
pNear: combining Content Clustering and Distributed
Hash Tables

Ronny Siebes

Vrije Universiteit Amsterdam, The Netherlands
ronny@cs.vu.nl

Abstract. Full-text search is a challenging problem in Peer-to-Peer (P2P) sys-
tems. Currently two promising directions to solve this problem are (1) distributed
indexes like hash-tables (DHTs) and (2) semantic overlay networks (SONs) which
can be divided into systems that cluster peers with similar content based on term
overlap and systems that map both the content and queries on a shared semantic
data structure. In this paper we present the pNear system that combines DHTs
with clustering via term overlap and show that we are able to tackle some im-
portant disadvantages that hold for the individual approaches. We evaluate our
approach via simulations based on a large and realistic data-set that we have con-
structed for this purpose, and which will be useful for similar experiments by
others.

1 Introduction

Undisclosed content, lack of privacy and the possibility to censor data, are seen as im-
portant disadvantages of the centralized approach of today’s popular search engines.
Firstly, in such a centralized approach, the owner of the server has complete control
over which content and in which order the content is presented to the user. The draw-
back of this approach is that authorities could force the search engine not to show some
content that they do not like. Secondly, much data on the web is dynamically generated
via databases and therefor are very difficult to crawl by search engines. Often this is
by intention of the provider because it wants a unique access point for users to find its
data, guaranteeing user traffic to the web-site and/or keeping full control over the data.
Thirdly, also privacy is an important issue that is in principle not guaranteed by cen-
tralized search engines. Namely, search engines easily can connect IP-addresses with
queries and can make a profile of the users behind it. Peer-to-Peer systems, where no-
body is in control, are in principal much more difficult to be used for tracing the behav-
ior of users. These three issues are important reasons for doing research on P2P-based
search engines.

In this paper we propose a Peer-to-Peer system named pNear, where peers describe
their content by a set of terms. pNear combines distributed indexing based on Dis-
tributed Hash Tables (DHT) together with clustering peers with similar content descrip-
tions without depending on a shared data-structure like in pSearch [11] and Bibster [5]
or a complete distributed index like in GridVine [2]. We show that only a small part of
the terms in the content descriptions need to be indexed via DHT to still guarantee a

good recall and precision, even when a peer is not clustered due to an empty expertise
description or posts a query that is not related to its expertise. The next section provides
a brief overview of existing work on DHTs and semantic overlays. Section 3 shows
our model that combines methods that are described in section 2. Section 4 presents an
empirical validation via simulation experiments. Section 5 concludes the work.

2 DHTs and Semantic Overlays

2.1 DHT

Distributed hash tables (DHTs) are currently seen as an important building block for
peer-to-peer systems for storing and allocating content in a completely decentralized
way [1, 8, 10, 9]. This allows each node to function independently and collectively form
the complete efficient search system without any central coordination. The general idea
of DHTs is that each item shared on the network is hashed to a unique key, and that this
key together with the content (or a pointer to it) are efficiently routed to the unique peer
responsible for that key. In this way, each peer is responsible for storing the content
(or a pointer to it) that is associated with the key. In principle, all DHT based systems
provide two functionalities:store(key, object) storing anobject identified by itskey,
andsearch(key) which returns theobject (when it exists) from the peer whose network
identifier is numerically closest to thekey. The current systems based on DHTs provide
these efficient key lookup and storage algorithms needing onlyO(log(N)) messages
per search and storage, whereN is the number of peers in the network. There are also
some disadvantages with standard DHT approaches: firstly, there are the administration
costs needed to maintain the network overlay during content updates and at peer joins,
leaves and failures. This results in much maintenance traffic over the network when
there are many updates or when peers frequently join and leave the network. Secondly,
when the data distribution is extremely skewed, for example in document distributions
on the web that follow a Zipf-distribution, additional load-balancing algorithms on top
of DHT are needed to equally distribute data over the network to prevent node bottle-
necks. Thirdly, in standard DHT approaches each key is mapped to one peer, which
means that when this peer for whatever reason does not respond, the content cannot be
found on the network.

