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Abstract 

Research is a continuous phenomenon. It is recursive in nature. Every research is based on some earlier research 

outcome. A general approach in reviewing the literature for a problem is to categorize earlier work for the same 

problem as positive and negative citations. In this paper, we propose a novel automated technique, which classifies 

whether an earlier work is cited as sentiment positive or sentiment negative. Our approach first extracted the 

portion of the cited text from citing paper. Using a sentiment lexicon we classify the citation as positive or negative 

by picking a window of at most five (5) sentences around the cited place (corpus). We have used Naïve-Bayes 

Classifier for sentiment analysis. The algorithm is evaluated on a manually annotated and class labelled collection 

of 150 research papers from the domain of computer science. Our preliminary results show an accuracy of 80%. 

We assert that our approach can be generalized to classification of scientific research papers in different disciplines. 

Conference Topic 

Citation and Co-Citation Analysis. 

Keywords 

Document Classification, Sentiment Analysis. 

Introduction 

Research is a continuous phenomenon. It is recursive in nature. Every research is based on some 

earlier research outcome. A general approach in reviewing the literature for a problem is to 

categorize earlier work for the same problem as positive and negative citations. Tanguy (2009) 

argues that the multi category classification scheme is needed for Humanities and Social 

Science (HSS). Author claims that the negative citations are less than 10% in HSS, however, 

for scientific research, these are not very rare. Scientific research provides quantitative results 

and thus a critique and rebuttal is viable, as compared to qualitative results in HSS research. 

With the help of CRC, research scholar can easily classify the type of reading materials, along 

with other researcher's point of view in citing the same paper. CRC will help the scholar to 

gather information at a much faster pace than conventional approach of manually looking up 

and classifying research papers. They can look up for the type (Class) of reading material 

required namely positive or negative, thereby, minimizing the time to find relevant research for 

a topic of interest. The goal of CRC is to be used as a resource for assisting researcher scholars. 

 

This paper is organized as follows, it first introduces some formal terms and preliminaries. In 

Related Work section we argue about various other related researches and discusses similarities 

and differences with our approach. Then we define our methodology beginning with description 

of our dataset, extraction techniques adopted, selection of features, and lastly running 

classification. Further we analyse our experimental results based on which we provide 

conclusion. 



Preliminaries and Formalism 

In this section we introduce some formal terms and preliminaries for better understanding of 

technicalities in paper. 

Terms used with citation analysis 

In Citation Analysis, root paper or cited paper is the research paper that is being cited in another 

research paper. Citation is a quotation that is used to refer a root paper. Citing Paper is the 

research paper that consists of a reference to the root paper.  Cited Area is the paragraph in 

citing paper with citation of root paper. Terms are inspired from Nanba (2000) and explained 

in Figure 1. Referencing Style are the writing styles that one uses to organize the information 

when writing a research paper. 

 

Figure 1. Citation Analysis 

 

Terms used with sentiment analysis 

In Text Categorization, Tokenization is the process that breaks down sentences of text into 

word(s) for further processing. It is done using Regular Expressions, which is a generic way of 

representing a string to be searched from a large corpus of text. Sentiment Analysis is done to 

classify the corpus into positive or negative categories based on the words extracted during 

tokenization. Lexicon is a dictionary that consists of key words which are divided into positive 

and negative categories. Positive Incrementer and Negative Incrementer are dictionaries, 

besides the Lexicon that were used in our approach, consisting of phrases of words that were 

observed to be inclining a particular sentence to have an overall positive or negative weight.   

Terms used with experimental study 

In our experimental study, Target Data is the data extracted from the cited paragraph. Citation 

Types are the different categories into which target data are placed after sentiment analysis.  

Naïve-Bayes Classifier is a popular machine learning algorithm for text categorization. Monte-

Carlo Technique is a computational algorithm that rely on repeated random sampling. 

Precision, Recall and F1-score are calculated, taken from Manning (2008). 

 

Precision is the fraction of retrieved instances that are relevant, calculated through the equation: 

P = |{Relevant Documents} ∩ {Retrieved Documents}| / |{Retrieved Documents}| 

 

 



Recall is the fraction of relevant instances that are retrieved, calculated through the equation:  

R = |{Relevant Documents} ∩ {Retrieved Documents}| / |{Relevant Documents}| 

 

F- Measure is a measure that combines precision and recall. It is the harmonic mean of precision 

and recall. The balanced F1-score, calculated through the equation: 

F1 = 2*(Precision*Recall) / (Precision + Recall) 

Related Work 

Authors have taken different strategies in approaching citation analysis, Tanguy (2009) 

provides a detailed overview. One of the approaches focuses on identifying citation categories 

or classification schemes, while other focuses on identifying cue words that can help better 

annotation and classification of papers. 

