
Separation of Considerations in Event-B Refinement

toward Industrial Use

Naoto Sato
1,2

, Fuyuki Ishikawa
1,3

1 The University of Electro-Communications, Japan
2 Yokohama Research Laboratory, Hitachi Ltd., Japan

3 National Institute of Informatics, Japan

Abstract. Formal method Event-B supports refinement as a means to divide a

proof problem into different ones. To make the divided proofs easier to prove,

we need to find an appropriate dividing strategy in refinement. At the same

time, we should consider some other conditions given as proof obligations, and

also how to formalize the specification. We think one of the reasons why Event-

B is not accessible for developers is the simultaneity of these considerations in

refinement. In this paper, we propose a modeling guideline to separate the con-

sideration of the dividing strategy from Event-B formalism. We use a tree-

structured diagram to design the dividing strategy in our guideline. We show a

case study to confirm the feasibility of our approach.

Keywords: Event-B, refinement, modeling guideline

1 Introduction

Event-B is a well-established formal method for developing systems and proving their

safety requirements. In industrial development, because specification description

needs to be developed in natural language to agree with clients, we think Event-B can

be useful to prove specification which has been developed in an informal way rather

than to develop proved specification. However, Event-B is still unfamiliar to develop-

ers, specifically designers and architects. We think that's because Event-B is not so

accessible for them. So, we should present Event-B in a more accessible way when

we educate developers. Especially, we think refinement is one of the most difficult

aspects to present to developers.

In Event-B refinement, we can express and prove a safety requirement on an ab-

stract formal model of the system. Design details of the system are later gradually

introduced into the formal models. During refinement, the proved safety requirement

is preserved if and only if the abstract model simulates a concrete model, which is

called simulation constraint in this paper. This means that refinement enables us to

divide the proof on the concrete model into the proof on the abstract model and the

simulation constraint. However, except for the simulation constraint, refinement

doesn't provide any other guides or constraints on how to divide the proof problem by

gradually refining the abstract model into concrete models. In this paper, we call a

strategy to divide a proof problem Dividing Strategy. Moreover, we think modeling

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 43

specification in Event-B is not so trivial. We have several choices to formalize a given

specification in Event-B semantics. It means we also have to consider how to formal-

ize the specification during refinement.

Motivation. For the reason above, we have to consider the following three things at

the same time in Event-B refinement: (1) how to follow the simulation constraint; (2)

how many details of the specification should be introduced, as a dividing strategy; (3)

how to formalize the specification in Event-B. Due to the difficulty of the simultane-

ous considerations, we think Event-B looks inaccessible for developers in learning.

Accordingly, we are motivated to separate (2) the dividing strategy from (1) and (3) to

reduce the difficulty. We also think the separation of the dividing strategy helps us

motivate developers to learn Event-B. The separated dividing strategy makes it possi-

ble to share the outline of the proof that guarantees the correctness of the safety re-

quirement with other developers and their clients.

Contribution. Our contribution in this paper is to propose an Event-B modeling

guideline in which (2) the dividing strategy is separated from the others, aiming to

reduce the difficulty of the simultaneous considerations in refinement for developers.

In our guideline, we use Dividing Strategy Tree (DST) to design how to prove the

safety requirement in the natural language apart from Event-B formalism. We suggest

that the separation allows us to present Event-B to developers, namely non-experts of

Event-B more accessibly. We also suggest that the separation motivates developers to

learn and use Event-B because they can share the proof outline for consensus with

other people unfamiliar with Event-B. In addition, to separate (3) from (1) within

Event-B, we also propose that the most concrete model should be designed before

refinement based on informally-developed specification.

Structure. The rest of this paper is structured as follows. In Section 2, we briefly

review the Event-B modeling method. We motivate and present our approach in Sec-

tion 3. We propose a modeling guideline with DST in Section 4. We provide an ex-

ample developed according to our proposed guideline in Section 5. We discuss the

benefits and limitations of our approach in Section 6. Related works are discussed in

Section 7. Finally we draw conclusions and suggest future work in Section 8.

2 The Event-B Modeling Method

Event-B represents a further evolution of the classical B-method [2]. Event-B has a

semantics based on transition systems and simulation between such systems. Event-B

models are organized according to two constructs: contexts and machines.

Contexts. Contexts specify the static part of a model and may contain carrier sets,

constants, axioms and theorems. Because we will not refer to contexts in this paper,

we omit the details of them.

