
Towards a Distributed Architecture for Value
Added Services to Digital Libraries

Maurizio Marchese, Aliaksei Yanchuk, Fausto Giunchiglia
{marchese, yanchuk, fausto }@dit.unitn.it

Department of Information and Communication Technology
University of Trento, Italy

Abstract. Scientific communities are relying more and more on value
added services offered by different systems on top of digital document
repositories and libraries. Current systems, like CiteSeer and Google
Scholar, offer important services to these communities but show their
limitations when it comes to scalability, decentralize control and plan for
a sustainable model for community support. In this paper we propose
and describe a new distributed and service oriented architecture to sup-
port the creation of such services. Our architecture aims at lowering the
technological barriers to build distributed community environments by
providing a small number of key core services and a layered architecture
for extension services.

1 Introduction

Current evolution of software tools for managing, searching and navigating scien-
tific literature materials, both on the Web, digital libraries and local repositories,
is creating a scenario where many scientific communities are starting to rely more
and more on the added value of such services. Different systems are now avail-
able, starting from the pioneering work of CiteSeer [7], the premier repository of
scientific papers for the computer science community, and arriving to the current
beta version of Google Scholar1, a commercially-managed system that proposes
a business model for such academic search engines. Moreover, rumors about new
features in the next versions of the most popular operating systems concern the
availability of advanced and efficient content search capabilities already embed-
ded in the operating system.

Current systems (with some specific differences) support, either internally
or externally, a number of services, among which: crawl and collect documents
from the web, convert them in different electronic formats, automated meta-data
extraction (such as extract citations from the text, identify citations referred
to same papers) and visualize the context of citations in the body of articles.
CiteSeer also ranks papers and authors in various ways, and can identify sim-
ilarity among papers. Google Scholar indexes also commercial digital libraries

1 Look at: http://scholar.google.com



and brings the user to the appropriate portal where she can decides eventually
to purchase the document.

These kind of services have proved a vital resource for academic commu-
nities. However, despite their community value, the future of such services is
uncertain without a sustainable model for community support. As web-based
collaborative environments will become more easily accessible, usable and with
lower maintenance costs, the number and scale of these kind of web communities
will increase. In the current Web, this issue is solved through centralization. Cur-
rent generic search engines (like Google, Yahoo! and others) are best example of
this: they are centralised indexes of generic contents. This is only possible be-
cause (a)these centralised search engines provide a one-size-fits-all-users service,
and (b) the number of information providers is low compared to the number of
information consumers (only 30 million active web sites for an estimated billion
people online, estimates of early 2005 2). Our basic belief is that such a centrali-
sation in web communities in general (and in particular in scientific communities)
is undesirable for multiple reasons:

– as the web becomes more knowledge intensive, avoidance of centralised con-
trol of access to information becomes more an important issue, both techni-
cally (access bottlenecks) and strategically (society at large);

– as the barriers to build, join and maintain such open collaborative environ-
ments will be lowered, the number of information providers will increase and
the centralized model will not scale in the new scenario.

In the present paper we propose a distributed P2P architecture for a renew
version of a CiteSeer-like system, that we call CiteSeer.EU. Such new system
will continue to provide CiteSeer traditional features, but will be capable to
support different knowledge domain as well as to allow aggregation of distrib-
uted resources, using a P2P service oriented infrastructure. To this end, we are
currently working at two levels:

– the first implementation of CiteSeer.EU delivers a centralized community
server architecture which offers a set of value added services,in particular
content enrichment with semantically well-defined meta-data, to the au-
thenticated community users. We are currently developing and validating
a prototype system within a consortium of Universities and research centers
that includes the University of Trento, the University of Siena, CINECA,
itc-IRST as well as a collaboration with the group at Penn State’s School of
Information Sciences and Technology that has developed and is maintaining
the original CiteSeer system.

– to support scalability we are investigating the evolution of such centralized
community server system into a distributed architecture capable to support
secured and dynamic collaboration among knowledge intensive web commu-
nities.