Classification of Citations 

Nanba (2000) classified the cited papers into three categories, manually, using cue words. 

Author discusses a prototype system called PRESRI that relies on citation relationships. 

Keeping this research as our base we enhanced and automated the procedure. We applied 

different methods to classify the papers using lexicon dictionaries instead of cue words. 

Tanguy (2009) discusses an automated technique to identify the citation and uses linguistic cues 

for analysis of French humanities articles through natural language processing techniques. The 

approach presented is quite similar to CRC in terms of the lexicon used to identify which 

category a particular sentence belongs to. However, their approach is limited to APA style 

referencing only, while we have extended it to AMA and IEEE, as well. 

Cohen (2006) discusses importance of automated classification of document citations in 

reducing the time spent by experts in reviewing journal articles. The paper proposes the use of 

classification of research papers in the field of medicine; specific to the field of drugs and their 

use in treatment of diseases. Through an automated classification process, the paper puts 

forward a review system for a selected list of drugs. Thus classifying the drug to be either 

positive or negative, against a disease. Similar to the approach of CRC, the paper looks for the 

cited areas which contains the reviews of the drug. The paper then extracts these areas to 

perform classification. The domain of their research is specific to medical science whereas our 

approach can be generalized to variety of disciplines. 

Mostly techniques reviewed are focused on one discipline while we assert that our approach 

can be generalized to classification of scientific research papers in different disciplines, since, 

instead of cue words for a specific domain, we are using generalized sentiment lexica used in 

Evert (2014). Author identified sentiment lexica as one of the most important features along 

with bag-of-words unigrams and bigrams, for machine learning classifier. 

Classification Schemes 

Agarwal (2010) developed an eight-category classification scheme, annotated using that 

scheme, developed and evaluated the supervised machine learning classifiers using annotated 

data. As discussed in the paper, inter-annotator agreement could not be reached for overlapping 

categories and author suspect that this issue could increase with huge collection of articles. To 

overcome this issue, we have combined the overlapping categories. 

Teufel (2006) proposed a scheme of 12 categories for any citation being made. Table 1 shows 

another such scheme suggested by Spiegel (1977) with 13 different motivations which could 

lead an author to cite any research paper. This scheme is discussed in detail, because it is based 

on scholarly articles published in science studies.  

 

 



Table 1. Reasons for Citing a Paper 

1. Cited Paper provides historical facts regarding undergoing Research Question. 

2. Continuing a Research from point where Cited paper finished. 

3. Citing paper to use its ideas, definitions, terms in a Research 

4. Citing a paper to refer to data also used in Current Research. 

5. Citing a paper to refer to data it used and to draw similarities from the Data used. 

6. Citing Paper contains Data and Material used throughout different phases 

7. Citing Paper to adopt part/full methodology it adopted for a certain task. 

8. Citing paper verified/proved a statement or enlightens with its details.  

9. Citing Paper evaluated positively. 

10. Citing Paper evaluated negatively. 

11. Ongoing Research giving proof of statement in Cited Paper. 

12. Ongoing Research giving rebuttal of statement in Cited Paper. 

13. Giving a new interpretation to the findings/statements in Cited Paper. 

 

In our approach we have grouped these citation types into three generalized sentiment types: 

 TYPE-I: Positive  

 TYPE-II: Negative  

 TYPE-III: Neutral 

Referring to Table 1, Type-I strictly refers to 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, Type-II strictly refers 

to 10, 12, 13 and Type-III refers to 4. However 1, 6 may fall under all three Types and 2, 3 may 

fall under Type-I and Type-II. Such overlapping nature of categories creates dis-agreement 

between annotators Agarwal (2010) and Tanguy (2009), so we narrowed down the categories. 

Methodology 

In this paper, we propose a novel automated technique, which classifies whether an earlier work 

is cited as sentiment positive or sentiment negative. Our approach first extracted the portion of 

the cited text from citing paper. Using a sentiment lexicon we classify the citation as positive 

or negative by picking a window of at most five (5) sentences around the cited place (corpus). 

The algorithm is evaluated on a manually annotated and class labelled collection of 150 research 

papers from the domain of computer science. Complete process is explained in Figure 2, and 

reference to the example papers are provided. Root paper followed by citing papers. 