Machines. Machines specify behavioral properties of Event-B models. Machines may

contain variables, invariants, theorems and events. Variables denoted by v define the

state of a machine. They are constrained by invariants I(v). Theorems are properties

derivable from the invariants. Possible state changes are described by events. An

event e can be represented by the term

e ≘ any t where G(t ; v) then S(t ; v) end ,

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 44

where t denotes the event's parameters, G(t ; v) is the event's guard, and S(t ; v) is the

event's action. The guard states the condition under which an event may occur, and

the action describes how the state variables are updated when the event occurs. The

event's action is composed of one or more assignments of the form x ≔ E(t ; v),

where x is a variable in v, and E is an expression.

Refinement. Refinement provides a means to gradually introduce details of the speci-

fication into models [1]. A concrete machine can refine another abstract machine. At

the moment, any behavior of the concrete machine should be simulated by a behavior

of the abstract machine (simulation constraint). The simulation constraint is repre-

sented as logical proof assignments, which are called proof obligations.

Refinement can be done hierarchically, and a property proved in the abstract ma-

chine is then preserved in the concrete machines. Since the abstract machine contains

fewer details than the concrete machines, the safety requirement in the abstract ma-

chine is usually easier to prove. Refinement enables us to divide a proof problem into

different ones. As mentioned above, we call a strategy to divide a proof problem by

multistep refinement Dividing Strategy.

3 Approach

To reduce the difficulty of the simultaneous considerations of (1), (2) and (3), we aim

to separate (2) the dividing strategy from (1) and (3) in Event-B formalism. We intro-

duce a modeling guideline using DST. DST has a hierarchical tree-structure of speci-

fication descriptions similar to Fault Tree [3] or KAOS goal model [4]. The safety

requirement is put at the top node of the DST. We also put specification descriptions

that achieve the safety requirement as children nodes. Subsequently, the child specifi-

cation implements the parent at each branch (Fig. 1). We can use natural language to

describe the specification in each node. We call a node of the tree evidence in this

paper. Behaviors and properties of the system, as well as those of the environment can

be written as evidences. Properties deduced from the specification are also described

as evidences. We call a child evidence CEi and a parent evidence PEi for each branch

i (i ∈ [1..k]). The parent evidence can be satisfied if all the child evidences are satis-

fied, that is, for j (j ∈ [1..m]), (CEi1 ∧...∧ CEij ∧...∧ CEim) ⇒ PEi.

Parent Evidence PEi

Child Evidence CEi1 Child Evidence CEi2

branch i

Fig. 1. Structure between parent evidence and child evidences in DST

Each branch i in DST also represents refinement step i in Event-B. Suppose that the

abstract machine Mi-1 is refined by the concrete machine Mi at refinement step i, we

would design Mi so as to meet the child evidences CEij for all j. The definition of the

statement "a machine meets an evidence" is given as follows.

Definition 1. An Event-B machine M meets an evidence E if and only if:

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 45

When E describes a property S, then M has an invariant representing S.

When E describes a behavior B, then M has events representing B.

There are several ways to design a machine so as to represent behaviors. When the

evidence consists of pre-condition and post-condition of the behavior, we can intro-

duce an event which has a guard as the pre-condition and an action as the post-

condition. Or, when the behavior defines an execution order of events, we can intro-

duce guard conditions into the events to control the order. To completely separate

DST from the Event-B formalism, we don't define a formal notation of evidences or

direct translation from evidences into machines. Because the parent evidence PEi

should also be met in Mi by refinement, any evidences which are met in Mi should be

consistent with PEi. Then, CEijs that achieve or implement PEi in DST can come up

for the evidences met in Mi. This means DST shows us how many details of the speci-

fication should be introduced in Mi, that is, the dividing strategy. Note that if Mi meets

all CEijs, it may not satisfy the simulation constraint. Namely, the conjunction of CEijs

is not a sufficient but necessary condition for the simulation constraint.

4 Modeling Guideline with Dividing Strategy Tree

In this section, we present the details of our proposed modeling guideline.

Conditions. We assume that the following two conditions are satisfied in the guide-

line: (Cond1) informal specification of the system and the environment has been de-

veloped, namely, it is given for Event-B modeling; (Cond2) the safety requirement is

informally described as a property in the system specification.

Modeling Procedure. We now describe steps to build an Event-B model. We omit

the design of the referred contexts in the procedure.

Step 1. Design the most concrete machine Mk+1 that includes all the details of the

given specification.

