
Self-Organising UAVs for Wide Area
Fault-tolerant Aerial Monitoring

Massimiliano De Benedetti, Fabio D’Urso, Fabrizio Messina, Giuseppe Pappalardo, Corrado Santoro
University of Catania – Dept. of Mathematics and Computer Science

Viale Andrea Doria, 6 — 95125 - Catania, ITALY
EMail: {m.debenedetti1983,fabiod}@gmail.com, {messina,pappalardo,santoro}@dmi.unict.it

Abstract—This paper describes an algorithm for the coordina-
tion of a flock of multirotor UAVs which cooperate in performing
a wide area monitoring mission. The key characteristics of
the proposed approach are the self-organising ability and the
decentralisation. The flock has the basic task of covering a certain
area of terrain and is able to self-organise in order to (i) find
a coverage of the area which minimises mission time, and (ii)
identify possible faults in one or more multirotors, taking care
of performing a re-scouting of proper terrain regions in order to
avoid loss of data. The algorithms to ensure flocking formation
and area coverage are described. They are also validated by
means of simulation approach, which is performed using an ad-
hoc software tool.

I. INTRODUCTION

The recent advent of small aerial vehicles, such as multi-
rotors, made them an interesting solution also for professional
applications rather than entertainment. Such multirotors have
the great advantage of being easy to build; no particular skills
in mechanics or avionics are required if compared with a
small aeroplane which, instead, needs a particular care in
wing profile, wing size and shape, tail size, position of the
centre of gravity, etc. Indeed, these multirotors can be easily
built by purchasing parts off-the-shelf (i.e. motors, propellers,
frame, electronics) and then assembling them properly. They
are basically controlled remotely by a human pilot, but they
can also have the ability of flying autonomously using GPS
hardware and suitable control algorithms.

Given the said characteristics, one of the most interesting
applications of multirotors is the aerial monitoring of certain
areas which cannot be accessed with other conventional ve-
hicles: as a reference example, the authors are involved in a
research project whose objective is the control of landslips and,
since one of the monitoring strategies will be the gathering
and analysis of aerial images in order to evaluate terrain
movement, the employed solution will be indeed based on
multirotors.

In addition to the cited advantages, multirotors have some
drawbacks: the most critical one is the autonomy, which is in
the order of 5 to 15 minutes (on average), not so high to make
them suitable for wide areas. But another sensible problem
is the fault-tolerance: should a aircraft fail during mission, it
would be lost, together with its set of monitoring data.

To deal with the problems above, a classical solution is
to employ a set of several multirotors, each one entailed with
the objective of covering a specific portion of the monitored
area; but, even if this solution solves the autonomy issue

by parallelising the activities, it is not fault-tolerant, since a
problem in one or more multirotors would provoke, in any
case, a loss of a part of monitored data.

With these aspects in mind, the authors designed an al-
gorithm, which is described in this paper, for coordinating a
flock of multirotors during a wide area monitoring mission.
The key characteristics of the proposed approach are the self-
organising ability and the decentralisation. The flock has the
basic task of covering a certain area of terrain and, to this aim,
is able to self-organise in order to (i) find a coverage of the
area which minimises mission time, and (ii) identify possible
faults in one or more multirotors, taking care of performing
a re-scouting of proper terrain regions in order to avoid loss
of data. The proposed approach has been validated by using a
software simulator implemented ad-hoc.

The paper is structured as follows. Section II introduces the
minimum background behind this work and discusses related
work. Section III introduces the use scenario, highlighting the
basic characteristics and the requirements that in automated
system must be met. Section IV deals with the proposed algo-
rithms, which include flocking formation and area coverage.
Section V describes the simulator implemented to test the
proposed approach. Section VI reports the conclusions.

II. BACKGROUND AND RELATED WORK

The Area Coverage research topic has the objective of
studying solutions to cover a specific area with a certain
number of robots, under a set of constraints, e.g. mission time
minimisation, path optimisation and frequency cover for some
point of interest. Area coverage can be classified into two main
categories[6]:

• Single Coverage: the goal is to cover the target
area until all the accessible points in the selected
environment have been visited at least once.

• Repeated Coverage: the aim is to cover a set of points
of interest in the selected environment more than once,
for the entire mission.