2 from http://news.netcraft.com/archives/webserversurvey.html



In this paper we focus on the second point and present our vision for such
distributed architecture. The remainder of the paper is organized as follows.
In Section 2 we briefly discuss services and limitations of current CiteSeer and
then introduce the main concepts of our distributed architecture. In Section 3
we present our main design choices. In Section 4 we show how the main opera-
tions performed on our system, namely query and search, can be implemented.
Conclusions and future work conclude the paper.

2 CiteSeer.EU Distributed Platform Concepts

CiteSeer [7] is a scientific literature digital library and search engine that focuses
primarily on the literature in computer and information science. CiteSeer was
developed at the NEC Research Institute by Steve Lawrence, Lee Giles and Kurt
Bollacker. It is currently hosted at Penn State’s School of Information Sciences
and Technology under the direction of Professor Lee Giles.

CiteSeer indexes PostScript and PDF research articles on the Web, and pro-
vides a number of features. In particular the system support Autonomous Cita-
tion Indexing (ACI see also [7]). i.e. it can automatically create a citation index
from literature in electronic format. Moreover, CiteSeer also ranks papers and
authors in various ways, and can identify similarity among papers. The critical
parts of the system are those involved in meta-data extraction.

Although current CiteSeer is an excellent research tool, it faces big chal-
lenges to evolve into a digital library tool capable to cope with today growth of
information to be processed. In fact, CiteSeer is a centralized system. Scaling up
centralized system is possible only extensively, but not intensively.

We are pursuing the opportunity to re-design the CiteSeer system based on
current technologies and theoretic research results in order to meet this specific
challenge. To this end we propose to use distributed software technologies to
achieve scalability and performance on low-profile computer hardware.

The new system is going to be a distributed service oriented platform with
up to date tools to cope with the the increased acquisition of sources. The large
data volumes to be processed requires special kind of software and hardware
to handle them in a time-efficient manner. Traditional engineering approach for
such large-scale computation projects was to design a software for massively par-
allel processing (MPP) systems (e.g., using message-passing interface) to spread
the computation load on the CPUs in the supercomputer [3]. Recent years were
characterized by important advancements in the personal computer technologies
and distributed computation techniques such as Service Oriented Architectures
[11] and Grid Computing [4].

Our proposed system wants to leverage from current state of the art distrib-
uted technologies and deliver a new architecture for allowing the user a homoge-
nous access to scientific documents available in both digital libraries and open
Web resources.

A key concept in the proposed new architecture is the notion of Global service:
i.e. the consumable service provided by heterogeneous entities on the physically



highly distributed network environment that is perceived by the service consumer
as a single, integral service entity with a single endpoint in service consumer’s
view. In other words, from end-user’s point of view, employing entire distributed
environment to service user’s request is the same as to employ just local com-
putational facility. Thus, global service is both location- and scale-transparent.
The unique feature of the global service is that global service implementation
is collaboration-oriented. At any given moment of time, a request to the global
service is serviced by the available components located on the network across
control domains that are capable of best-serving the request. Such opportunistic
behavior of the implementation relates both to the concepts and issues investi-
gated in Grid technology and SOA research[8].

The goal of our system is to define and support a number of dynamic global
services to the distributed user audience.

2.1 Core Concepts

Software as a Platform Building decentralized environment of site peers will
require providing software solution that will support complete software life cy-
cle. The ultimate challenge of a decentralized environment is that user groups
will have contradictory requirements for software. CiteSeer.EU addresses this
challenge by adopting the concept of the platform. The proposed architecture
provides both comprehensive software solution for distributed community en-
vironment that is usable out-of-the-box, as well as means to extend and refine
particular platform components, including complete re-implementation, should
participating site choose to do so. The platform will lower the barriers to build,
join and maintain such open collaborative environments.

