A Framework for Rapid Prototyping of Multimodal
Interaction Concepts

Ronny Seiger Florian Niebling Mandy Korzetz
Technische Universitit Technische Universitit Technische Universitit
Dresden Dresden Dresden

Dresden, Germany
ronny.seiger @tu-dresden.de

Tobias Nicolai
Technische Universitit
Dresden
Dresden, Germany
tobias.nicolai @mailbox.tu-
dresden.de

ABSTRACT

Ubiquitous systems provide users with various possibilities of
interacting with applications and components using different
modalities and devices. To offer the most appropriate mode
of interaction in a given context, various types of sensors are
combined to create interactive applications. Thus, the need
for integrated development and evaluation of suitable inter-
action concepts for ubiquitous systems increases. Creation
of prototypes for interactions is a complex and time consum-
ing part of iterative software engineering processes, currently
not well supported by tools as prototypes are considered to
be short-living software artifacts. In this paper, we introduce
the framework Connect that enables rapid prototyping of in-
teraction concepts with a focus on software engineering as-
pects. The framework allows the definition and modification
of event-to-action mappings for arbitrary interaction devices
and applications. By applying Connect, model-based proto-
types of multimodal interaction concepts involving multiple
devices can be created, evaluated and refined during the en-
tire engineering process.

ACM Classification Keywords
H.5.2 User Interfaces: User-centered design

Author Keywords
interaction framework; interaction concepts; multimodal
interaction; rapid prototyping; software engineering

INTRODUCTION

Ubiquitous Systems as coined by Weiser [22] describe user-
centered systems at the intersection of mobile and pervasive
computing combined with ambient intelligence. In addition

Workshop on Large-scale and model-based Interactive Systems: Approaches and
Challenges, June 23 2015, Duisburg, Germany.

Copyright © 2015 for the individual papers by the papers’ authors. Copying permitted
only for private and academic purposes. This volume is published and copyrighted by
its editors.

Dresden, Germany
florian.niebling @tu-dresden.de

Dresden, Germany
mandy.korzetz @tu-dresden.de

Thomas Schlegel
Technische Universitit
Dresden
Dresden, Germany
thomas.schlegel @tu-
dresden.de

to the high degree of embeddedness of pervasive systems,
ubiquitous systems are characterized by a high level of mobil-
ity, often consisting of a large number of heterogeneous and
possibly resource-limited devices, which are loosely-coupled
into dynamic network infrastructures. The emergence of
smart spaces (smart homes, smart factories, smart offices)
shows the increasing importance and spreading of ubiquitous
systems throughout different areas of everyday life.

As user interaction with devices that disappear into the back-
ground often cannot be realized using traditional metaphors,
new ways of interaction have to be explored during the
software engineering process for creating ubiquitous system
components. The development and improvement of multi-
modal interaction concepts (i.e., interactions using one or
more input modalities [21]) is thereby not limited to initial
prototyping, but equally important during implementation,
testing and evaluation stages.

Existing tools for interaction design and rapid prototyping
of ubiquitous user interaction can be successfully employed
during the initial prototyping phases. In later development
phases as well as in iterative engineering processes such as
user-centered design (UCD), their applicability is often re-
stricted due to their limited ability to automatically propagate
changes in prototypes to subsequent stages of development.
The mostly informal descriptions and implementations of in-
teraction concepts and interactive applications limit their ex-
tensibility with respect to new interaction devices and modal-
ities. The lack of models and formalism also prevents pro-
totypes for interactions from being used and matured in later
stages of the development process, which is why prototypes
are usually considered to be short-living software artifacts.

In this paper, we propose a model-driven framework for pro-
totyping of interaction concepts that can be applied through-
out the different phases of iterative software engineering pro-
cesses. The focus of the introduced Connect framework for
interaction design is placed on software engineering aspects



and models. It enables the rapid development of prototypes
and enhancement at runtime during expert evaluation and user
studies. Extensibility concerning new types of interaction de-
vices as well as interactive components is easily achieved by
inheritance in the object-oriented framework architecture. As
a result of a high-level, model-based design of interaction
concepts, modifications to the interactions—even of very early
prototypes—can be reused and advanced from beginning to
end of the development cycle. The framework supports indi-
vidualizations concerning different groups of users as well as
distinct scenarios by customizing interaction concepts using
specialization and configuration. We introduce a tool based
on the Connect framework that facilitates the creation and
customization of interaction concepts at runtime even by non-
programmers. The framework is demonstrated developing an
interaction prototype within a Smart Home-a ubiquitous en-
vironment consisting of various devices for multimodal inter-
actions with physical and virtual entities.

