DESCRIBE operator, while a SELECT query joining 3 triple patterns has
a complexity of 5; 1 for the SELECT operator, 1 for the join (bgp) and 1 for each triple
pattern.

We measured the HTTP request response size as a proxy for the size of the result
set returned to the user. Then, we computed the number of consecutive complexity
increases/decreases (referred to as a streak) for each user. Table 4 shows the amount
of complexity-increasing streaks we found in the Bio2RDF log files. The first column
shows the length of each streak. For example length 2 means that a user issued three
queries, being the second more complex than the first and the third more complex than
de second. The second column shows the times we found streaks of that length. The
third column show how many of the streaks stopped when the result size of the last
query was larger than the result size of the second last query. Conversely, the fourth
column shows the same but when the result size of the last query was smaller than the
result size of the second last query. The last two columns are intended to understand
the intention of a user when he issues a streak of increasing queries: did the user stop



Table 1. Query Pattern Repetitions. The most repeated query pattern has a SELECT and a single
triple, followed by a CONSTRUCT query and a DESCRIBE query.

Number of Query Pattern Repetitions Query Pattern
821046 TRIPLE PATTERNS: 1, SELECT: 1
544341 TRIPLE PATTERNS: 1, CONSTRUCT: 1,FILTER: 1
443125 DESCRIBE 1
389011 LIMIT: 1, TRIPLE PATTERNS: 1, SELECT: 1
381351 TRIPLE PATTERNS: 1
319708 AND: 1, TRIPLE PATTERNS: 3

adding operators when he got less results? or was it when he got more results than
before? Conversely, Table 4 shows the same statistics for decreasing streaks.

As opposed to what we originally hypothesis, the results show that users who add
new operators in their query workflow will generally obtain more results than in their
previous query, as depicted in Table 4. Similarly, users who remove operators stop re-
moving them generally when the result size is smaller than that of the previous query
(4). Our interpretation of the statistics is that users will add operators once they un-
derstand the dataset structure, and hence they will issue correct queries that will return
more results. On the other side, when users issue a query with less operators they might
be looking to understand new portions of the data, but in general they obtain less results
due to a limited knowledge of the data structure. The only situation in which this is
not the case is when users issue decreasing streaks of size 3. Here users stop removing
operators once they get larger result. A preliminary interpretation of this could be that
users who know the dataset are obtaining to few results, and hence they start removing
restrictive parts of the query (like joins or filters) in order to obtain more information.
We believe this is something worth investigating in more detail. In summary, the results
show that when users add operations they generally are obtaining more results, and
when users remove operations they are obtaining less results. This might have an in-
teresting impact in terms of server optimization, as a static analysis on two consecutive
queries and the answer to the first of them could already give insight on what will be the
size of the result to the second query. Of course this requires a more refined definition
of increasing/decreasing streaks, which is left as future work.

Table 2. Amount of increasing streaks, streak sizes and relation with amount of results from the
previous query results.

Streak length # of increasing streaks Ended with larger result Ended with smaller result
1 286,684 259,148 26,083
2 21,903 21,334 464
3 157 60 88



Table 3. Amount of decreasing streaks, streak sizes and relation with amount of results from the
previous query results.

Streak length # of decreasing streaks Ended with larger result Ended with smaller result
1 283,474 23,007 258,655
2 6,905 1,602 5,187
3 10,005 9,854 129

5 Dataset Federation Analysis

Finally, we used our analysis platform to examine which datasets were being queried
both inside and outside the Bio2RDF network. To do so, we first tabulated the queries
sent to specific Bio2RDF endpoints (Figure 2), as well as the queries that used the SER-
VICE keyword to query SPARQL endpoints that were outside of the Bio2RDF network
(Figure 3). Our results show that i) the top 5 Bio2RDF datasets are (in decreasing num-
ber of queries posed): Pubmed (with more than 11,000 SERVICE calls), Gene (with al-
most 1,000 SERVICE calls), Pharmgkb, Drugbank and Bioportal (recently added to the
Bio2RDF network); and ii) the top 5 SPARQL endpoints used to complement Bio2RDF
queries are: the Gene Expression Atlas (with more than 500 SERVICE requests), Beta
Uniprot (a development version of the Uniprot dataset), DBpedia, the Chemical Biol-
ogy Group and Reactome: a knowledge base of biologic pathways and processes. It is
important to notice that 4 of these datasets are funded by the European Bioinformatics
Institute. More detailed figures and the data used to generate Figures 2 and 3 can be
found at https://plot.ly/%7Ecbuil/77 and https://plot.ly/%7Ecbuil/78 respectively. The
results we present in this section show that SPARQL 1.1 federation features are being
used to connect to a surprisingly large number of endpoints. In total, there were 5,470
SERVICE calls in the final log files processed, 4,462 of them were directed to Bio2RDF
server while 1008 were directed to other endpoints in the LOD Cloud.