The differences between the two aforementioned problems
are closely related to the involved parameters [6]. The main
parameters of Single Area Coverage are time, distance and
number of visits for each point of interest. In other words,
coverage must be completed while minimising the mission
time, the distance covered by the robot and the frequency of
visits. In Repeated Area Coverage the main parameters are the
frequency of visits – to be maximised – , the length of paths

Proc. of the 16th Workshop “From Object to Agents” (WOA15) June 17-19, Naples, Italy

135



– to be minimised – and the workload distribution among the
set of available robots, which has to be balanced.

The first concern of Area Coverage is the decomposition
technique adopted to divide the area into fundamentals units
which, in turns, are associated with a set of sub-tasks or paths.
A significant approach is the Approximate Cell Decomposi-
tion [9], [11], in which the environment is divided into cells
of equal size and shape, apart those cells that are partially
occluded by obstacles or placed at the boundary of the area.
A second approach is called Exact Cell Decomposition [10];
here the area is divided into a set of non-overlapping regions
that represent the whole environment. The Boustrophedon
Decomposition is a particular Exact Cell Decomposition on
which the slice is a line, and the robot follows the intersection
of the slice and the area to be covered with a simple back-
and-forth motions. A cell in Boustrophedon decomposition is
a region on which slice connectivity is constant and can be
swept by a specific direction called Sweep Direction. As we
discuss in the other sections of this work, our approach is
similar to Boustrophedon decomposition.

Another aspect of Area Coverage is the algorithm used
to cover the cells obtained from the area decomposition. As
proposed in [3], the cooperation and coverage can be com-
pletely decoupled. In other words a coverage algorithm for a
single robot can be extended to a cooperative setting by adding
an overseer algorithm which takes incoming data from other
robots and integrates it into the cellular decomposition [8]. The
core of cooperation behaviours is the overseer algorithm that
provides a task allocation among the robots. The computation
of a specific function containing all the parameters involved
in the global task [14] is thus distributed among the robots.

There are many different approaches for real time task
allocation, and most of them are drawn from biology or from
market-based approaches [4], [5]. Market-based approaches
rely on a leader/auctioneer (a robot or an external operator)
that calls an auction for each task to be assigned. The other
robots will bids for each single task with an offer that
represents a cost or an utility gain, and the best bidders
are selected. Market-based approaches have gained popularity
because they include an interesting, although implicit, fault
management strategy. Indeed, whenever the communication
channel between the leader (auctioneer) and one or more robots
becomes unavailable, the auctioneer will call another bid for
the execution of the incomplete task [1], [11]. Furthermore,
if each robot broadcasts its information to the other robots,
the system will be able to complete the goal even if the
leader/auctioneer is affected by a fault. This additional strategy
allows the remaining robots to choose another leader without
loss of functionality.

The loss of communication among robots can occur in
case of fault or when the distance between the robots became
too large for the communication system. This second aspects
becomes critical when the robots used for area coverage are
UAVs or the coverage task is performed on indoor environ-
ments. In this kind of systems (UAVs fleet) a designated
area must be covered with a certain level of efficiency and,
at the same time, a constant connection among the UAVs
must be maintained. Assuming that every UAV is equipped
with a wireless transceiver (to broadcast and receive message
from/to others UAV) a tree-based overlay network can be

built and the area coverage tasks can be performed within
network connectivity constraints [13]. Indeed, maintaining a
complete knowledge of the environment requires a continuous
broadcasting process among the robots that reduces the overall
available bandwidth. Therefore, one of the important issues in
this kind of environments (Area Coverage - UAVs fleet) is
to find a trade-off between the broadcasting process and the
minimum bandwidth required to perform/assign all the pending
tasks.

III. SYSTEM MODEL AND MISSION REQUIREMENTS

We consider a system made of (i) a certain physical area
that must be monitored, and (ii) a set of mobile entities with
the ability of autonomously moving in the considered area and
equipped with the sensors needed for the monitoring activity.

We assume that an inertial reference system exists, given
in a 3D space, which includes, together with XYZ coordi-
nates, also the heading. In the Earth reference system, these
coordinates will correspond to latitude, longitude, altitude and
heading.

