
Evaluation of Formal Reasoning Abilities Using a
Concept Inventory

Joseph E. Hollingsworth1 and Murali Sitaraman2

1 Department of Computer Science
Indiana University Southeast, New Albany, IN 47150, USA

jholly@ius.edu

2 School of Computing
Clemson University, Clemson, SC 29634, USA

murali@clemson.edu

Abstract. To understand, assess, and improve student abilities to perform ana-
lytical reasoning about the correctness of object-based software they build, we
have developed a two-part reasoning concept inventory. The inventory is a col-
lection of multiple choice questions. The inventory makes use of a minimal set
of formal notations to model and present operations on objects. The inventory
has been administered in two required courses for CS majors at Clemson, and
will be offered again this semester. An analysis of results helps clarify what
concepts were well understood and where instructional improvements are need-
ed. Furthermore, since the questions are multiple choice, wrong answers also
provide useful information.

Keywords: Education, specification, reasoning, and software engineering

1 Introduction

A central goal of all Computer Science education is to teach students how to reason
analytically about the code they develop. Analytical reasoning, when introduced as an
alternative to testing for finding and fixing errors, helps students understand better not
only that the software they build works but also why it works correctly. To reason
analytically about engineering software involving objects, students also need to un-
derstand formal specifications of objects that describe the behavior of operations in
mathematical terms. To assess student learning, we have developed an initial reason-
ing concept inventory (RCI) focusing on skills needed to reason analytically about
software correctness. The inventory can provide the CS education community a
common tool for assessment of formal reasoning and eventually facilitate a compari-
son of alternative instructional approaches and lead to better instructional practices.

Like other concept inventories, the RCI is a collection of multiple choice questions.
Goldman [4] points out that “CIs assess students’ conceptual understanding, not their
problem solving, design, or interpersonal skills.” A focus on analytical reasoning

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 59

mailto:jholly@ius.edu

distinguishes the RCI from [10], where the emphasis is on language-independent
concepts typically taught in first year software development courses. The RCI shares
some goals with [5], where a time-intensive interview process using a “think aloud”
approach has been used to identify common misconceptions with propositional logic
and student ability to translate English to Boolean expressions. The RCI includes
questions to assess student abilities on higher levels of Bloom’s taxonomy [12] (e.g.,
at the application/analysis level), because it is at these higher levels that a software
developer must succeed in order to reason about software correctness. Therefore, we
have taken a performance-based learning outcome approach to develop the RCI, a
starting point that we hope will evolve into an accepted standard.

2 An Overview of the Reasoning Concept Inventory

The inventory of reasoning principles underlying the RCI is a result of several years
of education research and assessment on teaching formal reasoning at Clemson and
other institutions. The process used to develop it along with its technical basis can be
found in [2, 3] where the reasoning principles are organized into 5 topic areas: Boole-
an Logic, Discrete Structures, Precise Specifications, Modular Reasoning, and Cor-
rectness Proofs. Whereas the first two areas provide the basics for reasoning, the last
three topic areas focus on software engineering aspects of understanding contract
specifications, code correctness reasoning using those specifications, and proofs, and
they are the focus of our prior research and analysis in [3] on which the RCI is based.

The RCI pre/post tests have two parts, each consisting of 10 multiple choice ques-
tions. The number of questions has been kept to a minimum because one goal is for
instructors to be able to administer each part within 15-20 minutes and for students to
be focused. Part 1 is aimed at software development foundations (typically covered in
a second or third course in CS) and is more elementary than the other. It contains 3
questions focusing on precise specification understanding, 5 questions concerning the
role of specification contracts in modular software development and reasoning, and 2
questions emphasizing basic proofs. The more advanced second part is aimed at a
subsequent software engineering course and it has 4 questions targeted at specifica-
tion and modular reasoning aspects with the other 6 devoted to elements of establish-
ing correctness proofs (e.g., loops and invariants).

It has been a challenge to minimize the knowledge base needed to answer the ques-
tions in the RCI while at the same time introducing questions that involve object-
based specifications and reasoning. For questions involving objects we almost exclu-
sively use queues because it is an everyday concept familiar to most students. Our
formal descriptions of queues, where they are explicitly needed in the questioning,
use mathematical strings (similar to sequences except that no positions are involved)
and notations for string concatenation and length that are straightforward to under-
stand. One other notation is used to distinguish input (#x) and output (x) values of
parameters to operations. These notions come from RESOLVE [8,9] the formal speci-
fication language used in our classrooms.