Dataset Collection 

We collected a data set consisting of 150 research papers, manually downloaded in pdf format 

from Google Scholar. To further strengthen our basis for citation types we devised manual 

annotation of citation corpuses from all research paper in our data set and then manually 

classifying them into Type-I and Type-II. The results are shared in Table 2. 

 

Table 2. Distribution of Papers According to Their Types. 

 Type-I Type-II Total 

Papers Dataset         109 41 150 

 

 

 



 

Figure 2. Overview of CRC 



Annotation  

All the annotation were done manually by the co-authors and the results were further cross-

checked by other co-authors. Inter-annotator agreement was fair, however, to further strengthen 

our annotation results, we feel that annotation should be done by individuals who have at least 

a post graduate degree in their fields related to the corpus. In future, we plan to work with PhD 

Scholars in the field of computer science to provide annotated data in their field of research. 

Referencing Styles  

For every root paper that we queried, we stored its top 10 citing papers. To make our approach 

more robust we included research papers of different writing styles such as Institute of Electrical 

and Electronics Engineers (IEEE) Standard Style, American Psychological Association (APA) 

Style and American Medical Association (AMA) Manual of Style. We summarize variations in 

referencing style in Table 3, along with percentage of sample papers in our dataset. 

 

Table 3. Types of Research Paper Collected. 

 IEEE APA AMA 

Reference Style 

 

 

In-Text Citation 

[1] Name Paper, 

Journal. Year 

 

[1], [1,2] 

Name (Year).       

Paper, Journal 

 

Name (year) 

1. Name Paper, 

Journal. Year 

 

[1], [1,2] or 1-2 

Percentage of papers  67% 15% 18% 

 

Data Conversion Module 

Root paper and all its citing papers were placed in separate folders. The first step was to convert 

all pdf files in dataset into text format. Python Library ‘PDF Miner’ Shinyama (2010) was used 

for file conversion. All converted text files were placed in their respective folders. 

Data Extraction Module 

To process data for analysis phase we extract useful information from all text files in the dataset. 

From root paper we extract the title and the abstract section. Similarly, from citing paper we 

extract the title of citing paper, reference (number) which points to in-text citations made to 

root paper, reference to root paper, corpus, continuing reference i.e. reference to any research 

paper other than root paper in corpus region, an annotated label assigned to each citing paper. 

First the title of each root paper is extracted, but pdf-to-text conversion tend to modify 

formatting style, making it difficult to construct a regular expression to identify title of each 

root paper. Instead we programmed a Scrapping Module API in Python Venthur (2014). 

Scrapper searches the Input on Google Scholar and successfully scraps the title of target paper. 

Extracted title and its path on our system directory are stored in a CSV file.  We use these root 

paper titles to search for reference in their respective citing paper. First we extract the reference 

section in each citing paper, let’s call this cropReference. Next we search for root paper’s title 

in cropReference. Depending on the format style of citing paper a particular regular expression 

execute to correctly extract reference. Following this, with the help of reference we form 

another regular expression to extract corpus region of maximum five (5) sentences. We search 

and remove any sentence in our corpus that includes reference to any paper other than our root 

paper. All this information is stored in a XML file. Process is explained in Figure 3. 



Figure 3. Overview of Data Extraction Process 

 

Parsing XML file 

XML Parser creates a separate file for each citing paper containing its Class (Label), Reference 

(number) and Corpus. These files were then placed in respective subfolder (Type I, Type II). 

Feature Extractor 

Once the dataset is ready, we made features upon which citing papers will be automatically 

classified. For this purpose we included following lexicon dictionaries: 

 Positive and Negative lexica: Derived from Evert (2014) consisting of approximately 

28,000 distinct positive and 31,000 distinct negative words. 

 Positive Incrementer and Negative Incrementer: Derived from Nanba (2000). Each 

includes approx. 75 entries that are unigrams, bigrams or trigram. 

Feature Extractor iteratively reads each files. It uses Text Blob library Loria (2014) in Python 

for tokenization. First corpus is tokenized into sentences to compare with Positive and Negative 

Incrementer, and then each sentence is tokenized into words to compare with Positive and 

Negative Dictionaries. For each match and mismatch between token and dictionary we create 

a feature-set list, composed of Token (‘1’ for match and ‘0’ for mismatch) and Label of that 

citing paper. 