On this basis, the area to be monitored can be identified
by a polygonal in the XY plane of the considered refer-
ence system. Without loss of generality, we can assume that
the monitored area has a rectangular shape1 and therefore
is identified by the coordinates of four vertices Area =
((x1, y1), (x2, y2), (x3, y3), (x4, y4)).

In this environment the monitoring entities live; we’ll
simply call them henceforward agents, even if, in the real
scenario, they will be multirotor VTOL2 machines. Each agent
has the ability of moving in the 3D space with four degrees of
freedom, one for each element of the coordinate system; we
can define the pose of the ith agent at time t as a 4-elements
tuple:

posei(t) = (Xi, Yi, Zi,Head i)

Each agent knows its pose by means of proper position
sensor (e.g. GPS); it has also the ability of interacting with
other agents by means of a communication system which,
however, could be limited in the range (e.g. a low-power
wireless system); therefore, two agents can interact to each
other only if the (Euclidean) distance, in the given space, is
less than the range supported by the communication system.
Each agent i has also assigned a unique ID i, which is mission-
static, i.e. it does not change during a mission (for example
the MAC address of the wireless card).

Each agent is also equipped with a certain monitoring
sensor, which, given a certain Z altitude, is able to “monitor”
(cover) a certain rectangle of the XY plane. As an example,
if the sensor is a camera, we can determine the size of the
captured pictures given the characteristics of the lens and the
mission altitude. We can model this aspect by a function

sensor(z) = (wsz, hsz)

which takes a certain altitude z as argument and returns a tuple
indicating the size of the rectangular area (the sensor area), in
the XY plane, perceived by the sensor.

1If the real shape is different we can always consider the smallest rectangle
which include the real area.

2Vertical Take-Off and Landing

Proc. of the 16th Workshop “From Object to Agents” (WOA15) June 17-19, Naples, Italy

136



In such a system, a mission is defined as:

Mission = (Area, Z,N), N > 0

where:

• Area is the specific area to be covered, defined as
indicated above.

• Z is the altitude at which the agents must operate.

• N is the number of agents employed.

The agents must perform the mission in a complete autonomy,
by cooperating with one another, and with the overall objective
of

1) to ensure the covering, with their sensors, of the given
area;

2) to minimise the mission time; and
3) to avoid/minimise the amount of overlapped data

(area over-covering avoidance).

If we suppose that each agent i, at the end of the mission, has
covered the area SAreai ⊂ Area , the requirements above can
be expressed as:

∪N
i=1SAreai = Area (1)

∩N
i=1SAreai is minimal (2)

IV. THE AREA COVERAGE ALGORITHM

Given the system model described so far, the area coverage
approach proposed in this paper is composed of two basic
parts: (i) a strategy to make agents fly in a certain flocking
formation, and (ii) a technique to make the flock cover the
given area, according to the aforementioned requirements.

A. Overlay Construction Algorithm

To support flock formation and information spreading, an
overlay network among the agents is built. The aim is to let
each agent know who are the other agents of the set and to
make them able to exchange information about their position.

The algorithm used to construct the overlay network is
based on a simple mechanism which exploits gossiping.
Each agent k maintains an agent database, called ADB =

{(ID i, posei,HOP
(k)
i ,TS i)} which stores, for each other

agent i 6= k, the agent identifier ID i, which is also a primary
key for the database3, the current agent position posei, the
number of hops HOP

(k)
i which separates agent k to agent i,

and the timestamp TS i at which the pose information posei
has been generated.

Each agent, with a given periodicity, samples its position
posek, retrieves the sampling timestamp4 TSk, and sends, in
broadcast, the sampled information together with its ADB :

ADB ∪ {(IDk, posek, 0,TSk)}

Since the wireless system has a limited range, the broadcast
message will reach only some of the agents of the set. Each

3two tuples with the same ID cannot exist
4Timestamps are local, that is, they do not need a global synchronisation

mechanism.

agent, on the basis of the reception of such a message, performs
a comparison between its local ADB and the database received
(henceforward called RADB ); in particular, the following
operations are performed:

• first the hop count field of each tuple of the RADB
is incremented by 1;

• then, for each tuple of the RADB , the tuple with the
same ID is searched into the local ADB ;

• if an associated tuple is not found, the RADB tuple
is added to the ADB ;

• if the associated tuple is found, the timestamps are
compared;

• if the TS (RADB) > TS (ADB), the received informa-
tion is fresher, so the local information in the ADB
is updated;

• otherwise, the information present into ADB is kept
and the received one is discarded.