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 60

While the inventory has to use a particular syntax for the notations that are in-
volved, it is easy to see that the specification notations can be changed to suit the
target audience as long as the same reasoning concepts are tested. In other words,
standardizing understanding of analytical reasoning principles does not require stand-
ardizing the use of any particular notation. Any well-known formal specification lan-
guage such as VDM or Z (or others summarized in [7]) can be used for the inventory.

At Clemson, analytical reasoning principles are taught in two required courses: a
second-year course on software development foundations (CP SC 2150) and a subse-
quent course on software engineering (CP SC 3720) which has CP SC 2150 as its
prerequisite. RCI Part 1 was administered before and after the first course and RCI
Part 2 was administered before and after the second course.

3 Elementary Reasoning Concept Inventory

Specific performance-based learning outcomes are summarized in [2] and they guide
the questions for the inventory. Due to space limitations, only some questions are
shown here. What CS educators should note about questions, such as #9 below (and
others not shown) is that the essence of the question is what is important, not so much
the specific data types or mathematical notions. Instead of queues, for example, arrays
or lists, possibly mathematically conceptualized with functions or sequences, respec-
tively, could be used. Same comments apply to the control construct questions in the
next section.

Two questions in the inventory (shown below) concern the idea of modular rea-
soning with the specific learning outcome being students “understand the design-by-
contract principle” [11]. In design-by-contract, the implementer of an operation can
assume that the precondition holds when the operation is called which leads to a more
efficient implementation. Additionally, the implementer must be able to confirm that
the implementation does indeed guarantee the results specified by the post condition.
So the answer expected for question #5 below is “I and IV” (answer choice b). A
related question (#6 below) applies to the calling client. In design-by-contract, the
client is responsible for guaranteeing that the precondition holds prior to calling an
operation with a precondition and then reaps the benefit of being able to assume the
postcondition holds after the call. The correct answer is II and III (answer choice c).

5. In verifying the correctness of code that implements an operation with a re-

quires clause pre and an ensures clause post, the verifier:
I. may assume that pre is true in the initial (or the first) state of the code

II. must prove that pre is true in the initial (or the first) state of the code
III. may assume that post is true in the final (or the last) state of the code
IV. must prove that post is true in the final (or the last) state of the code

a. I and III
b. I and IV
c. II and III

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 61

d. II and IV
e. None of the above

6. In verifying the correctness of an implementation that calls an operation with

a requires clause pre and an ensures clause post, the verifier:
I. may assume that pre is true in the state before the call

II. must prove that pre is true in the state before the call
III. may assume that post is true in the state after the call
IV. must prove that post is true in the state after the call

a. I and III
b. I and IV
c. II and III
d. II and IV
e. None of the above

Question #9 (below) assesses understanding of object-based reasoning that utilizes

mathematical strings to model queue variables Q0, Q1, and Q2. String theory as well
as other concepts are integrated into our curriculum and provide the context for many
of the questions in the inventory. The correct answer for #9 is e.

9. Suppose that in verifying a piece of code the following assertion needs to be

proved (goal): Q2 = empty_string. The assumptions available to prove this
goal are the following, where Q0 and Q1 are values of type Queue and E0
and E1 are values of an Entry E in some other states.

I. |Q0| = 2

II. Q0 = <E1> o Q1
III. Q1 = <E2> o Q2

a. Goal is not provable from the assumptions
b. I only
c. I and II only
d. II and III only
e. I, II, and III

Part 1 of the RCI pre/post test was administered in CP SC 2150 (Software Devel-

opment Foundations) course at Clemson and it contains the three questions above
along with seven others. Detailed contents of this second-year required course (fourth
course in our sequence for CS majors) that introduces Java and covers software engi-
neering ideas and programming language concepts may be found in [6]. Only two to
three weeks of the course are devoted to basic elements of formal specification and
analytical reasoning.

Figure 1 shows the results of administering Part 1 of the RCI in one section of CP
SC 2150 at Clemson during the first semester of 2014. (Though the test was given in

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 62

both sections of the course, only a few self-selected students completed the post test
for the second section; while the student performance—in terms of percentages—was
indeed better than the results for the section reported here, self-selection possibly
biased those results. Therefore, we do not report them here.)