Running the Classifier  

We have used Naïve-Bayes Classifier for sentiment analysis, using Scikit-learn library 

Pedregosa (2011) and NLTK library Bird (2009). Due to limited data, we had to decide what 

portion of feature-set will go into training and what portion of feature-set will this classifier 

test. In our first approach we trained and tested our classifier on all of feature-set. Next, we used 

different techniques to distribute feature-set in training and testing sets. 

Experimental Study 

In this section we discuss our findings for data extraction and classification. For data extraction 

our results show 86% accuracy, which is not only higher than the estimated precision score of 

80% by Tanguy (2009) for syntactic parsing, but also we have generalized the approach for 

different referencing styles. Few papers from which we could not accurately extract data were 



either due to pdf-to-text conversion limitations for images and remaining were because 

referencing style were not correctly followed by the author. Results are explained in Table 4. 

 

Table 4. Accuracy of Data Extraction. 

 Successfully 

extracted 

Issue with pdf-to-

text conversion 

Referencing Style 

not followed 

Total       

count 

Papers Dataset  130 5 15 150 

 

After extracting the data from the citing papers, the data was analysed with the help of Naïve-

Bayes classifier. Our preliminary results show an accuracy of 80%, explained in Table 5. 

 

Table 5. Results Obtained Using Naïve-Bayes Classifier. 

Category Precision Recall F1-score                    Support 

Type I 

Type II 

0.84 

0.25 

0.94 

0.10 

0.89 

0.14 

109 

21 

Average/Total 0.75  0.81 0.77 130 

 

The reason for low recall for Type II was because we had only 21 papers that were manually 

annotated to be negative while the rest of the 109 papers were annotated to be positive. Due to 

lack of data our classifier couldn't accurately train itself on Type II papers. To further strengthen 

our result and remove low sampling bias of Type II papers we have used two approaches. In 

our first approach, the data set was adjusted to 42 research papers. For testing and training we 

used 50% data. To balance Type I and Type II papers, the technique was applied on different 

window sizes of Type I papers, while using all 21 papers of Type II. The windows were set to 

0-21, 22-43, 44-65, 66-87, 88-109 and 110-125. Different accuracy were obtained at each 

window and the average accuracy was approximately 78%. Results are explained in Table 6. 

 
Table 6. Result and Distribution in Feature-Set. 

No. Test Type Window (distribution of Type I papers) Accuracy 

1 Train=21, Test=21 0-21 81% 

2 Train=21, Test=21 22-43 77% 

3 Train=21, Test=21 44-65 71% 

4 Train=21, Test=21 66-87 85% 

5 Train=21, Test=21 88-109 67% 

6 Train=21, Test=21 110-125 85% 

Average (78%) 

 

Secondly, the data was analysed using the Monte-Carlo Technique, to obtain stability in 

classification. Further changes were made to the Type I windows accordingly, explained in 



Table 7. The window size was now set to 0-21, 1-22, 2-23 and so on, while keeping all 21 

papers of Type II. The average accuracy obtained was 72%. 

 

Table 7. Result with random sampling. 

No. Test Type Window (distribution of Type I papers) Accuracy 

7 

 

 

 

 

 

 

Train=21, Test=21 

 

 

 

 

 

 

0-21, 1-22, 2-23, 3-24, 4-25, 5-26, … ,      

22-43, 23-44, 24-45, 25-46, 26-47, … ,       

35-56, 36-57, 37-58, 38-59, 39-60, … ,       

50-71, 51-72, 52-73, 53-74, 54-75, … ,      

60-81, 61-82, 62-83, 63-84, 64-85 … ,       

75-96, 76-97, 77-98, 78-99, 79-100, … ,      

85-106, 86-107, 87-108, 88-109 … ,          

96-117, 97-118, 98-119, 99-120, … 

Average 

(72%) 

 

Conclusion and Future Work 

The purpose of our paper was to help the research scholars by minimizing the time required to 

find the relevant research, for a topic of interest. In CRC, we proposed to classify the citations 

into three categories i.e. Type-I (Positive), Type-II (Negative) and Type-III (Neutral). A 

researcher now if desires to know any further advancements in paper under study can directly 

refer to Type-I papers, or if he wishes to know any research giving rebuttal of findings, in paper 

under study, can refer to Type-II paper. Our preliminary results show an accuracy of 80%. We 

assert that the technique can be generalized to classification of scientific research papers. 

Currently, support for Type-III papers in CRC is in progress, and we are working on a lexicon 

dictionary with neutral words. In future, we plan to provide a web portal to assist the research 

scholars in automatically searching and downloading citing papers, for a root paper, and 

classification of citing papers into sentiment categories. 
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