This process is executed iteratively and periodically on
each agent therefore, after some steps, each agent will know
who are the other agents and what their “distance” is, in terms
of hop counts and according to the transmission range of the
wireless system.

Since agents always send their ADB , there could be the
case in which, at a certain time instant, two different pose
information, but relevant to the same agent k, are travelling
in the network, e.g. the one freshly generated by the agent k
itself and the one previously owned by other agents and sent
in their ADB : in this case, the use of timestamps permits an
agent to accept the fresh information and discard the old ones,
thus ensuring data consistency.

B. Ideal Flock Shape and Flocking Formation

Flock formation approaches are traditionally based on algo-
rithms which, by running on each agent of the set, continuously
perform the following steps:

1) retrieve the position of all (or a set of) the other
agents;

2) evaluate a speed and the direction to follow, on the
basis of some precise rules;

3) apply the computed speed and direction.

According to the literature [2], [7], [12], the basic rules
which can drive a flock formation have to ensure the properties
of separation, alignment and cohesion.

The first rule (R1, separation) says that if two agents are
too close to each other, they must head to opposite directions.
The second rule (R2, alignment) makes an agent orientate
towards the average heading of the neighbour agents. The third
rule (R3, cohesion) drives an agent towards a position which
is the average of the positions of the neighbour agents. In
addition, when the flock is used in the exploration of an area,
a fourth rule is included (R4, exploration) which lets an agent
drive towards the nearest unexplored zone.

All of these rules are properly weighted on the basis of
their importance in forming the flock and also in order to avoid

Proc. of the 16th Workshop “From Object to Agents” (WOA15) June 17-19, Naples, Italy

137



collisions and partitioning, and they must be properly adapted
when a certain flock shape is desired (indeed the basic rules
reported in literature often provoke flock partition and do not
ensure a specific flock shape [7]). Such aspects are particularly
important for our application: partition avoidance is indeed an
obvious feature, while ensuring a certain flock shape means to
avoid that area portions are not over-covered.

On this basis, the ideal flock shape we consider is based on
a linear placement of agents along a formation line which is
perpendicular to direction of flight, as it is shown in Figure 1.
In this way, if the distance between two close agents is kept—
as equal as possible—to the width of the sensor view wsz ,
the flock can monitor the area by means of slices of size (N ·
wsz, hsz); since no agent is placed behind another one (in
the direction of forward flight), this flock shape ensures that,
during a linear flight, a certain area is not over-covered.

Fig. 1. Ideal flock shape

To make agents form the desired flock shape, our algorithm
proceeds as follows.

At each step of the iteration, the agent elects a leader; it
will be the agent with the lowest known ID present in the
ADB5. Since we suppose that each agent always receives the
IDs and positions of all the other agents with the overlay
construction algorithm, we can assure that all agents will select
the same leader. Indeed, when the overlay network construction
is not in a steady-state (this transient condition occurs when
the system is started and when an agent has a failure and thus
abandons the flock), not all the agents may choose the same
leader; however, as it will be clear in the following, this does
not influence the validity of the flock formation: also flock
shape will be affected by the same transient which will lead
to a regime when overlay construction is a steady-state. We
have to also highlight that the presence of a leader is not a
central point of failure and does not affect the fault-tolerance
of the proposed schema: should the leader fail, a new leader
is elected soon and the flock can thus continue its task; as it
will be detailed in Section IV-D, the transient between leader
failure and new leader election does not have a significant
influence on the correctness and completion of the coverage
task.

The leader has the role of establishing the formation line,
which is set as the line perpendicular to the current heading
of the leader itself. The following flocking rules are applied.

The first rule, R1, separation, behaves as follows:

• The distance di to each other neighbour agent i is
computed.

• If di is less than a hard threshold DH , no motion
is applied (the UAV remains in hovering for the
current iteration); this is required to avoid any possible
collision.

5If the ID is not a numeric type, we suppose that a metric can be always
determined in order to apply the concept of “lowest”.