RELATED WORK

Prototypes are useful tools for assessing design decisions and
concepts in early but also in advanced stages of the software
engineering process. Especially in iterative design processes
for creating usable systems, future users have to be involved
continuously to provide feedback and to improve concepts
and software artifacts [9]. According to Weiser, one of the
essential research and development methods for interactive
ubiquitous systems is the creation of prototypes [23]. The
rapid prototyping technique aims at creating prototypes in a
time and resource efficient way to mature artifacts in agile
software engineering processes [15]. The focus of our work
is on providing a framework for the rapid development and
evaluation of multimodal interactions for ubiquitous systems.
Especially within the UCD process, prototypes are needed to
evaluate design ideas and improve the usability of interac-
tive systems [17]. Complex interaction scenarios involving
multimodal interactions require the use of technically mature
prototypes to improve the usability of the system or applica-
tion [14].

The basis for our prototyping framework is the Openinter-
face platform developed by Lawson et al. [13]. The plat-
form allows the integration of arbitrary heterogeneous com-
ponents as interaction devices and applications. Openlnter-
face provides a lightweight framework and runtime environ-
ment leveraging the prototyping of multimodal interaction
concepts using high-level data fusion and pipeline concepts
to connect interaction devices with interactive applications.
In contrast to other frameworks for prototyping of interac-
tions [7, 4], Openlnterface is based on a platform and tech-
nology independent description of a component’s functional-
ity and interface. Our framework adapts these concepts with
a stronger focus on the underlying models and component
descriptions in order to facilitate the extension, runtime adap-
tation and reuse of components and interactions during the
iterative stages of UCD. Other existing interaction and proto-
typing frameworks (e. g., CrossWeaver [20] and STARS [16])
are realized in a more informal way for specific scenarios and
therefore lack extensibility of software components, interac-
tion devices and modalities as well as reusability. The Open-

Interface workbench [13] provides developers with a compre-
hensive toolset for configuring components and interactions.
Our aim is to provide an easy to use tool also enabling non-
programmers to rapidly create interaction prototypes.

In [10] Hoste et al. describe the Mudra framework for fusing
events from multiple interaction devices in order to leverage
multimodal interactions. Mudra provides means for process-
ing low-level sensor events and for inferring high-level se-
mantic interaction events based on a formal declarative lan-
guage. The framework is primarily focused on combining
multiple interaction devices to enable advanced forms of in-
teraction input. It can be used complementary to the Connect
framework as part of defining and integrating low-level and
high-level sensor components. However, the application of
the formalism and semantic models that Mudra is based on
increases the effort and complexity for rapidly prototyping
interaction concepts and introduces a number of additional
components to the lightweight Connect framework.

In addition to the work of Dey et al. [6], one of the first
conceptual frameworks for the rapid prototyping of context-
aware applications predominant in ubiquitous systems, the
iStuff toolkit [3] and its mobile extension by Ballagas et al. [2]
represent further related research our Connect framework is
based on. These toolkits offer a system for connecting in-
teractive physical devices and interaction sensors with digi-
tal applications and software components. The iStuff toolkit
suite supports multiple users, devices and applications as
well as interaction modalities. However, due to the limited
software models applied within these tools, the set of sup-
ported interaction devices is rather static. A model-based ap-
proach for dynamically creating multimodal user interfaces
composed of several components is described by Feuerstack
and Pizzolato [8] as part of their MINT framework. Mappings
between user interface elements, user actions and actions to
be executed can be formally defined with help of this frame-
work and used for dynamically generating interactive appli-
cations. Both the iStuff and MINT framework are intended
to be used in the design and development process of user in-
terfaces whereas our focus lies on the prototyping and evalu-
ation of interaction concepts (i. €., event-to-action mappings)
in different stages of the UCD process. However, in order to
prototype and develop interactive applications including in-
teraction concepts and user interfaces, the iStuff and Connect
framework can be used complementary.

The ProtUbique framework by Keller et al. facilitates the
rapid prototyping of interactive ubiquitous systems [11]. It
supports an extensible set of interaction channels transmitting
low-level interaction events from heterogeneous devices and
sensors. These interaction events are unified by the frame-
work and accessible programmatically in order to prototype
interactive applications. As ProtUbique offers interfaces to
access its interaction channels, it is possible to directly com-
bine both the ProtUbique and Connect framework. Interac-
tion channels are integrated into Connect in the form of sen-
sors supplying interaction events. Connect can then be used
to map these events to actions that will be executed by actua-
tors or applications.