2.2 Semantic Overlays

Peers that keep pointers to other peers which have similar content as themselves form a
Semantic Overlay Network (SON). Edutella [7] is a schema based network where peers
describe their functionality (i.e. services) and share this with other peers. In this way,
peers know about the capabilities of other peers and only route a query to those peers
that are probably able to handle it. Although, Edutella provides complex query facilities,
it has still no sophisticated means for semantic clustering of peers and their broadcasting
does not scale well. Gridvine [2] uses the semantic overlay for managing and mapping
data and meta-data schemas, on top of a physical layer consisting of a structured peer-
to-peer overlay network, namely P-Grid, for efficient routing of messages. In essence,

the efficiency of the search algorithm is caused not by smart forwarding queries based
on the semantic overlay, but by applying the underlying DHT approach for mapping
terms to peers.

From this point, due to our focus, we only look at systems where the goal is an effi-
cient search mechanism based on routing queries to peers that are semantically closest
to the content of the query.

One way to do this is that the content of a peer is classified into a shared term
vector where each element in the vector contains the relevance for that given peer for
the respective content. pSearch [11] is such an example where document indices are
distributed through the P2P network based on document semantics generated by Latent
Semantic Indexing (LSI) [3]. The search cost (in terms of different nodes searched and
data transmitted) for a given query is thereby reduced, since the indices of semantically
related documents are likely to be co-located in the network. In pSearch each peer
has the responsibility for a range for each element in the semantic vector, e.g.([0.2 −
0.4], [0.1− 0.3]). Now all vectors that fall in that range are routed to that peer, meaning
that, following the example vector, the vector[0.2333, 0.1939] would be routed to this
peer and[0.1322, 0.1939] not. One disadvantage of pSearch is that new documents in
the network are ‘folded’ into the existing semantic vector, which means that when there
are new terms in the documents that are not in the existing vector, they will not be
used in the routing process. This means that when the content in the network changes
frequently, also the computationally expensive LSI method has to be applied very often.

Another approach is based on random walk clustering, where peers with similar
content are going to know each-other by doing random visits [12]. The problem of this
approach in the domain of full-text searches, is what information a peer has to tell to
another peer so that they are able to determine if they are related or not. When there
is no shared data-structure (like a fixed set of terms) in which they can describe their
content, the whole content has to be shared. As a result, much data has to be shared
between peers for determining closeness. To reduce this problem, solutions have been
proposed in which peers describe their content in a (much smaller) set of terms that
are shared by all peers in the network. Mostly these terms are organized in a topic
hierarchy which allows a shared distance metric to determine the semantic similarity
between terms by looking for example to the path distances in the graph. A peer knows
about the expertise of other peer’s by analyzing answers or advertisement messages
where the shared terms have to be extracted from or are given explicitly [4]. In this way
peers know peers that are semantically related to its own expertise descriptions. Given a
query, the shared distance metric allows to forward queries (described by a shared set of
terms) to neighbors of which their expertise description is semantically closely related
to the query which is much more efficient than sending the query to random peers.

The specific advantages of Semantic Overlays are threefold:

– Peer autonomyEach peer can, in principle, have its own distance metric, peer se-
lection mechanism and/or advertisement policy. This allows peers, for example to
keep their neighbor list or similarity metric secret. Also peers can decide at any
time to change their visibility on the network by sending advertisement messages.
Also a peer can choose a shared distance matrix or topic hierarchy or create its
own data-structures that it could share with other peers. The quality of the routing

process only depends on how effective the clustering process is and how effective
individual peers are in determining a subset of its neighboring peers which have a
good chance of answering the query.

– Automatic load balancingWhen some content is very popular, the semantic cluster
on that content will contain many peers. In this way, load balancing is an emergent
property of the network.

– Robustness/fault toleranceWhen peers leave the network or do not respond to a
query, the only consequence is that they probably will not be asked a next time
until they send new advertisement messages or are recommended by other peers. In
contrast, most DHT approaches have to move routing tables to other peers in order
to restore the overlay.

The problem of most SON approaches is that they either rely on a shared data-
structure (distance matrix, topic-hierarchy or term-vector) in which the content has to
be described and/or rely on the assumption that the queries of a peer are related to
its own content and that a peer also has content that allows it to cluster itself into the
overlay. These assumptions are not always realistic. In the next section we propose an
approach that combines DHT with SON which benefits from the advantages of both
approaches but where the combination levers out the individual disadvantages.