In the chart, each of the 10 questions is represented by two bars, the left hand bar
represents percentage of students that answered the question correctly at the outset of
the semester (pre-test), and the right hand column for the end of the semester (post-
test). The improvements range from 21% for question #2 to 77% for question #1, with
most others in the 50-70 range. While such improvements may be anticipated, they
cannot be taken for granted just because the materials are presented. What is perhaps
more interesting from a pedagogical perspective is the percentage of students who
answered design-by-contract question #5 correctly (70%) versus #6 (50%). This is the
kind of insight a reasoning concept inventory can provide educators.

Fig. 1. CP SC 2150 Results

One important aspect of concept inventory tests is that the distractors (the inferior
or incorrect choices in a multiple choice question) need to be based on common mis-
conceptions held by students for a particular topic. We have been able to gather some
of these distractors through observation in the classroom. Prior to developing the two-
part RCI, we have frequently administered collaborative in-class activities where
students work in pairs to solve problems at the analysis/application level. Some of
these in-class activities are based on the reasoning topics covered by RCI Part 1 &
Part 2. During the activity the instructor moves about the class helping students to
overcome difficulties with the application of a reasoning principle. At this time the
instructor sees firsthand the various misconceptions students have about the reasoning
topics. We have developed many of the distractors found in the inventory test from
these first hand observations.

0.0%

20.0%

40.0%

60.0%

80.0%

1 2 3 4 5 6 7 8 9 10

An
sw

er
ed

 C
or

re
ct

ly

10 Questions - From RCI Test #1

Pre - 35 Students Post - 32 Students

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 63

4 Advanced Reasoning Concept Inventory

The questions in Part 2 of the RCI are at a higher level of Bloom’s taxonomy and
often involve application of the reasoning principles to analyze given instances. Some
of these involve imperative-style code using objects, others involve assertions and
proofs, and yet others a combination. We present a few illustrative questions.

2. Consider the following code, where I and J are integers and “:=” denotes as-

signment.
Max := I + J;
If I > J then

Max := Max – J;
end;
If J > I then

Max := Max – I
end;

a. The code is correct and finds the maximum of I and J.
b. The code has an error that can be fixed by changing the first if-then

statement.
c. The code has an error that can be fixed by changing the second if-then

statement.
d. The code has multiple errors.
e. None of the above

6. Consider the following piece of code. Assume that Queue Q2 is empty ini-

tially.
While (not Is_Empty(Q1)) do

 Dequeue(E, Q1); Enqueue(E, Q2); Dequeue(E, Q1); Enqueue(E, Q2);
end;

a. The code moves the contents of Q1 to Q2 in the same order.
b. The code moves the contents of Q1 to Q2 in the reverse order.
c. The code is wrong if Q1 is empty.
d. The code is erroneous.
e. None of the above.

7. Consider the following piece of code. Assume that the initial value of Queue

Q1 is #Q1 and that Q2 is empty initially. Which of the given invariants is
maintained by this loop, where o denotes concatenation?
While (not Is_Empty(Q1)) do

 Dequeue(E, Q1); Enqueue(E, Q2);
end;

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 64

a. Q1 = Q2.
b. Q1 = #Q1.
c. Q2 is empty.
d. Q1 o Q2 = #Q1;
e. Q2 o Q1 = #Q1.

The correct answer choices for the three questions are (d), (d), and (e), respectively.

Figure 2 shows the combined results of administering Part 2 of the RCI pre/post
tests in two sections of a software engineering course in the second semester of 2014.

Fig. 2. CP SC 3720 Combined Results of Two Sections

Whereas one section of the course covered the reasoning materials minimally (over
3 weeks) and involved only a simple reasoning assignment, the other section covered
the topics over a 5-week period [1]. The results were indeed better for the section with
the extended coverage. An analysis of the post-test is revealing. For example, ques-
tion #2 involves noticing the potential computational Integer overflow/underflow
problem in the first line as well as noticing that the code fails when I equals J; more
students noticed an error in post-test, though they failed to notice multiple errors.
Also, nearly the same high percentage (over 70%) of students answered questions
concerning invariants correctly, involving integers (not shown) or queues (#7).