With the emergence of ubiquitous systems, users play a cen-
tral role in the software development process. Prototypes
are well suited for involving users in the design process and
for improving concepts and software artifacts based on user
feedback. Various frameworks for the prototyping of inter-
active applications including user interfaces and interaction
concepts exist. These frameworks are often focused on the
use of prototyping techniques in early development stages
and limited in the set of supported software components and
interaction modalities. However, agile and iterative software
engineering processes are required for developing interactive
ubiquitous systems. Therefore, we propose a model-driven
framework for the rapid prototyping of multimodal interac-
tion concepts. By applying models for the definition of inter-
active components and their interrelations, extensibility and
reusability of interaction concepts and interactive prototypes
in multiple design stages is facilitated. In that way, the us-
ability and user experience of applications and systems for
ubiquitous environments can be increased.

INTERACTION FRAMEWORK

Structure

We designed the Connect framework from a software engi-
neering point of view using abstract models and their build-
ing blocks as a starting point. The framework adheres to a
basic class structure consisting of multiple types of compo-
nents, which are interconnected with each other. Fig. 1 shows
the class diagram using UML notation. A Component is a
software entity having a defined interface and known behav-
ior [13]. In analogy to control systems linking physical sen-
sors with actuators, we distinguish between SensorCompo-
nents representing entities that are able to produce interaction
events and ActuatorComponents able to consume interaction
events and trigger subsequent actions. ComplexComponents
combine these capabilities. In addition, specializations of
complex components are used to enable the logical and tem-
poral combination of sensor and actuator components. Ports
describe the components’ interfaces in order to define interac-
tions and connections between multiple components. Event-
Ports define the types of events a sensor component is able
to produce and ActionPorts represent the types of actions an
actuator component is able to perform. The activation of an
event port leads to the activation of the action ports the event
port is connected to. A central Manager class handles the in-
stantiation of components and maintains a list of all active
component instances, which are accessible from within the
scope of the framework.

Sensor Components

Sensor components represent devices and applications that
are able to detect interactions and produce corresponding in-
teraction events. The SensorComponent is an interface sen-
sors have to implement, e. g., by an adapter connecting the
sensor device via its API to the Connect framework. An
EventPort is a wrapper for every type of event the sensor com-
ponent is able to trigger. The sensor component maintains a
list of all its events and creates corresponding event ports. By
implementing the sensor component interface, new types of

Manager 1 0. Component

—

<interface>>
SensorComponent

Q&

<dinterface>>
ActuatorComponent

ComplexComponent

events : List

CreateEventPorts()

activateEventPort(event)
tPort(event)

actions : List

CreateActionPorts()

activateAction(actionPort)
tivateAction(actionPort)

1 Port
QQQQQ Pors aci
state : Boolean

1.7

activate()
deactivate()
EventPort ActionPort

0. 0.

Figure 1. Class diagram of the Connect framework

interaction devices and arbitrary event sources can be inte-
grated into the framework. In order to integrate new types
and corresponding instances of sensor components into the
framework, an adapter for receiving the sensors’ events has to
be implemented. On receiving an event from the sensor, the
state of the corresponding event port is updated, i. e., the port
is activated or deactivated. An event port can be connected
to one or more action ports of one or more actuator compo-
nents. The event port’s activation leads to the activation of the
connected action ports. As arbitrary event sources are sup-
ported, interactive devices independent of modality and num-
ber can be combined to be used for multimodal interactions,
i.e., using one or more input modalities. Currently, only bi-
nary states for events (active/inactive) without additional data
payload are supported by the Connect framework.

An example of a locally integrated sensor component is the
computer’s keyboard. The event ports correspond to the set
of the individual keys. A smartphone device sending touch
events via a dedicated app to an instance of the Connect run-
time is an example of a remotely integrated sensor compo-
nent. The set of touch events provided by the smartphone and
supported by the app represent the event ports.

Actuator Components

Actuator components represent devices and applications that
are able to actively perform and execute actions. Analogous
to a sensor component, the ActuatorComponent is an inter-
face actuators have to implement in order to connect the ac-
tuator to the Connect framework. An ActionPort is a wrapper
for an action or method the actuator component is able to ex-
ecute. New types of actuator components can be integrated
into the framework as implementations of the interface Ac-
tuatorComponent. Adapters for calling the actuator compo-
nents’ particular operations from inside the framework have
to be implemented for every type of actuator. An action port
can be connected to one or more event ports of one or more
sensor components. Upon receiving an activation from an
event port connected to an action port, the actuator compo-
nent activates the action port and executes the corresponding
method. Arbitrary local and remote devices and applications
can be integrated into the framework as actuator components.
Currently, we support the activation of methods without the
processing of input or output parameters.

An example of an actuator component is a service robot
whose movement functionality is provided in the form of



directed movement actions (e.g., forward, backward, left,
right). For each direction there is a corresponding action port.