The Site Concept The site term refers to the installed Platform instance with
optional components deployed on top of the Platform. The site is characterized
by the following properties:

1. Subject to single control domain: site has full control over authentication
and authorization of its users;

2. Homogeneous network environment: the site operates on top of LAN or WAN
network hardware;

3. User auditorium sharing the same software usage interests.

A site can be also described as the software / hardware infrastructure to
support user groups (primarily research-oriented) to securely interact with the
remote groups.

The Community Concept Remote user groups interact by uniting into a
community. A community is a union of numerous sites that unite to pursue a
common goal (typically, common research objective): for instance sites Site0,
Site1, and Site2 form a community by establishing and joining a Virtual Com-
munity Network. The Virtual Community Network (referred to further as VCN )



concept is an extension to the well-know Virtual Private Networking (VPN) [9]
concept. VCN is a dynamic open environment where multiple sites can dynam-
ically join and disjoin, and at the same time securely communicate with each
other via public network infrastructure(such as Internet). The VCN infrastruc-
ture is built upon widely used network security tools and technologies such as
Firewalls, VPNs, encrypted communication (SSL), and connector software pro-
vided by the proposed platform.

Communities, Sites, and User Groups Relations between communities and
sites may range from simplistic to very complicated. Relationship between two
particular sites may be characterized by different degree of friendliness. The
friendliness describes how much SiteA trusts SiteB . Trust may range from neu-
tral (reasonable trust) to friendly (complete trust). Mechanism to ban particular
site are included in the platform.

To structure work of the large user audience, user groups (working groups)
can be created to pursue particular (e.g., research) targets.

Value Added Services In the proposed architecture any kind of value added
service comes as an extension service to the Platform. We envisage a number of
such extension service, among which:

– enhanced support for content enrichment with semantically well-defined meta-
data

– enhanced support for document similarity, classification, clustering and so-
cial network analysis (i.e. analysis of authors social networks, affiliation and
founding agencies networks etc.)

– enhanced support for querying functionalities (template querying, similarity
querying etc.)

3 CiteSeer.EU Platform Architecture

One main challenge to the practical distributed CiteSeer.EU Platform imple-
mentation is the selection of the correct technological paradigm. The platform
goal is to provide maximum pluggability, adaptation, reuse, and shrink-to-fit as
well as enlarge-to-cope features.

Out of all technologies and methodologies available, the Service-Oriented
Architecture [12] (referred to as SOA further on) seams to provide the best
applicability for the purposes of the present platform. Compared to other tech-
nologies and methodologies, its keen characteristic is a clear guidance to define
and build distributed software around well-established technology-neutral func-
tionality re-use. The re-usability trail of the SOA should be distinguished from
the distributed object-oriented technologies, such as CORBA or DCOM. The
Distributed Object Oriented architectures focus on the way a request from one
object is delivered and dispatched on the other object, the mechanics of the



networking. The focus of SOA is mainly platform independence and ease of re-
usability.

The rule of thumb for service-oriented design is design for reuse from the very
beginning [2]. The concept of service is by its very nature software- and platform-
neutral, whereas with other technologies number of limitations apply on the
design, implementation, and software operation. Unlike any other architectures,
SOA itself is so generic that a concrete SOA implementation is necessary to
deliver a software product. Today SOA offers numerous implementations such
as Web Services, Jini, OpenWings, JGroups — these are the widely known ones.
At the same time, it is possible to use several of the SOA implementations
seamlessly within the same project without introducing considerable technical
difficulties.

Moreover, SOA allows designing more reliable self-healing software relatively
to most other alternatives for distributed communications. This minimizes inte-
gration time, which minimizes deploy time for complex systems, such as Cite-
Seer.EU.

3.1 Implementing SOA for CiteSeer.EU

Our overall targets may be broken down into the following major components:

1. Infrastructure services and Software Development Kit (SDK) product line
designed to provide shrink-to-fit capabilities of the deploying organization
and seamless community integration.

2. Security and Data Delivery services providing the functionality baseline.
3. Extended services offering useful services on top of security and data deliver

services.