Step 2. Put the informal safety requirement as the top evidence in the DST.

Step 3. Design the machine M0 in which the safety requirement is met.

Step 4. In the DST, choose a parent evidence PEi which has no child evidence (called

leaf evidence), and develop child evidences CEij which represent given specification

or a property deduced from the specification. The child evidences CEij achieve or

implement PEi.

Step 5. Refine the machine Mi-1 into the machine Mi. Mi should meet CEij for all j, and

also satisfy the simulation constraint. If the simulation constraint can be proved, then

go to Step 6. Otherwise, go back to Step 4 to update the DST.

Step 6. If there is a leaf evidence which represents a deduced property, then go to

Step 4 for branch i = i + 1. Otherwise, go to Step 7.

Step 7. Refine the machine Mi into the most concrete machine Mk+1. If the simulation

constraint can be proved, then terminate the procedure. Otherwise, go back to Step 4.

In our guideline, we also suggest that the most concrete machine Mk+1 should be

designed at the first step based on the informal given specification in order to separate

the consideration (3) from (1). The formalization designed in Mk+1 will be referred to

in the following steps. In Step 2, the safety requirement that is informally given is put

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 46

as the top evidence. After designing the initial machine M0 at Step 3, the DST is ex-

tended with child evidences CEij at Step 4. The extended branch is labeled by i. We

refine the machine Mi-1 into Mi by introducing CEijs at Step 5. If we can't design Mi

which satisfies the simulation constraint, we will go back to Step 4 to update the DST.

At the moment, unproved formulae in Step 5 can be referred to because the unproved

formulae might represent missing or correct child evidences which will be met in Mi.

In step 6, we check if all the leaf evidences represent given specification. The given

specification is not dividable into child evidences anymore. In Step 7, we refine Mi.

into the most concrete machine Mk+1 with the remaining specification. The remaining

specification is part of the given specification which is not introduced into the Event-

B model yet. After finishing the procedure, we have the completed DST that shows

"how the safety requirement was proved".

5 Example

To confirm the feasibility of our proposed guideline, we have two case studies on a

simple file transfer protocol in [1] and switchover mechanism in a fault tolerant sys-

tem. In this paper, we demonstrate our approach on the case study of the protocol.

Specification. As described in [1], the protocol is used by two agents. One agent

called sender intends to transfer a sequential file denoted f to the other agent called

receiver. The received file is denoted by g. The sequential file is transferred in n items

called blocks. The most recent transferred block is denoted by d. The number of times

of sending and receiving are denoted by s (s ∈ [1..n+1]) and r (r ∈ [1..n+1]). Accord-

ingly, the block sent by the sender for the s
th

 time is denoted by f(s). The same applies

to g(r). To alternate sending and receiving, the parity bits p and q are introduced. The

bit p is inverted with every sending, and the bit q is inverted with every receiving.

Step 1. In this case study, we can see the most concrete machine in [1].

Step 2. The safety requirement for the protocol is also defined in [1] as follows.

Safety Requirement: After the transfer completes, g is equivalent to f.

We also put the requirement description at the top of the DST as shown in Fig. 2.

Step 3. The machine M0 is designed to meet the invariant "inv0: r=n+1 ⇒ g=f" that

represents the safety requirement. The event receive in M0 is restricted to meet inv0

by the parameters p_g and p_r which denote the next values as follows.

receive ≘ any p_g, p_r where grd1:p_r=n+1 ⇒ p_g=f, grd2:p_g ∈ 1‥n ⇸ D, grd3:p_r

∈ 1‥n+1 then act1:g ≔ p_g, act2:r ≔ p_r end

Step 4 for branch 1. The top evidence E0 is chosen as a parent evidence. We develop

the evidences E1, E2 and E3 as the child evidences that achieve E0.

Step 5 for branch 1. We refine M0 into M1 so as to meet the evidences E1, E2 and

E3. E1 is represented as the invariant inv1 "s=r ∧ r>1 ⇒ 1‥r−1 ◁ g = 1‥s−1 ◁ f".

The right side of the symbol "◁" is restricted to the left side. The evidence E2 is repre-

sented by the guard grd1 of the event send as below.

send ≘ where grd1:s = r, grd2:s ≠ n + 1 then act1:s ≔ s + 1 end

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 47

By grd1, the event send occurs only when s is equal to r. The guard grd2 is derived

from s ∈ [1..n+1]. We also introduce a similar guard into the event receive for E3.