Complex Components

Complex components represent devices and applications that
combine sensor and actuator functionalities. These entities
can contain multiple event and action ports, i. e., they are able
to produce events for actuator components and receive events
from sensor components. The ComplexComponent class is
viewed as an abstract class that has to implement both the
SensorComponent and the ActuatorComponent interfaces in
order to be integrated into the Connect framework.

An example of a complex component is a smartphone sending
touch interaction events and providing executable operations
(e. g., for taking pictures or switching on the its light).

Logical and Temporal Components

Logical Components are viewed as specializations of com-
plex components. They are used for creating logical connec-
tions (AND, OR, NOT, XOR, etc.) between multiple event
ports of one or more sensor components. The logical compo-
nent’s action ports are used as input ports for events from the
sensor components and its event ports are used as output ports
producing events for the activation of subsequent actuator
components. By cascading these logical components, com-
plex logical circuits for sensor events triggering actions of
actuator components can be created. In addition, we integrate
flip-flop and trigger components for saving of and switching
between states. That way, it is possible to define more com-
plex interaction concepts involving multiple interaction de-
vices in advanced stages of the engineering process and also
to introduce modes of interaction (i. e., state-dependent be-
havior of the interactive prototypes).

Besides logical components, Temporal Components for de-
scribing temporal dependencies between sensor events are
supported as extensions of complex components. That way
we are able to define the activation of higher level events,
e. g., after a defined number of repeating sensor events or after
the appearance of an event within a defined time frame. The
functions and algorithms—including additional attributes—that
are executed when the logical or temporal component is acti-
vated have to be provided for each new type of complex com-
ponent. As new types of components are introduced into the
framework’s underlying class model by inheritance, only the
base classes’ methods have to be overwritten to use instances
of these new components.

Dynamic Components

Thus far we are able to extend the set of sensor, actuator and
complex components by introducing implementations and
specializations of the appropriate classes into the model at
design time. In order to add new types of components at run-
time, we extend the framework by the concept of Dynamic
Components. These components are created by Connect’s
runtime based on a formal model of a component’s function-
ality and ports. Currently, we support the use of a WSDL
(Web Services Description Language [5]) document describ-
ing the available operations of a service-based actuator com-
ponent. The WSDL format provides a suitable formalization

<dnterface>>
SensorComponent

)
T
L

BrainComputerinterface

/ \

BCICognitive BCIExpressive BClAffective

BCIGyroscope

events = [push, pull, i, drop, lft, .| ‘events = [blnk, smile, dench, wirk, .. events = [frustration, engagemen, .] ‘events = [top, down, right, left]

Figure 2. Extensions of the SensorComponent to support BCI input
modes

of an actuator’s callable methods and their parameters, which
can be parsed in order to automatically create an actuator
component implementing the ActuatorComponent interface
and the corresponding action ports.

PROTOTYPING MULTIMODAL INTERACTION CONCEPTS

Exemplary Sensors

Brain Computer Interface

In order to show the framework’s capability of supporting
multimodal interactions and its applicability within the Smart
Home scenario, we extended the core sensor component by
the Emotiv EPOC' EEG brain computer interface (BCI) act-
ing as a source of interaction events [19]. The BCI used in our
setting provides interaction modes enabling the recognition of
thoughts (Cognitive), facial expressions (Expressive), emo-
tions (Affective) and head movement (Gyroscope). Each of
these modes is introduced as a subclass of the abstract Brain-
ComputerlInterface class, which implements the SensorCom-
ponent interface (see Fig. 2). Event ports are created for ev-
ery possible type of sensor event produced by the BCI in each
mode (e. g., for blink, wink left, look right, smile, and laugh
in the Expressive mode). Upon instantiation of an object of
one of the interaction mode classes, a listener for event ports
corresponding to the sensor events is initialized.

Tablet

The second exemplary sensor component from the Smart
Home domain that we integrated into our test setting is an
Android-based tablet device. A dedicated app sends inter-
action events regarding the pressing of specific buttons and
events detected by the tablet’s gyroscope sensor to an instance
of the Connect framework. In order to support this event
source, we introduce the abstract Tablet class implementing
the SensorComponent interface. From that class, the Button
and Gyroscope modes are derived as subclasses (see Fig. 3).
Event ports representing the particular buttons and gyroscope
movement directions (i. .e., forward, backward, left, right) en-
able the detection of the corresponding interaction events and
connection to other components.