• If di is less than a soft threshold DS > DH , a
repulsion force is generated for the agent, whose
intensity is proportional to di but with an heading
always parallel to the formation line.

The alignment rule, R2, behaves by making the agent to
orientate with the same heading of the neighbour which is the
nearest to the leader (w.r.t the overlay network known). The
alignment is performed by means of a yaw rotation.

The cohesion rule, R3, behaves by making the agent to
move closer to the neighbour which is, also in this case, the
nearest to the leader in the flock. This motion is performed by
means of a translated flight. Obviously, if the agents are too
close, rule R1 will ensure the right separation.

The behaviour of these rules is shown in Figure 2.

Fig. 2. Flock formation with rules R1, R2 and R3

C. Flock Driving and Area Coverage

Once the flock has been formed, its main task is to fly over
the given area in order to ensure its coverage. To this aim, a
path planning algorithm is designed. The algorithm is mainly
driven by the leader and is based on the following schema:

1) All the agents spread, over the flock, the information
related to the area parts already covered by each of
them.

2) The leader gathers such information and computes an
optimal path.

3) The leader starts to follow such a path thus driving
the overall flock.

Such steps are executed iteratively, so that the path can
be continuously adjusted on the basis of the real conditions
and situations which can occur during the flight, e.g. wrong
positioning of an agent due to too much wind, failure of a
certain agent, etc. The key aspect of the approach lies in the
way in which information on covered parts are represented,
sent and processed by the agents.

As modelled in Section III, the overall area to be covered is
represented by a rectangle, as well as the single portion which
can be monitored by a sensor. Without loss of generality, we
can perform a change of reference system and consider the
rectangle area always hooked at the origin of a XY Cartesian
system and with the proper width and height. In this rectangle,

Proc. of the 16th Workshop “From Object to Agents” (WOA15) June 17-19, Naples, Italy

138



x

y

Fig. 3. Subdivision in stripes of the area to be covered

flight will be performed by keeping the formation line parallel
to the X axis.

We subdivide the area into stripes by discretising the Y
axis6 (see Figure 3); the height of each stripe is equal to
hsZ that is the height of the rectangle covered by the sensor
at the mission altitude Z. We represent each stripe with a
natural number, called StripeID starting from 0. Since the
area to cover is known at start-up time, stripe subdivision and
numbering can be done before starting the mission.

Each agent, during its mission, holds and updates an Area
Parts Database containing all the area parts already monitored.
Since the parts are grouped in stripes, the database will contain
a set of tuples structures as:

(StripeID , {(XS 1,XE 1), (XS 2,XE 2), . . . , (XSn,XEn)})
Here, StripeID identifies the stripe, while XS i and XE i indi-
cates the stripe parts which has been already covered. The set
of stripe parts is ordered, i.e. XS 1 < XE 1 < XS 2 < XE 2 . . .
The size of each part XE i −XS i is not forced to be equal to
wsZ , i.e. the width of the sensor area: indeed, when several
close sensor areas are covered, a stripe union operation, for
such areas, is performed, as depicted in Figure 4.

The path planning approach is based on such stripe cover-
age data. The leader periodically starts a distributed aggrega-
tion query by sending, in broadcast, a data packet made of:

• Its node identifier (LeaderID);

• A sequence number, which increments each time a
new query is started;

• An agent ack field, represented as a bitmap in which
each bit indicates whether the correspondent agent has
answered;

• The Area Part Database with the stripe parts already
covered by the leader.

6We could also use X axis for discretisation, instead of Y , this choice does
not affect the validity of the algorithm but only the way in which the path is
then computed by the leader.

input1

input2

...

inputn

output

Fig. 4. Stripe Union Operation

Each agent receiving this query7 performs the following
operations:

• It first check that the LeaderID correspond the its
leader knowledge; if there is a mismatch, the packet
is discarded (this may happen when a leader fails and
a new leader is elected).

• The packet is also discarded if its sequence number
is less than the last sequence number known by the
agent. This is required to avoid duplicated/old data.

• The Area Part Database present in the packet is
merged (through a stripe union operation) with the
same database held by the agent and the result is
replaced in the relevant packet field.

• The proper bit in the agent ack field is set.