Effectively, the distributed CiteSeer.EU is designed as a ”platform” since
the out-of-the-box installation would provide little or no utility to the users of
the environment the platform is deployed at. The “bare” architecture is only
a generic architecture about sharing data with anyone. Moreover, the proposed
CiteSeer.EU platform addresses major issues that are to be tackled by the soft-
ware designers to share data in the distributed decentralized community envi-
ronment. Figure 1 illustrates the proposed layered architecture composed of a
core layer of services on top of which users can build extension services, that
may be site-specific, group-specific, or community services.

The notion behind this layered architecture is linked to the concept of ex-
tended SOA (xSOA), as detailed in [10]. xSOA is a stratified service-based ar-
chitecture to attempt to streamline, group together and logically structure the
functional requirements of complex applications that make use of the service-
oriented paradigm. What we propose here is an implementation of xSOA in the
specific context of content distribution.

Our core layer will provide the following basic services:



Gateway Service

Infrastructural Services

Security Service

Data
Delivery

Address
Space

Extension services

Community
(Global) Services

Site Network Boundary (Firewall Perimiter)

Foreign Site
Gateway

CiteSeer
Europe
Platform

Fig. 1. CiteSeer Europe Vertical Architecture

Address Space Service To get any kind of data served to the user, that
piece of data must first be found somewhere. With numerous solutions for meta-
data repositories available on the market (e.g., from major relational database
vendors), our architecture proposes a small yet crucial conceptual difference:
CiteSeer.EU records not where the data is located, but who can provide the
data. The implementation of this functionality is the Address Space Service.

The importance of such approach relates to the flexibility this service sup-
ports, in particular it provides for considerable decoupling from actual storage
solution. To draw a parallel with existing technologies, it is possible to change
a hosting provider for a site and move all the content to a physically different
computer. At the same time Web search engine would still contain accurate data
since the computer will still be identifiable by the DNS name. However, if site
was indexed with IP address instead of DNS name, Web search engine’s data will
be inaccurate. It would not be possible to connect to the Web server based on
results of the query. But what if one would like to change the name of its service?
Presently, the Web search engine would have to re-index the site, although it is
the same site the engine already has in its cache. The Address Space Service is
built to address precisely this kind of challenges.

There are two kinds of “addresses” in the proposed approach: the “data piece
identification” and the “supplier identification”.

The data “data piece identification” is the algorithm to calculate the “in-
dexes” of the data in a way that it is meaningful to other entities in the system.



The theory and the application development experience of the database technolo-
gies over last decades mandates that a tuple stored in the database is accessed
via primary key that is known to the caller prior the database call is placed. We
propose a different approach based on a number of assumptions:

– The data piece identification is expressed as a superposition of atomic in-
dexes, usually provided by the supplier of the data. The superposition is
highly probably globally unique. If several data pieces become ambiguous,
additional atomic indexes can be introduced to disambiguate two pieces of
data, or the duplication would have to be detected and eventually resolved.

– Individual atomic indexes are calculable. At query time, it is possible for a
caller to construct an index that would provide good enough results (from
the point of view of the caller);

– The caller is not required to supply all atomic indexes to the calculation (see
section 4 for more details on the query implementation in this framework)

So the address A(Di) of the ith data piece Di can be formalized as pair:

A(Di) ≡< Ii, Ψj >; (1)

where Ii is the set of individual atomic indexes (i1, i2 . . . in), and Ψj is the j-th
supplier identification.

The “supplier identification” Ψj is a pseudo-address, i.e. the piece of infor-
mation that points out to a resolvable service endpoint that is capable to supply
a data stream for the data piece identification. The technical entity that pro-
vides for this resolution is the Data Delivery Service. The information codified in
the pseudo-address is sufficient to perform unambiguous discovery of the service
endpoint, establish communication, and request data stream.

Data Delivery Service. The service that takes the pseudo-address and data
piece identification and delivers the actual data is the Data Delivery Service.
Functionally, it is decoupled from the Address Space Service on this premise: it
knows how to reach the entities described by the pseudo-address obtained from
the Address Space Service.