Exemplary Actuators

Service Robot

A TurtleBot 22 service robot plays the role of an actuator in
the context of our Smart Home scenario [19]. We abstracted
its movement functionality into two operational modes ex-
tending the abstract ServiceRobot class: Manual Movement

'https://emotiv.com/epoc.php
2http ://www.turtlebot .com/


https://emotiv.com/epoc.php
http://www.turtlebot.com/

<<Interface>>
SensorComponent

A

1
Tablet

_

TabletButton ‘

S

TabletGyroscope ‘

events = {up, down, right, left}

events = {up, down, right, left} ‘

Figure 3. Extensions of the SensorComponent to support tablet input
modes

<<Interface>>
ActuatorComponent

A

|
ServiceRobot

_

RobotManualMovement

o~

‘ RobotAutomaticMovement ‘

actions = [forward, backward, left, right]

actions = [kitchen, bath, bed room, ...] ‘

Figure 4. Extension of the ActuatorComponent to support a service robot
actuator

and Automatic Movement (see Fig. 4). The manual movement
mode supports the fine-grained control of the robot platform
by direct movement commands (i. e., forwards, backwards, to
the left, to the right). Using the automatic movement mode,
the robot can be send to specific locations in a room or build-
ing. In automatic mode, driving, path planning and obstacle
avoidance are handled by the robot itself. The action ports for
these two actuator component modes correspond to the avail-
able movement directions (manual mode) and to the specific
target locations (automatic mode).

Service-based Light Switch

The capability of dynamically adding new components at run-
time is an important feature of the Connect framework. As it
supports the automated generation of an actuator component
based on a WSDL document, we implemented a web service
for the remote control of a light switch providing a switch on
and a switch off operation. Upon parsing of the WSDL file
and creation of action ports for both operations, the Connect
runtime acts as a client sending requests to the web service.

Security Component

In order to prevent incorrect behavior and actions caused
by imprecise interaction devices and unintended user inter-
actions at runtime, a Security Component is introduced into
the framework as an implementation of the actuator compo-
nent. This component provides an operation for deactivating
all event and action ports and thereby disabling the current

B15]

) pe)

)5

Rgntsmice

Lsmk | r
Gough I =

S5

Figure 5. Complex network of input and output components forming an
interactive prototype

interactions and listeners for new events. The security com-
ponent’s second operation resets all ports to the inactive state
and re-enables the event listeners to continue with the inter-
action. Both operations can be connected to the event ports
of an arbitrary—preferably reliable—sensor component.

Prototyping Tool

We implemented a Java application based on the Connect
framework. The tool allows the graphical instantiation of
known types of sensor, actuator and complex components.
The lists of available ports, individual attributes as well as the
component’s graphical representation are coded into the class
structure and component’s data model. Instantiated compo-
nents can be configured using the tool. In addition, it is pos-
sible to generate service-based actuator components from a
WSDL file. Connections between component ports are cre-
ated and modified graphically at runtime using drag and drop
gestures (cf. Pipeline metaphor [13]). That way, circuits for
interactions consisting of sensors, actuators, logical compo-
nents and temporal components can bes designed. For certain
types of sensor events there are sliders that are used for setting
activation thresholds. As many interaction devices provide
sensor data in the form of numerical values—not just Boolean
values for the active/inactive states—the definition of activa-
tion thresholds increases the accuracy of event detection/acti-
vation and supports individual user configurations.

Fig. 5 shows a screenshot of the configuration tool’s user in-
terface containing three instances of sensor components (BCI
modes), logical components and an actuator component (ser-
vice robot). The tool’s user interface provides visual feedback
regarding currently active sensor events, connections, and ac-
tions as well as numerical values for sensor input.

Prototype Configurations and User Profiles

The composition of components as well as their intercon-
nections, attributes and port thresholds can be persisted in
individual prototype configurations and user profiles based
on the class model presented in the previous section. These
settings are saved in and loaded from XML-based files. In
this way, individual interaction concepts can be created for
specific prototypes, component configurations, scenarios and



users according to their capabilities. These model-based con-
figurations can then be used as templates for creating new
interaction concepts or for refinement at a later stage of the
development process [18]. Listing 1 shows an extract of a
prototype configuration describing an event port of a sensor
component connected to an action port.

Listing 1. Extract from a prototype configuration

<conf>
<component>
<class>[0.TabletButtonComponent </class >
<id>TabletButtonComponent </id>
<ports>
<port>
<class >Core . EventPort </class >
<id>Up</id>
<state >false </state >
<connectedPorts>
<connectedPort>
<componentld>TurtleBot </componentld>
<portld >MoveForward </portld >
</connectedPort>
</connectedPorts >
</port>
</ports>
</component>
<component>

</conf>

Prototyping and Evaluation

With the help of the Connect framework and the configuration
tool, interaction concepts describing mappings between inter-
action devices and active controllable components can be cre-
ated. Once integrated into the framework, multiple instances
of multimodal sensor, actuator and complex components are
ready to be used and loosely-coupled at runtime for a partic-
ular setting. Connections between sensors and actuators and
their respective ports are modifiable at runtime (create, up-
date, delete). Compared to hard-wired event-to-action map-
pings, model-based prototypes of interaction concepts can be
created and modified quickly with the help of Connect in or-
der to test and evaluate their usability and suitability for con-
crete use cases as part of the software engineering process.