Since M1 designed this way is refined by M0, we can prove the simulation constraint.

Step 6 for branch 1. Because there are the leaf evidences E1, E2 and E3 that are

deduced from the given specification, we go back to Step 4 for branch 2.

Step 4-6 for branch 2. We develop the child evidences E4, E5 and E6 to implement

E1. They are introduced into the refined machine M2 as invariants. We choose E2 as

the next parent evidence, and then we go back to Step 4 to create the branch 3.

We could similarly design the machine M3 to M7. Finally, we found there is no leaf

evidence which represents a deduced property. Then we moved to Step 7.

Step 7. We refine the machine M7 into the most concrete machine M8. Since we suc-

ceeded in the proof of the simulation constraint, we terminate the modeling.□

Finally, we completed the development of the Event-B model according to the pro-

posed guideline. The completed DST is shown in Fig. 2. The proof statistics of our

developments including the other case study is shown in Table 1.
[E0] After the transfer completes, received

file g is equivalent to the original file f.

[E16] Receiving b doesn't
change the latest block in
sent file or transferred b

[E15] Before b is
received, the latest
block in sent file is b

[E5] After b is
transferred, the

latest block in g is b

[E6] After b is
transferred, the latest
block in sent file is b

[E1] After b is transferred,
g is equivalent to sent file

[E2] Only when s and r are equal,
sender can send b

[E3] Only when s is one greater
than r, receiver can receive b

[E13] Before b is received,
g is equivalent to sent file

[E7] When sending,
p is inverted

[E10] When p and q
are equal, sender

can send b

[E12] When p and q
are not equal,

receiver can receive b

[E9] When receiving,
r is incremented to

be equal to s

[E11] When sending, s
is incremented to be

one greater than r

[E8] When receiving,
q is inverted

[E4] After b is transferred,
g is equivalent to sent file

except for b

[E14] Receiving b doesn't
change g and sent file

[E17] Sending b
doesn't change g or

sent file

branch 1

branch 2 branch 3 branch 4

branch 5 branch 6

branch 7

Deduced Property

Given Specification

Safety Requirement

Fig. 2. Completed Dividing Strategy Tree

Table 1. Proof Statistics

Examples Machines
Proof Obligations

Auto Proof Interactive Proof Total

1 A file transfer protocol 9 68 1 69
2 Switchover mechanism 11 114 7 121

6 Discussion

Although refinement is useful for proof, it's not always utilized because of its difficul-

ty. In fact, in the industrial project Dependable Software Forum [13] to popularize

Formal Methods in Japan, some people tried Event-B, but didn't use refinement. For

those people, we aim to make refinement more accessible and motivating by the sepa-

ration from Event-B formalism. In particular, we think it's important to present re-

finement more intuitively in a time-limited lecture or training course. So, we intend to

extract the essential part of refinement for developers, which is "how the safety re-

quirement was proved". This encourages them to understand what refinement is, and

what impact refinement has on their development. We think one can say the same

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 48

thing in other formal methods. For example, in a model checking method, the abstrac-

tion of the specification should be considered to avoid the state explosion at the same

time as the formalization. Similar separations may be effective in the education.

Because one has to follow only the simulation constraint in Event-B refinement,

there are various ways to refine the system. This could be an advantage for experts of

Event-B because they are allowed to develop the model as they like. On the other

hand, that could be a disadvantage for non-experts. In our guideline, we restrict the

modeling approach to top-down by DST. Top-down means to start modeling from the

whole system and divide it into its components. It's also called outside-in approach in

[10], and has been applied in a number of case studies [11] [12]. We think this re-

striction is helpful for non-experts because the restriction makes how to start refine-

ment clearer. However, our guideline is not effective for systems which are not suita-

ble for the top-down approach. Another limitation is that our guideline only aims to

separate the considerations, but does not solve the difficulties of the considerations

(1), (2) and (3) themselves. This means developers who model the system according

to our guideline should be capable of offering solutions for the considerations.

7 Related Work

There are a number of approaches to take advantage of tree-structured diagrams in

Event-B refinement. In [5], the authors provide a method in which KAOS goal mod-

els [4] are translated into Event-B models. The authors of [7] also propose an ap-

proach to utilize a tree-structured diagram based on KAOS for Event-B refinement.

These methods are similar to our approach in that the parent goal is translated into the

abstract machine, and its child goals are translated into the concrete machine. Howev-

er, because they aim for direct translation from goals to machines, the descriptions of

goals are limited to semantically correspond to events of Event-B. This means that

developers have to consider not only (3) but also (1) when they develop the goal

models, even though these considerations are done in the natural language.