The benefit for this design is obvious in the example with the re-allocated
site we presented above. In this case, the Address Space Service will provide that
data piece DPφ may be obtained from the file filei on the web site WebSiteA.
The site may move to a completely different location, and the Address Space will
still be accurate. It is the data delivery configuration that needs to be updated
on this major change. Moreover, this design simplifies the creation of fail over
copies for disastrous situations, such ISP service disruption on one of the sites
of the community. To achieve this, the address space would just need to know
that more than one web site can provide the data for DPφ.

Data Deliver Network: The benefit of having the above separate services
becomes even clearer when these two services are considered in the community
context. Provided that the pseudo-addresses are organized in such a way that



the Data Delivery Service can distinguish between local and external locations of
the data, sharing data between sites participating in the community is equivalent
to sharing the snapshots of the local data with all the participating sites. Given
that the Data Delivery Service knows on the connectivity details, all the data
needed on SiteB that originated on SiteA will be copied locally “on demand”,
with users not even knowing it comes from different site.

The implementation of the proposed approach leads to a new paradigm: the
Data Delivery Network (DNN). DDN is the facility of the overall platform that
should be considered a Virtual Community Network that seamlessly provides
secure data integration and exchange between participating sites and communi-
ties. The Data Delivery Network concept extends the Content Delivery Network3

(CDN) concept. In CDN scenario, there is a centralized content provider and a
large end-user audience that is geographically distributed. However, in our pro-
posed architecture based on VCN there’s no centralized content provider. Along
with actually delivering community-shared data from one site to other sites,
the DDN network should implement P2P routing mechanism (like in [1]) as
well as authenticity mechanism. DDN conceptually consists of two interoperable
services: distributed address space, that stores meta-information about available
data sources and their pseudo-addresses, and pseudo-address resolution and de-
livery service.

This breakdown relates to the information/data source classification in the
following manner:

– Distributed Address Space service maintains data sources;
– Pseudo-address resolution and delivery service allocates physical data source

from the pseudo-address provided and delivers data from it to the user re-
questing it. The service is designed to provide standardized data transmission
interface among different communication end points, thus shielding users and
service providers from technical issues such as routing and interoperability.

Distributed Address Space service is scoped service. The concept of the scope
means that user may easily select the subset of the whole address space where
the search is performed. The end user can easily scope her search: limiting search
on selected digital libraries, sites, or entire community and / or its particular
sub-communities.

The Pseudo-address resolution and delivery service combines the functional-
ity of both Fa cade, Adaptor or Proxy software design patterns [5], depending on
the nature of the entity addressed by the pseudo-address. Practically the con-
crete version of the service can understand only the predefined set of systems and
protocols and transfer mechanisms. The “bare” service is an intelligent caching
framework for different systems plus plug-ins, and communication protocols, in-
cluding non-TCP traffic. In this way the service may be programmed in a manner
that supports re-configuration on-the-fly and addition / removal of the plug-ins.

3 CDN is essentially an overlay network of customer content, distributed geo-
graphically to enable rapid, reliable retrieval from any end-user location. See
http://www.isp-planet.com/technology/cdn connection.html



Other services, namely Security service, Infrastructural Services and Gateway
Service, are part of the core layer, but due to lack of space we will not detail
them here.

4 Querying Functionality

Any kind of data querying functionality (as well as more sophisticated value
added service) comes as an extension service in the proposed architecture. Al-
though it is possible to some degree to compute the address of the requested
data piece, in some cases it is better to offer users other services, such as full-
text search or meta-data search. Such extension services would provide all data
piece addresses that would need to be supplied to the data delivery service.

A number of issues need to be solved to support such functionalities in the
proposed distributed environment:

Data Accounting To understand, how, when, and if the data could be
queried for, we need to describe how the data accounting is implemented. Out-
of-the-box Data Delivery Network installation contains no information at all.
There are five entities involved in the accounting of the data piece:

– The data piece origin, the ODi ;
– The data piece itself, the Di;
– The storage service where the Di is stored: S;
– Address Space service, AS ;
– Data Delivery Service DS .