3 pNear: combining Expertise Clustering and Distributed Indexes

In this section we informally describe our approach of combining methods that we de-
scribed in the previous section. At the end of this section we argue how our system
resolves the problems of the individual drawbacks of the methods that our system de-
pends on.

In pNear, besides sharing content, peers play two additional roles, namely that of
expertise cacheand ofexpertise register. The word ’expertise’ should be read as a set of
terms that describe the content from a peer together with its network identifier. Exper-
tise registers are distributed indexes that map terms to peers that registered themselves
as experts on these terms. The registering process is as follows: when a peer joins the
network and/or has new content, it summarizes its content that it shares by a set of
terms that we nameexpertise descriptions. After that, a small random set of terms from
the expertise descriptions are selected for registering where each term from this set is
hashed to a unique key that serves as the identifier of theregister messagethat has to be
routed, via DHT algorithms, to the peer (register) that is responsible for the key. These
register messages each contain the term that was hashed, the sending peer and its exper-
tise description. In this way a register which is responsible for a given termt contains
a set of peers with their expertise descriptions that registered themselves on the termt.
The process of storing and retrieving content mapped to keys is very efficient, because
it is based on the DHT algorithms [pastry, chord, can] that only needO(log(N)) mes-
sages (whereN is the number of peers in the network) to retrieve or store a key and
the mapped content. The registering process is not only meant for distributing expertise
descriptions to registers so that they can be used in the query process, but also to allow
the registering peers to know other peers that registered themselves at the register on

the same terms. Namely, when a register message is processed by a register, it returns a
register result messagecontaining pointers to peers that are similar together with their
rankings based on a shared similarity measure on the expertise descriptions. Now that
the registering peer has some pointers to related peers, the clustering process starts.
Namely, the peer sends anadvertisement messageto some of the peers (which were
returned by the register) containing the senders expertise description. In this way the
receiver gets to know the sender and when its expertise is semantically similar, it stores
the peer in itsexpertise cache. Expertise caches therefor will contain pointers to peers
that have similar content to the peer that maintains the cache. It also looks in its own
expertise cache for peers that are semantically close to the sender of the advertisement
message. If some peers are found, they are put together with their rankings in anad-
vertisement result messageand sent back to the initiator of the advertisement message.
In this way also the sender gets to know even more peers that have similar content to
which it can repeat the advertising process. This process stops till a given maximum
number ofadvertisement rounds.

The query process is started when a user initiates a query on the peer that represents
that user on the network. First, the peer abstracts the query, e.g. via stemming and re-
moving stop-words, into a set of terms that is used to compare the similarity between
the query and expertise descriptions that it and others will encounter in the query dis-
tribution process. Next, the peer looks in its local expertise cache for peers of which
their expertise descriptions are semantically close to the terms in the query abstraction.
When there are enough peers these are selected to send thequery messagesto contain-
ing the query itself and the query abstraction. The receiving peer tries to answer the
query and looks in its own expertise cache if it knows some peers that are semantically
close to the query abstraction and sends both the eventual answer and the eventual set
of pointers to related peers back via anquery result message. When the initiator of the
query receives the messages it (or the user) decides to continue the query process or
if it is satisfied with the number of answers. It could be that the peer that initiated the
query has no, or not enough, semantically related peers in its expertise cache to send the
query to. This could for example happen when the peer does not share any content on
the network, resulting in no expertise description, or when the user posts a query that
is completely unrelated to the content (and therefor the peers in the cache) that a peer
shares. When this happens, the expertise registers come into place. Namely, first the
terms in the query abstractions are hashed to unique keys that will serve as identifiers
of the register consult messagesthat the peer will send to the registers. A register con-
sult message contains the term that was hashed, the senders identifier and the complete
query abstraction. The routing process of these messages is identical to the expertise
registering process.