6 Conclusions

In this paper we performed an analysis of the queries received at the Bio2RDF servers.
This analysis showed first that the amount of repeated SPARQL queries received by
these servers is huge (about a 7% of queries are unique), which of course can be used
to optimize how servers are caching previously computed answers. Once the duplicate
queries were removed, we found that around 50% of the queries contain just a single
triple pattern, and that triple pattern is generally under of a SELECT or a CONSTRUCT.
Furthermore, 20 query patterns represent 90% of the queries received by the servers,
and this can have a high impact on terms of how servers should be optimized to answer
queries. It is also interesting to notice that the second most used SPARQL query is
DESCRIBE, which is marked as an “Informative” query form in the SPARQL 1.1
recommendation document (i.e. its implementation is not mandatory). This indicates
that a large portion of the users are trying to understand the shape of the data before
querying for information.

A more in detail analysis of the query patterns showed that a significant number of
users add operators once they understand the data structure, and hence they obtain more
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Figure 2. Bio2RDF servers queried using SPARQL Federation. The most Bio2RDF endpoint
queried, by large, is Pubmed (http://pubmed.bio2rdf.org/sparql).

results. On the contrary, users remove operators looking for new portions of the data,
and their lack of knowledge on the dataset leads to less results. Finally, a brief analysis
of the SPARQL Federation queries showed a surprising amount of users that try to link
the Bio2RDF data in one endpoint to other Bio2RDF datasets or to other datasets in the
LOD cloud using the SERVICE keyword.

Limitations of the experiments. The experiments performed in this work present several
limitations. First of all, we did not analyze the URIs in the SPARQL queries and the
result sizes may be related to these URIs. It is important no notice that URIs in the
queries may exist in the dataset or not, affecting positively or negatively to the queries
result sizes and thus to our results. Similarly we did not analyze the effect of the LIMIT
solution modifier not the effect of FILTERs, affecting as well to the query’s result sizes.
However, our results can still provide a useful insight of what Bio2RDF users want to
obtain when querying the endopints.

Future work. This work is just a starting point for a more complete and detailed analysis
of the Bio2RDF users and queries. A first next step is to overcome the experiments
limitations to produce more accurate statistics about the use of Bio2RDF datasets. Once
we overcome the limitations, our results can also provide a base line in which we can
assess the capability of users to generate more complex queries with guided query tools
(e.g. SPARQLED3, YASGUI4, etc). The statistics gathered about query patterns and

3 http://sindice.com/sparqled/
4 http://yasgui.org/
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Figure 3. External servers to Bio2RDF queried, using SPARQL Federation. The most queried
external endpoint are those from the European Bioinformatics Institute. That suggest that the
researchers from that institute try to link the Bio2RDF data with theirs. Endpoints with less than
6 SERVICE queries are grouped in the “Other”.

complexity may be of great help for these type of applications in order to help formulate
effective SPARQL queries. Another well know problem in the Linked Data community
is that SPARQL endpoints suffer from a performance problem due to the many requests
received [8]. As mentioned before, our results be largely used to address this problem
by guiding the optimization of software and result caching. Finally, our analysis only
targeted the Bio2RDF endpoints. Our final goal would be to generalize our results to
more SPARQL endpoints in the LOD Cloud. It is worth noting that our framework is not
particular to Bio2RDF and can be applied to arbitrary (clusters of) SPARQL endpoints.
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shop on usage analysis and the web of data. in 10th eswc. In In 10th ESWC Semantics and
Big Data, Montpellier, France., 2013.

7. B. Berendt, V. Hollink, K. M. Markus Luczak-Rösch, and D. Vallet. 4th international work-
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