In our architecture, the storage service , where the Di are located, is an
extension service to the platform. In order for the Address Space Service to
know the Di, and the Data Delivery Service to be capable to deliver it, the Di

should be registered so that:

– Address pair for Di, i.e. A(Di) =< Ii, ΨS >, should be allocated and stored
in the address space,

– the Data Delivery Service should be able to compute Di, i.e. the service
should be able to compute Di from ΨS and Ii.

The Address Space service is a passive service, i.e. it doesn’t search actively
for new data. An example could be that the system installation may be provided
with autonomous agents (such as Web crawlers) that scan the storages available
and inform Address Space and Data Delivery services of the existence of data
pieces.

To search the data in such context, three possible scenarios are possible:

– Knowledge of A(Di) is available prior to query time, and feed it directly to
the Data Delivery Network services;

– Construction of a template of the address is done at query time and used to
perform the lookup query;



– Extension services are called to perform advanced queries and then feed the
resulting address to the Data Delivery Network Services

Template Querying Let us concentrate on the template querying. This is
the mechanism of the Address Space Service to implement the query-by-example
semantics. The qualifying condition for such implementation is that the environ-
ment where data pieces are registered in the Data Delivery Network allows com-
puting the number of individual indexes of the data piece addresses capable to
resolve the A(Di) address almost unambiguously (if ambiguities arise we might
get duplicates or not relevant results).

The template T ∗ =< I∗, Ψ∗ > is a pair of two sets I∗ and Ψ∗, where I∗ is the
set of example indexes the caller assumes the Di would have, and Ψ∗ is the set
of example pseudo-addresses the caller assumes the data pieces may be served
by. The matching function M is a function that checks if template T ∗ is actually
reflected on the data piece address A(Di). We express it formally, as follows:

M : T ∗ → A(Di) ≡
{

Îi = (MI : I∗ → Ii), Îi ∈ Ii

Ψ̂ = (MΨ : Ψ∗ → ΨS), Ψ̂ ∈ ΨS
(2)

Where Îi and Ψ̂ are respectively the subsets of the individual atomic indices and
of the pseudo-addresses that satisfy a given matching criteria. For instance , we
can implement M so that the template T ∗ is said to match the address A(Di)
if ALL example indexes AND pseudo addresses can be reflected on the indexes
and pseudo-addresses of a particular data piece address. Less restricting criteria
can also be applied.

Searching data The method described in the previous section has the big
disadvantage that the user should know the way the individual indexes are cal-
culated to be able to query the service. This may work in small communities.
Larger communities will need to establish facilities where the knowledge of the
individual indexes that make up the data piece identity is not required.

Such services are pure extension to the proposed architecture. Since the Ad-
dress Space knows of the existence of data piece only on the initiative of an
external entity (i.e. indication of URLs where to start the crawling process), ex-
tension service may provide associations between query-answering information
and the data piece address or a template that could be used to query later the
data.

In the example of full-text search, the full text index would be created as an
extension service to the the system. To allow full-text searching, the data pieces
would first be fed to the full-text search service for processing. The latter would
eventually register the data piece with the Address Space Service. Queries based
on full-text will be executed on the full text service. This service would return
addresses or templates that match the results of the query.

5 Conclusions and Future Work

In this paper we have presented a distributed architecture for the management
and use of digital content. The architectural framework is based on P2P-style



architecture to bring the dynamism, extensibility and decentralize control from
P2P system. A P2P approach is also pursued by other groups [6] in the same
context of scholarly publications. Unlike such proposals we based the data ex-
change and delivery mechanisms on Service Oriented Architectures leveraging
platform-independence and the dynamic discovery/bind/invoke mechanism of
both core and extension services. The proposed implementation of a decoupled
Address Space and Data Delivery services is actually the core of the proposed
platform. The purpose of the Address Space service is to track the information
assets of sites and community, while the Data Delivery service provides universal
application-level access point to the data stored in the community. Internally,
the Data Delivery service can use a number of available techniques (P2P rout-
ing, SOA, CORBA, even classic ”client/server” etc.) useful to get the data from
source to requesting user.