The so-modified packet is then re-transmitted in broadcast.
Re-transmission is however not performed when an agent
identifies that it has the same knowledge of all its neighbours
about the covered stripe parts (unless a new aggregated query,
with a new sequence number, is started).

Sooner or later, the aggregation query packet will return to
the leader, containing an updated list of stripes: if the agent
ack field signals that all nodes have been answered, the list
of covered stripes received by the leader can be considered
completed and the next step of the path planning can be
performed. To this aim, the leader computes two possible paths
by following the external borders of the areas not yet covered
(see Figure 5) and then chooses the one which is the closer
to the flock. The chosen path is then smoothed (see Figure 6)
and then followed by the leader itself: all the other agents will
behave in consequence, by following the leader according to
the rules R1, R2 and R3 illustrated above.

7Notice that not all the nodes receive the query, even if it is transmitted in
broadcast: remember that we are considering a wireless transmission system,
on each node, which could not have the adequate power to reach all the agents
of the flock

Proc. of the 16th Workshop “From Object to Agents” (WOA15) June 17-19, Naples, Italy

139



Fig. 5. Possible Paths Computed by the Leader

Fig. 6. Path Smoothing

In performing its flight, each agent will activate its sensor
each time it will pass over a not yet monitored area part,
properly updating its Area Parts Database.

As the mission proceeds, the various parts of the area to be
monitored will be properly covered and the mission will end
when the leader will recognise that the whole area has been
covered: in this case, the agents can return to the base station
and delivered the acquired data.

As it can be understood from the description, the proposed
solution is indeed a mixture of a distributed and centralised
approach. From the overall point of view, the solution is com-
pletely distributed, since knowledge of the entire system, as
well as mission state, is not held by a single agent but properly
spread over the various entities. Surely certain activities, like
path planning, are instead centralised; indeed, this is a choice
by design: in order to ensure total area coverage, flight time
minimisation and over-coverage avoidance, the execution of
path planning in a centralised entity can guarantee that an
optimal solution can be found. However, such a centralised
entity is not prefixed but continuously chosen during the flight
on the basis of the said strategies. Therefore, as it has been
introduced in Section IV-B, the use of a central entity does
not have to be considered as a reliability issue, but the fault-
tolerance is assured by the mechanism described below.

D. Leader Role and Fault Tolerance Aspects

When the leader fails, it stops transmitting its packets and
thus the following situations will occur.

First of all no packet related to overlay construction, and
coming from the (faulty) leader will transit over the network.
After a certain timeout, each agent will recognise that the
entry, in the ADB , relevant to the faulty leader is no more
updated: so it can delete the entry, assuming that the leader is
no more working, and elect a new leader. This process will be
executed by all the agents, but using different reaction times
tied to the fact that information spreading on the network,
based on gossiping, is not immediate; therefore, it will be exist
a temporary interval in which all agents do not agree on which
node is the leader; however, this condition is not a problem:
basically, agents do not directly follow the leader but their
neighbours, therefore they will continue to stay in formation,
naturally compensating the latency required to elect the new
leader and thus continuing the mission.

A similar situation occurs when a non-leader agent fails.
Also in this case, the relevant entry in the ADB will, sooner
or later, become too old and thus discarded. The new overlay
network will be built without the faulty agent so that a
consistent knowledge of the new formed system is obtained,
and the system itself can continue to behave correctly.

V. SIMULATION RESULTS

To validate the approach proposed in this paper, a graphic
software simulator has been developed, a screen-shot of which
is reported in Figure 7. The simulator has been implemented
in C++ using the Qt graphic libraries and allows a researcher
to setup a mission, inspect its evolution and evaluate its cor-
rectness. The initial setup consists of establishing the number
of agents and the area to be covered, as well as mission
parameters, such as the sensor area size and the maximum
range of the transmission system. After setup, the simulation
can be started: first the agents self-organise in the flock
and then they start the area monitoring mission. During the
mission, a user can:

• dynamically add and remove agents (agent removal
can be used to simulate faults);

• modify the area to be explored;

• inspect the databases of each agent;

• add/modify packet-loss percentage in order to simulate
problems in the wireless system.