Now that we informally described our method we have to show how it circumvents
the drawbacks of the individual methods where it is based on. We do this by showing
results of simulation experiments in the following section combined with the following
argumentation:

The drawbacks of pure DHT again are first its expensive maintenance, where there
is a linear increase of costs with the number of terms that are stored in the network. The
results of the next section have to show that we can reduce the number of terms to only

a fraction of the original set. The experiments also need to show that the maintenance
costs of the semantic overlay are much less than the maintenance of the pure DHT
overlay. Secondly in a pure DHT approach only one peer is responsible for a key space.
When this peer contains a very popular key, the peer may become a bottleneck if it has
not enough bandwidth or processing power to deal with the huge number of requests.
Although in our system there is still one register for each hashed term, the clustering
of related peers allows that, given the assumption that interest and expertise are related,
even when the register does not respond, the neighbors of the querying peer are able to
answer it and/or know some good candidates. Note that the assumption only is needed
in this case where a register does not exist or respond. Thirdly the skewed distribution
of content and queries result that in pure DHT some peers have to store much more
keys and deal with much more queries than other peers. Results need to show that our
method reduces this problem because the method allows peers to have a small fixed
register and cache size and still give good results. The main drawbacks of semantic
overlays are that either they need a shared semantic data structure which is expensive to
update and can be very large or it completely depends on the assumption that peers have
an expertise description and that the expertise of a peer and its interests (the queries) are
closely related. Our method does not depend on a shared semantic data-structure and
in our experiments we let queries originate from peers that are not part of the semantic
overlay and which also have no expertise description from itself.

4 Experimental setup and simulation results

In this section we show how we evaluate our approach and the results by describing the
data set, determining the evaluation criteria and showing the results of our simulations.

4.1 Data set

We built our data set in the following way:

– Query setQ We used SearchSpy1 to crawl a set of real user queries. SearchSpy
offers the possibility to filter out queries that are ’family unfriendly’, which more
or less means that the queries on porn are removed from the set. We chose to use
this filter. The crawling process resulted in a set of 28.606 unique user queriesQ
with an average length of 2.88, a minimum of 1 and a maximum of 15 terms per
query.

– Pointers to web-pagesG For each queryq ∈ Q we used Google2 to find at least 1
and at most 100 web-pages in the English language that matchq and put the URL’s
in a setG. When a query has not a matching web-page, the query is ignored which
happened in 0.06% of the queries. This resulted in a set of 28.589 queries that have
on average 84 URL pointers per query.

1 http://www.infospace.com/info.xcite/searchspy
2 http://www.google.com

– Terms extractions from web-pagesT For eachg ∈ G we crawled the textual
content of the web-page that belongs to the corresponding URL. For each crawled
web page we used a natural language processing tool, called TextToOnto [6], which
extracted the terms that occur at least three times (indication that term is important)
in the documents, removed the stop words and stemmed them. Documents of which
no terms could be extracted are removed from the data set which happened in 40%
of the cases. The crawling process resulted in a set of terms per document. The
average number of terms is 127, the minimum is 1 and the maximum is 2184.

– Simulation QueriesQs Instead of usingQ, we choose to select random subsets
of minimally i and maximallyj (both parameters in our simulation) terms fromT
that will function as queries that peers send during the simulation experiments. The
reason for creating this artificial set is twofold. Firstly it gives us more flexibility to
indirectly play with the number of matching peers that are in the network, namely
queries that contain many terms normally have less answers than short queries.
Secondly, the goal of this paper is to test how effective our approach is in finding
matching expertise descriptions for queries that are subset of those descriptions and
not how able the system is to match real user queries with expertise descriptions
which is a complete different issue and more suitable for research in natural lan-
guage processing. The distribution of the number of matching peers per query is
shown in Figure 1, which is the same for all simulation experiments. As can be
seen, most of the queries have only a few matching peers, which makes the chance
that a peer by coincidence finds the matching peers very small. The average num-
ber of peers that match a query is 34, but note due to the exponential curve most
queries have a smaller number of matches and some queries have many matching
peers. Future work is to play with other distributions.

Fig. 1.The distribution of the number of matching peers per query used in all simulations.

In effect, this data-set allows us to simulate real queries on real web-pages as they
appear on a real search (centralized) search engine, and measure how these realistic
queries on realistic data-sets perform in a distributed P2P setting instead. We believe

that the creation of this data-set in itself is a contribution of this paper. The data-set is
available from the author on request.

4.2 Evaluation criteria

We explore the characteristics of our system by defining a set of evaluation criteria of
which we think are an accurate measure of user satisfaction and bandwidth usage.