In contrast, we don't define how to describe evidences in DST, or translation into

Event-B in our approach. This enables us to completely separate (2) the dividing

strategy from the others. In general, the difference between [5], [7] and our approach

is how to split the assigned consideration (1), (2) and (3). It's difficult to clearly say

which way is generally better because the amount of considerations is the same either

way. However, we think at least that our approach must be more accessible for non-

experts because (2) the dividing strategy is completely independent from Event-B

formalism. Moreover, our approach is better to share the dividing strategy as a sketch

of the refinement with other people who are not familiar with Event-B.

Another group in [9] works on the traceability between KAOS and Event-B. Since

they only use the leaf goals, goal refinement in KAOS doesn't correspond to machine

refinement in Event-B, unlike [5], [7] and our approach.

From a more general perspective of refinement support, the work of [6] proposes a

Refinement Planning Sheet to overview refinement. Unlike our approach, it doesn't

intend the separation from Event-B formalism. The authors in [8] also provide an

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 49

approach to generate a refinement plan which has the highest evaluation according to

their criteria. However, the generated strategy is not always appropriate. For this rea-

son, we do not remove, but rather separate, (2) the dividing strategy in our approach.

8 Conclusion

In this paper, we presented a modeling guideline to make refinement more accessible

and motivating for developers in learning Event-B. Our approach allows them to sep-

arate (2) the dividing strategy by DST from (1) the simulation constraint and (3) the

formalization in Event-B. We did two case studies, one of which was presented in this

paper. Based on those results, we confirmed the feasibility of our guideline.

As future work, we plan to ask developers to try our guideline. We would need to

evaluate how accessible and motivating our guideline is in practice in terms of how

much time and stress there is in modeling. In addition, comparative evaluation with

other related approaches referred to in Section 6 is also important.

References

1. J.-R. Abrial, Modeling in Event-B: System and Software Engineering, Cambridge Univ.

Press, 2010.

2. J.-R. Abrial, The B-book: Assigning Programs to Meanings, Cambridge Univ. Press, 1996.

3. W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl, Fault Tree Handbook

(NUREG-0492), U.S. Nuclear Regulatory Commission, Washington, D.C., January 1981.

4. A. van Lamsweerde, Requirements Engineering: From System Goals to UML Models to

Software Specifications. Wiley, 2009.

5. A. Matoussi, F. Gervais, and R. Laleau, A goal-based approach to guide the design of an

abstract Event-B specification. In Engineering of Complex Computer Systems (ICECCS),

2011 16th IEEE International Conference on, pages 139–148. IEEE, 2011.

6. S. Nakajima, A Refinement Planning Sheet, Rodin User and Developer Workshop, Uni-

versity of Duesseldorf, 20-22 September 2010.

7. K. Traichaiyaporn, T. Aoki, Refinement Tree and Its Patterns: A Graphical Approach for

Event-B Modeling Formal Techniques for Safety-Critical Systems, Communications in

Computer and Information Science, Volume 419, 2014, pp 246-261

8. T. Kobayashi, S. Honiden, Towards Refinement Strategy Planning for Event-B, Proceed-

ings of DS-Event-B 2012: Workshop on the experience of and advances in developing de-

pendable systems in Event-B, Nov. 2012.

9. C. Ponsard and X. Devroey, Generating high-level Event-B system models from KAOS

requirements models. In Actes du XXIIème Congrès INFORSID, France, 2011.

10. S. Hudon and T.S. Hoang, Development of control systems guided by models of their en-

vironment, Electronic Notes in Theoretical Computer Science, vol.280, pp.57-68, 2011.

11. DEPLOY Deliverable D16, D2.1 Pilot Deployment in Transportation (WP2), 2009.

12. P. Inna, T. Elena, and L. Linas, Development of Fault Tolerant MAS with Cooperative Er-

ror Recovery by Refinement in Event-B, Proceedings of DS-Event-B 2012: Workshop on

the experience of and advances in developing dependable systems in Event-B, Nov. 2012.

13. Information-technology Promotion Agency, Reports on Dependable Software Forum,

2012, http://www.ipa.go.jp/sec/softwareengineering/reports/20120928.html (in Japanese)

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 50

http://www.ipa.go.jp/sec/softwareengineering/reports/20120928.html%20(in