Connect can be part of various user-centered prototyping
and evaluation methods and stages reusing models that de-
scribe components and their interrelations. As the prototyp-
ing tool follows known metaphors from the WIMP paradigm
and integrates easy to understand graphical metaphors
(e. g., pipelines and circuits), it is also possible for designers,
non-programmers and end-users to understand and define in-
teraction concepts for a given scenario. That way, future users
can be involved in early stages of the design process lead-
ing to more intuitive interactions and usable applications for
ubiquitous systems.

Due to the model-driven approach for describing components
and their interrelations applied in Connect, it is possible to
persist and reload component configurations and their con-
nections. Prototypes of interaction concepts can be repeat-
edly tested, reused and refined in order to increase the usabil-
ity of the interactive application that is under development.

By creating user profiles for specific users, user groups and
scenarios, the corresponding prototypes can be used for user-
centered evaluation methods (e. g., user studies and expert
evaluation) during various stages of the software development
process. In addition, user profiles facilitate the creation of in-
teractive applications according to a user’s individual cogni-
tive capabilities and preferences.

The extensibility of the framework’s underlying models for
components and interactions allows for the integration of
new interactive devices and applications at later engineer-
ing stages. That way, interaction concepts can be developed
starting from simple event-to-action mappings and evolved
to more complex models and scenarios for interactive ubiq-
uitous systems. Changes within these models can be propa-
gated to the affected software artifacts. By adding a mech-
anism for model versioning, traceability for the evolution of
these interaction models in iterative stages of the design pro-
cess is achieved and templates of interaction concepts can be
created for reuse in new projects.

DISCUSSION

The introduced Connect framework for the creation and iter-
ative advancement of interaction concepts is built on model-
based components and configurations. Our chosen design al-
lows for convenient extension through the inclusion of addi-
tional arbitrary interaction components (i. e., sensors and ac-
tuators) via concepts of object-orientation. Basic design pat-
terns reduce the effort for developers to extend the set avail-
able interaction devices and applications. At runtime, interac-
tion components can be rapidly combined into pipelines and
circuits to form complex interaction concepts. Modifications
of interaction concepts as well as persisting and loading of
interaction and component configurations are supported by
the framework. Compared to related research, this approach
allows for a high level of reusability and refinement of inter-
active prototype applications and configuration in succeeding
development stages. With the help of the graphical configura-
tion tool it is possible to rapidly create working prototypes for
multimodal interactive applications and use these prototypes
for test and evaluation purposes.

Due to the use of known metaphors, e. g., pipelines and cir-
cuits, the creation and configuration of complex interaction
concepts can be achieved even by non-programmers such as
interaction designers or end users, supporting different phases
of iterative software engineering processes like UCD. By pro-
viding model-based abstractions for component design and
data flow, interaction design may be advanced from sim-
ple prototypes during requirement analysis to complex mul-
timodal interaction concepts containing numerous different
sensors and actuators in subsequent phases of development.
This iterative improvement of existing concepts proved to be
especially helpful during usability testing using expert evalu-
ation and end user studies.

On the one hand, the introduction of logical and tempo-
ral components into more complex interaction concepts al-
lows for the use of multiple interactive input devices. On
the other hand, these components enable interaction modes



and the definition of interaction sequences to prevent unin-
tended interaction events. These mechanisms become neces-
sary when using imprecise and “always on” interaction de-
vices (e.g., brain-computer interfaces and eye trackers) to
prevent Midas touch. With respect to the BCI, a double-blink
within a certain timeframe could, for example, be used to trig-
ger an action instead of a simple “natural” blink. As shown
in the prototyping tool, thresholds defining the activation of
sensor ports can be defined for sensor events containing Inte-
ger or Double values. This mechanism also helps interaction
designers with the integration of imprecise devices. Lastly, a
security component can be added to the interaction concept
and test environment to stop all ongoing interactions in case
of any malfunctions. This is especially helpful when interact-
ing with real world physical devices in ubiquitous systems.