– Peer recall per roundRecround

|Ptotal relevant

⋂
Pqueried relevant|

|Ptotal relevant|
=
|Pqueried relevant|
|Ptotal relevant|

The peer recall per round states the cumulative fraction of the relevant peers in the
networkPqueried relevant that are queriedPqueried relevant until the current query
roundround. This measure can be seen as an indication for user satisfaction. As
we will see, the optimal policies differ for distinct recall levels which means that
the optimal settings of the network depends on the recall requirements from the
users.

– Average number of messages per query#Qmsgs The average number of mes-
sages used to resolve a query. It is an indication of the bandwidth usage of the
system.

– Average number of advertisement messages per register process#Amsgs When
a peer has registered its expertise at some registers, it uses the set of returned and
known pointers to peers that are closely related to its own expertise for advertising
its expertise and to find more related peers. When this peer decides to send adver-
tisement messages to these peers, direct messages are used, because the peer knows
the network address of the peers. This average number of advertisement messages
together with the number of register messages can be seen as the costs of maintain-
ing the semantic overlay.

4.3 System parameters

In this subsection we describe the parameters that we implemented in our simulation
platform. To keep the number of experiments within reasonable proportions, we un-
fortunately cannot do all permutations of set of values for the different parameters. To
keep our document readable, we fix some of the parameters with default values shown
in Table 1. The default and static values of these parameters are found by performing
random experiments and choose those that gave good results.

4.4 Results

In this subsection, we show four different sets of experiments in which we variate four
parameters that had much influence on the results. For each set we show a figure that
gives for 1 to 15 query rounds the recall and the average number of query messages
(#Qmsgs) and advertisement messages (#Amsgs) used when the15th round is reached.

Description Value

Total number of nodes in the system 100,000
Maximum number of expertise descriptions in a peer’s cache 50
Maximum number of expertise descriptions in a peer’s register 20
Maximum number of recommendations given by a register 20
Maximum number of recommendations given by a cache 30
Maximum number of advertisement rounds per advertisement initialization 5
Maximum number of neighbors selected per advertisement round 4
Minimum and maximum number of terms in query 1,6
Maximum number of neighbors selected per query round 7
Total number of queries per simulation experiment 10.000
Average number of terms to register selected from expertise description 3

Table 1.Static and default values for the parameters in the simulations

Number of terms selected for registering.Figure 2 shows the influence of the number
of terms that a peer selects from its expertise description for the registering process.
When 3 out of 127 terms (resulting in 3×2log(100, 000) = 50 direct messages needed
to store the object in the DHT overlay) are registered and on average 17.8 advertisement
messages are sent, on average 86.4 query messages are needed to find around 31% of
the on average 32 peers relevant peers in the network of 100K peers (Fig. 1). This means
that this recall of 31% is reached by50 + 17.8 + 91.7 ≈ 160 direct messages. For 20
terms and almost the same number of advertisement- and query messages, a recall of
43% is reached. It is important to look at the slope of the curves: the gain of recall per
round gets smaller after each round where more registered terms means a more steep
curve than one with less registered terms. Summarizing, these results show that with a
fraction of the terms and a few advertisements, a good recall can be reached.

Fig. 2. Influence of varying the average number of terms that are registered per peer.

The number of recommendations from the cache for a query.Figure 3 shows the in-
fluence of the number of recommendations that a cache maximally returns for a query.
The results indicate that the storage size is much more important than the number of
recommendations. For example, 10-50 (max. 10 recommendations per query and max.
50 descriptions stored per cache) gives better results than 40-40. The slope of the curves
indicate that for the caches with a storage capacity of 30 and more, an small increase of
the number of rounds (or query neighbors per round which is not shown in this paper)
would result in an significant increase in recall. The results confirm that it is no problem
that there is a fixed and relative small cache size (also for the register).

Fig. 3. Influence of varying the the maximum number of recommendations and the maximum
storage size from a cache. The notation in the legend should be read as follows: e.g. 20-50 means
max. 20 recommendations and max. 50 expertise descriptions in a peer’s cache.

The number of advertisements.Figures 4 and 5 show the influence of the number of
advertisements that are send on average per peer per advertisement initialization. The
graphs indicate that both increasing the number of neighbors to advertise to and the
number of advertisement rounds have a positive effect on the recall. The figures indicate
that it is slightly better to have more rounds instead of more neighbors (for example
compare#neighbrs 4 from Fig. 4 with#rounds 4 from Fig. 5, both needing around
17 advertisement messages), which makes sense because in the first case a peer gets
quicker to the right clusters in the network. A disadvantage is that more rounds means
also more time for an advertisement process to finish. The results confirm that only a
relatively small number of advertisements are needed to build the semantic overlay.