The proposed architecture together with the querying functionalities de-
scribed in section 4 provides a number of benefits to the extensibility and trans-
parency of the system:

– Addresses of data pieces may be considered immutable. This means that
search engines may be built on the premise that once the data piece has
been indexed, there’s no need to re-index it again;

– Increased results accuracy. Instead of having references to copies of the same
data piece scattered around community, a single address is returned and the
caller may be selective on the entity that can provide the data piece (for
instance considering nearest geographic location in a Grid environment);

– Template mechanism allows searching similar data pieces based on their
content and their location: e.g., it is possible to use global full-text search
service to get addresses of data pieces, and then construct templates based
on the addresses that could be used to search data on particular sites;

– Inherent specialization. Sites providing extended query services are not re-
quired to have local copies of data they index. This ultimately means that
numerous search services may be offered by sites in the community inde-
pendently from each other that could index entire community data without
actually having a local data copy;

However much more work need to be done to realize and validate our pro-
posed architecture. Our future work includes the implementation of the distrib-
uted architecture using as starting point the current community server architec-
ture version of CiteSeer.EU.

6 Acknowledgments

The Citeseer.Eu project is being lead by Marco Gori and Fausto Giunchiglia and
involves the collaboration of many people, including Lee Giles, Marco Maggini,
Ernesto Di Iorio e Augusto Pucci. All these people are thanked for the continuous
support and contributions to the project.



References

1. B. Liskov A. Gupta and R. Rodrigues. Efficient routing for peer-to-peer overlays.
In NSDI ’04: Proceedings of the First First Symposium on Networked Systems
Design and Implementation, San Francisco, CA, 2004., 2004.

2. Vincenzo D’Andrea Maurizio Marchese Alexander Ivanyukovich, G. R. Gangad-
haran. Towards a service-oriented development methodology. In IDPT ’05: Pro-
ceedings of the Eighth International Conference on Integrated Design and Process
Technology, page 8, 2005.

3. Ralph Duncan. A survey of parallel computer architectures. Computer, 23(2):5–16,
1990.

4. Ian Foster and Carl Kesselman, editors. The grid: blueprint for a new computing
infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.

5. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

6. Jinyang Li M. Frans Kaashoek David R. Karger Robert Morris Scott Shenker
Jeremy Stribling, Isaac G. Councill. Overcite: A cooperative digital research li-
brary. In 4th International Workshop on Peer-to-Peer Systems (IPTPS’05), Ithaca,
New York, February 2005.

7. Steve Lawrence, C. Lee Giles, and Kurt Bollacker. Digital libraries and autonomous
citation indexing. Computer, 32(6):67–71, 1999.

8. Frank Leymann and Kai Gunztel. The business grid: Providing transactional busi-
ness processes via grid services. In ICSOC ’03: Proceedings of the First Interna-
tional Conference on Service Oriented Computing. Lectures Notes of Computer
Science, Springer Verlang, 2003.

9. G Huston P Ferguson. What is a vpn? In Open Signaling for ATM, INTERNET
and Mobile Networks (OPENSIG’98). ACM Press, 1998.

10. M. P. Papazoglou and Dubray. Technical report dit − 04 − 058: A survey of web
service technologies, 01 Feb., 2001.

11. M. P. Papazoglou and D. Georgakopoulos. Service-oriented computing. Commun.
ACM, 46(10), 2003.

12. Mike P. Papazoglou. Service -oriented computing: Concepts, characteristics and
directions. In WISE ’03: Proceedings of the Fourth International Conference on
Web Information Systems Engineering, page 3, Washington, DC, USA, 2003. IEEE
Computer Society.