The Connect framework is a prototyping tool for engineer-
ing interactive applications. It can be employed during the
development process for designing and testing of interaction
concepts. In combination with other frameworks for the pro-
totyping of user interfaces (e.g., MINT [8], iStuff [2]), in-
teractions (e. g., Openlnterface [13]) and interaction devices
(e. g., ProtUbique [11]) as well as for the fusion of high-level
sensor events (e. g., Mudra [10]), Connect represents an ad-
dition to the engineering toolchain for interactive ubiquitous
systems. Due to its extensibility and model-driven develop-
ment approach, interaction and configuration models created
with Connect could be used as input for subsequent tools and
phases in the software engineering process.

The current development state of the Connect framework still
contains some shortcomings that will be improved in con-
secutive versions. Until now, user defined data types beyond
simple Boolean values at event and action ports are not sup-
ported. To be able to accommodate analogue sensors, at least
some form of floating point data and complex data types will
have to be included into the extensible data model. In ad-
dition, aggregation of components attached to distributed in-
stances of the framework is not yet possible. With the avail-
ability of active components that contain significant process-
ing power themselves such as smartphones, integration of
preprocessed sensor values can be simplified by combining
multiple networked Connect systems.

CONCLUSION & FUTURE WORK

Engineering software for interactive ubiquitous systems re-
quires flexible and iterative development processes. The con-
tinuous involvement of future users throughout the entire
process is a key aspect of the user-centered design and de-
velopment methodology for ubiquitous systems. Prototypes
are a well suited tool for the development, test and evalua-
tion of theoretical concepts in almost all stages of the soft-
ware engineering process. We developed an extensible and
easy to use framework that supports rapid prototyping, evo-
lution and evaluation of interaction concepts for ubiquitous
systems. The Connect framework is based on a modular
object-oriented software model, which views interaction de-
vices as sensor components and interactive applications as
actuator components. Interaction concepts can be defined,
modified and tested at runtime by connecting these compo-

nents. The framework follows a model-driven software en-
gineering approach enabling the extension and integration of
new types of components into interactive prototypes as well
as the reuse of component and prototype configurations dur-
ing development. Related frameworks and concepts generally
lack extensibility, flexibility and reusability due to the limited
use of models and other formalisms. Therefore, interaction
frameworks often support only a static set of interaction de-
vices and applications that can be used for the development
of short-living interaction prototypes at early design stages.
With Connect, the set of software components can be easily
extended to support new types of devices and applications,
which can be combined to create multimodal interactions.
Connect’s runtime and user-friendly prototyping tool facili-
tate the use of multiple input and output devices as entities
involved in interactions as well as dynamic reconfiguration
of interactions at runtime. The model-based descriptions of
components and interactions leverage the reuse and iterative
refinement of components, concepts and prototypes for the
user-centered software engineering process of ubiquitous sys-
tems.

Regarding future work, we will extend the component models
in order to be able to process non-Boolean input and output
values and states for event and action ports. The use of a
formal definition language for describing the interfaces of a
sensor component will add the ability to also introduce new
types of sensor components to Connect at runtime. By com-
bining the prototyping framework ProtUbique [11] for defin-
ing interaction sources and high-level interaction events with
service-based communication for sending interaction events
to Connect, we will create a flexible toolchain for developing
prototypes of interactive multimodal applications. In addi-
tion, dynamic component platforms (e. g., OSGi [1]) can be
employed to introduce additional runtime flexibility concern-
ing the support of new types of software components. We will
also look into the distributed communication among several
instances of the Connect runtime. An instance of Connect
running on one computer could be used as a sensor com-
ponent within another Connect instance, which allows the
preprocessing and derivation of higher order events on local
computers in order to save resources and simplify the mod-
eling of complex interactions. To evaluate the framework’s
applicability, we will use Connect for the prototyping of in-
teractive software components as part of the engineering pro-
cess for Smart Home applications [19, 12].

REFERENCES
1. OSGi Alliance. 2003. Osgi service platform, release 3.
1OS Press, Inc.

2. Rafael Ballagas, Faraz Memon, Rene Reiners, and Jan
Borchers. 2007. iStuff mobile: rapidly prototyping new
mobile phone interfaces for ubiquitous computing. In
Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM, 1107-1116.

3. Rafael Ballagas, Meredith Ringel, Maureen Stone, and
Jan Borchers. 2003. iStuff: a physical user interface
toolkit for ubiquitous computing environments. In



10.

11.

12.

13.

14.

15.

Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM, 537-544.

. Jullien Bouchet and Laurence Nigay. 2004. ICARE: a

component-based approach for the design and
development of multimodal interfaces. In CHI’04
extended abstracts on Human factors in computing

systems. ACM, 1325-1328.