5 Conclusion

Distributed Hash Tables and content clustering are both two techniques to improve the
efficiency of searching content in a Peer-to-Peer network. Both techniques have their
own drawbacks which we discussed in Section 2. In this paper we presented the pNear

Fig. 4. Influence of varying the maximum number of neighbors selected per round in an adver-
tisement process

Fig. 5. Influence of varying the maximum number of advertisement rounds.

system that combines both techniques: it uses DHTs to add a functionality to each peer,
making them a kind of ‘yellow pages’ where peers can register expertise descriptions,
which are sets of terms that describe the content that those peers share. The DHT ap-
proach allows a peer to efficiently find registers that are responsible for the terms in the
query. Due to the clustering of expertise, the returned peers by the register ‘know’ re-
lated peers by which the query has a good chance to be answered. In this way the rest of
the potentially correct peers are found. Our simulation results indicate that the method
finds a large fraction of the correct peers for a query originating from an unclustered
peer, where only a small fraction of the terms from a peer’s expertise description need
to be hashed and stored at the registers. Also only a small number of advertisement
messages is needed to build the semantic overlay.

6 Acknowledgments

Research reported in this paper has been partially financed by the EU in the IST project
SWAP (IST-2001-34103). Many thanks to Frank van Harmelen who gave me very use-
ful comments.

References

1. Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran Despotovic, Manfred
Hauswirth, Magdalena Punceva, and Roman Schmidt. P-grid: a self-organizing structured
p2p system.SIGMOD Rec., 32(3):29–33, 2003.

2. Karl Aberer, Philippe Cudré-Mauroux, Manfred Hauswirth, and Tim Van Pelt. Gridvine:
Building internet-scale semantic overlay networks. In Sheila A. McIlraith, Dimitris Plex-
ousakis, and Frank van Harmelen, editors,International Semantic Web Conference, volume
3298 ofLecture Notes in Computer Science, pages 107–121. Springer, 2004.

3. Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and
Richard A. Harshman. Indexing by latent semantic analysis.Journal of the American Society
of Information Science, 41(6):391–407, 1990.

4. P. Haase, R. Siebes, and F. van Harmelen. Peer selection in peer-to-peer networks with
semantic topologies. In Mokrane Bouzeghoub, editor,Proceedings of the International Con-
ference on Semantics in a Networked World (ICNSW’04), volume 3226 ofLNCS, pages 108–
125, Paris, June 2004. Springer Verlag.

5. Peter Haase, Bjrn Schnizler, Jeen Broekstra, Marc Ehrig, Frank van Harmelen, Maarten
Menken, Peter Mika, Michal Plechawski, Pawel Pyszlak, Ronny Siebes, Steffen Staab, and
Christoph Tempich. Bibster - a semantics-based bibliographic peer-to-peer system.Journal
of Web Semantics, 2(1):6, 2005.

6. Alexander Maedche and Steffen Staab. Ontology learning for the semantic web.IEEE
Intelligent Systems, 16(2):72–79, 2001.

7. Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sintek, Ambjorn Naeve,
Mikael Nilsson, Matthias Palmer, and Tore Risch. Edutella: A p2p networking infrastructure
based on rdf. InProceedings of the 11th International World Wide Web Conference, May
2002. schema based searching Presentation: http://www2002.org/presentations/nejdl.pdf.

8. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A scalable
content-addressable network. InProceedings of ACM SIGCOMM ’01, 2001.

9. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. InIFIP/ACM International Conference on Distributed Sys-
tems Platforms (Middleware), pages 329–350, Heidelberg, Germany, November 2001.

10. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord:
A scalable peer-to-peer lookup service for Internet applications. InProceedings of the ACM
SIGCOMM ’01, 2001.

11. C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval using self-organizing
semantic overlay networks. Technical report, HP Labs, November 2002.

12. S. Voulgaris, A.-M. Kermarrec, L. Massoulie, and M. van Steen. Exploiting semantic prox-
imity in peer-to-peer content searching. In10th International Workshop on Future Trends in
Distributed Computing Systems (FTDCS), Suzhou, China, may 2004.