Simulation is time-driven: at each “time tick”, a service
procedure is executed for each agent, which performs all the
activities described in this paper. Subsequently, the graphic
display is updated by drawing the agents in their proper
position and heading, together with some lines which represent
the overlay network created; the area portions covered during
the mission are then progressively coloured.

Proc. of the 16th Workshop “From Object to Agents” (WOA15) June 17-19, Naples, Italy

140



Fig. 7. Screenshot of the simulator

VI. CONCLUSIONS

This paper has described a decentralised approach to drive
a set of UAVs in performing an aerial monitoring mission
of a wide area. The approach is based on two algorithms.
The first one drives agents to form a flock with certain given
characteristics. The second one allows agents to follow a
certain path which ensures the overall coverage of the area
to be monitored.

The approach has been validated by means of a simulation
study, performed using an ad-hoc software tool. The simulation
campaign performed showed that the approach is able to drive
UAVs in executing the right monitoring task, ensuring fault
tolerance and area coverage, also minimising over-covering
and thus mission duration.

Future work will aim at making the simulator more realistic
by including the knowledge of some real physical aspects, such
as the real area size, flight speed and UAV dynamics, in order
to perform a proper evaluation of the real mission time. The
implementation on real UAVs will be then a further step.

VII. ACKNOWLEDGEMENTS

This work is partially supported by projects PRISMA
PON04a2 A/F and CLARA funded by the Italian Ministry of
University.

REFERENCES

[1] M. Bernardine Dias, M. Zinck, R. Zlot, and A. Stentz, “Robust
multirobot coordination in dynamic environments,” in Robotics and
Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International
Conference on, vol. 4. IEEE, 2004, pp. 3435–3442.

[2] N. Bouraqadi and A. Doniec, “Flocking-based multi-robot exploration,”
in Proceedings of the 4th National Conference on Control Architectures
of Robots, Toulouse, France, 2009.

[3] Z. J. Butler, A. A. Rizzi, and R. L. Hollis, “Complete distributed
coverage of rectilinear environments,” 2000.

[4] M. B. Dias and A. Stentz, “A market approach to multirobot coordina-
tion,” DTIC Document, Tech. Rep., 2000.

[5] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot
coordination: A survey and analysis,” Proceedings of the IEEE, vol. 94,
no. 7, pp. 1257–1270, 2006.

[6] P. Fazli, A. Davoodi, and A. K. Mackworth, “Multi-robot repeated area
coverage,” Autonomous robots, vol. 34, no. 4, pp. 251–276, 2013.

[7] Gbor Vsrhelyi, Csaba Virgh, Gerg Somorjai, Norbert Tarcai, Tams
Szrnyi, Tams Nepusz and Tams Vicsek, “Outdoor flocking and forma-
tion flight with autonomous aerial robots,” in Submitted for publication
to the IEEE/RSJ International Conference on Intelligent Robots and
Systems, ser. IROS ’14, Chicago, IL, USA, 2014.

[8] C. S. Kong, N. A. Peng, and I. Rekleitis, “Distributed coverage with
multi-robot system,” in Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on. IEEE, 2006, pp.
2423–2429.

[9] J.-C. Latombe, “Approximate cell decomposition,” in Robot Motion
Planning. Springer, 1991, pp. 248–294.

[10] ——, “Exact cell decomposition,” in Robot Motion Planning. Springer,
1991, pp. 200–247.

[11] I. Rekleitis, A. P. New, E. S. Rankin, and H. Choset, “Efficient
boustrophedon multi-robot coverage: an algorithmic approach,” Annals
of Mathematics and Artificial Intelligence, vol. 52, no. 2-4, pp. 109–142,
2008.

[12] C. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’87. New York,
NY, USA: ACM, 1987, pp. 25–34.

[13] J. Schleich, A. Panchapakesan, G. Danoy, and P. Bouvry, “Uav fleet
area coverage with network connectivity constraint,” in Proceedings of
the 11th ACM international symposium on Mobility management and
wireless access. ACM, 2013, pp. 131–138.

[14] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun,
and H. Younes, “Coordination for multi-robot exploration and map-
ping,” in AAAI/IAAI, 2000, pp. 852–858.

Proc. of the 16th Workshop “From Object to Agents” (WOA15) June 17-19, Naples, Italy

141