5 Summary

This paper presents an inventory of questions to assess the conceptual understanding
of analytical reasoning principles. The questions have been guided by performance-
based learning outcomes developed through extensive educational research and as-
sessment over multiple years. Employing the inventory in two courses has made it
possible to pinpoint what works and where improvements are needed. The inventory

0.0%

20.0%

40.0%

60.0%

80.0%

1 2 3 4 5 6 7 8 9 10

An
sw

er
ed

 C
or

re
ct

ly

10 Questions - From RCI Test #2

Pre - 61 Students Post - 58 Students

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 65

can form a basis for continuous improvement and to facilitate exchange of different
formal software engineering methods among educators.

Acknowledgments. We thank members of the RESOLVE/Reusable Software Re-
search Groups and the course instructors Blair Durkee, Cathy Hochrine, and Stephen
Schaub. This research is funded in part by the US NSF grants CCR-0113181, DUE-
1022191, and DUE-1022941.

References

1. Cook, C.T., Drachova-Strang, S.V., Sun, Y.-S., Sitaraman, M., Carver, J.C., and
Hollingsworth, J.E., 2013. Specification and Reasoning in SE Projects using a Web IDE.
In 26th Conference on Software Engineering Education and Training (CSEE&T) IEEE
Computer Society, San Francisco, California, United States, 229 - 238.

2. Drachova, S.V., 2013. Teaching and Assessment of Mathematical Principles for Software
Correctness Using a Reasoning Concept Inventory, Ph.D. Dissertation, Clemson
University.

3. Drachova-Strang, S., Hallstrom, J. O., Sitaraman, M., Hollingsworth, J. E., Krone, J., and
Pak, R., “Teaching Mathematical Reasoning Principles for Software Correctness and Its
Assessment,” ACM Transactions on Computing Education, 2015, accepted to appear.

4. Goldman, K., Gross, P., Heeren, C., Herman, G.L., Kaczmarczyk, L., Loui, M.C., and
Zilles, C.. 2010. Setting the Scope of Concept Inventories for Introductory Computing
Subjects. Trans. Comput. Educ. 10, 2, Article 5 (June 2010), 29 pages.

5. Herman, G.L, Loui, M.C., Kaczmarczyk, L., and Zilles, C. 2012. Describing the What and
Why of Students’ Difficulties in Boolean Logic. Trans. Comput. Educ. 12, 1, Article 3
March 2012, 28 pages.

6. Hallstrom, J. O., Hochrine, C., Sorber, J., and Sitaraman, M. 2014. An ACM 2013 exem-
plar course integrating fundamentals, languages, and software engineering. In Proceedings
of the 45th ACM technical symposium on Computer science education (SIGCSE '14).
ACM, New York, NY, USA, 211-216.

7. Hatcliff, J., Leavens, G. T., Leino, K. R. M., Müller, P., Parkinson, M., Behavioral Inter-
face Specification Languages. ACM Computing Surveys 44, 3, June 2012.

8. Sitaraman, M. and Weide, B.W. 1994. Component-based software using RESOLVE.
SIGSOFT Softw. Eng. Notes 19, 4 (October 1994), 21-22.

9. Sitaraman, M., Adcock, B., Avigad, J., Bronish, D., Bucci, P., Frazier, D., Friedman,
H.M., Harton, H., Heym, W., Kirschenbaum, J., Krone, J., Smith, H., and Weide, B.W.,
2011. Building a push-button RESOLVE verifier: Progress and challenges. Formal
Aspects of Computing 23, 5, 607-626.

10. Tew, A.E. and Guzdial, M. 2011. The FCS1: a language independent assessment of CS1
knowledge. In Proceedings of the 42nd ACM technical symposium on Computer science
education (SIGCSE '11). ACM, New York, NY, USA, 111-116.

11. Meyer, B. 2000. Design by contract and the component revolution. International Confer-
ence on Technology of Object-Oriented Languages (July 2000), 515-515. IEEE Computer
Society.

12. Bloom, B. S., and Krathwohl, D. R. (1956). Taxonomy of educational objectives: The
classification of educational goals. Handbook I: Cognitive domain.

Copyright © 2015 for this paper by its authors. Copying permitted for private and academic purposes. 66

http://dl.acm.org/author_page.cfm?id=81100614430&coll=DL&dl=ACM&trk=0&cfid=497376993&cftoken=28342590