. Erik Christensen, Francisco Curbera, Greg Meredith,

Sanjiva Weerawarana, and others. 2001. Web services
description language (WSDL) 1.1. (2001).

. Anind K Dey, Gregory D Abowd, and Daniel Salber.

2001. A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware
applications. Human-computer interaction 16, 2 (2001),
97-166.

. Pierre Dragicevic and Jean-Daniel Fekete. 2001. Input

device selection and interaction configuration with
ICON. In People and Computers XVInteraction without
Frontiers. Springer, 543-558.

. Sebastian Feuerstack and Ednaldo Pizzolato. 2011.

Building multimodal interfaces out of executable,
model-based interactors and mappings. In
Human-Computer Interaction. Design and Development
Approaches. Springer, 221-228.

. John D Gould. 2000. How to design usable systems.

Readings in Human Computer Interaction: Towards the
Year (2000), 93-121.

Lode Hoste, Bruno Dumas, and Beat Signer. 2011.
Mudra: a unified multimodal interaction framework. In
Proceedings of the 13th international conference on
multimodal interfaces. ACM, 97-104.

Christine Keller, Romina Kiihn, Anton Engelbrecht,
Mandy Korzetz, and Thomas Schlegel. 2013. A
Prototyping and Evaluation Framework for Interactive
Ubiquitous Systems. In Distributed, Ambient, and
Pervasive Interactions. Springer, 215-224.

Suzanne Kieffer, J-YL Lawson, and Benoit Macq. 2009.
User-centered design and fast prototyping of an ambient
assisted living system for elderly people. In Information
Technology: New Generations, 2009. ITNG’09. Sixth
International Conference on. IEEE, 1220-1225.

Jean-Yves Lionel Lawson, Ahmad-Amr Al-Akkad, Jean
Vanderdonckt, and Benoit Macq. 2009. An open source
workbench for prototyping multimodal interactions
based on off-the-shelf heterogeneous components. In
Proceedings of the 1st ACM SIGCHI symposium on
Engineering interactive computing systems. 245-254.

Linchuan Liu and Peter Khooshabeh. 2003. Paper or
interactive?: a study of prototyping techniques for
ubiquitous computing environments. In CHI’03

extended abstracts on Human factors in computing
systems. ACM, 1030-1031.

Lugqi. 1989. Software evolution through rapid
prototyping. Computer 22, 5 (1989), 13-25.

16.

17.

18.

19.

20.

21.

22.

23.

Carsten Magerkurth, Richard Stenzel, Norbert Streitz,
and Erich Neuhold. 2003. A multimodal interaction
framework for pervasive game applications. In
Workshop at Artificial Intelligence in Mobile System
(AIMS), Fraunhofer IPSI.

Martin Maguire. 2001. Methods to support
human-centred design. International journal of
human-computer studies 55, 4 (2001), 587-634.

Nicolai Marquardt, Robert Diaz-Marino, Sebastian
Boring, and Saul Greenberg. 2011. The proximity
toolkit: prototyping proxemic interactions in ubiquitous
computing ecologies. In Proceedings of the 24th annual
ACM symposium on User interface software and
technology. ACM, 315-326.

Ronny Seiger, Tobias Nicolai, and Thomas Schlegel.
2014. A Framework for Controlling Robots via
Brain-Computer Interfaces. In Mensch & Computer
2014-Workshopband: 14. Fachiibergreifende Konferenz
fiir Interaktive und Kooperative Medien—Interaktiv
unterwegs-Freirdume gestalten. Walter de Gruyter
GmbH & Co KG, 3.

Anoop K Sinha and James A Landay. 2003. Capturing
user tests in a multimodal, multidevice informal
prototyping tool. In Proceedings of the 5th international
conference on Multimodal interfaces. ACM, 117-124.

Wolfgang Wabhlster. 2006. SmartKom: foundations of
multimodal dialogue systems. Vol. 12. Springer.

Mark Weiser. 1991. The computer for the 21st century.
Scientific american 265, 3 (1991), 94-104.

Mark Weiser. 1993. Some computer science issues in
ubiquitous computing. Commun. ACM 36, 7 (1993),
75-84.



	Introduction
	Related Work
	Interaction Framework
	Structure
	Sensor Components
	Actuator Components
	Complex Components
	Logical and Temporal Components
	Dynamic Components

	Prototyping Multimodal Interaction Concepts
	Exemplary Sensors
	Brain Computer Interface
	Tablet

	Exemplary Actuators
	Service Robot
	Service-based Light Switch
	Security Component

	Prototyping Tool
	Prototype Configurations and User Profiles
	Prototyping and Evaluation

	Discussion
	Conclusion & Future Work
	REFERENCES 

