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Abstract

This work presents the application of a discrete medical im-
age registration framework to multi-organ segmentation in
different modalities. The algorithm works completely auto-
matically and does not have to be tuned specifically for dif-
ferent datasets. A robust similarity measure, using the local
self-similarity context (SSC), is employed and shown to out-
perform other commonly used metrics. Both affine and de-
formable registration are driven by a dense displacement sam-
pling (deeds) strategy. The smoothness of displacements is
enforced by inference on a Markov random field (MRF), using
a tree approximation for computational efficiency. Consen-
sus segmentations for unseen test images of the VISCERAL
Anatomy 3 data are found by majority voting.

1 Introduction

Organ segmentations are an important processing step in medical image analysis, e.g. for image-
guided interventions, radiotherapy, or improved radiological diagnostics. General solutions are
preferable over organ specific models for large scale image processing. Machine learning approaches,
in particular the popular random decision forests (RDF), have been recently used for multi-organ
localisation [CSB09] and segmentation [GPKC12|, yet for more challenging modalities (e.g. struc-
tural MRI) they have had limited success. This is partly due to the inhomogeneous intensity
variations within and across MR scans. Registration-based multi-atlas segmentation can provide
more robustness by using contrast-invariant similarity measures to guide the alignment of atlas to
patient data. Here, we propose to employ a discrete registration model, which can capture large de-
formations to accurately segment volumes with large differences in patient anatomy and geometry.
Combined with a robust multi-modal similarity metric (self-similarity context) it can be applied
to registering both CT and MRI scans reliably. The method is briefly reviewed in the next section
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and the experimental setting detailed thereafter. The results on both training and test datasets
are discussed in Sec. 4 and compared to some state-of-the-art approaches.

2 Method

Discrete optimisation can capture large motions by defining an appropriate range of displacements
u. It enables a flexible choice of different similarity terms, since no derivative is required. We use
the framework presented in [HJBS13], which defines a graphical model with nodes p € V (with
spatial location x,) that correspond to control points in a uniform B-spline grid. For each node,
the hidden labels f, (from a large quantised set L) are defined as potential 3D displacements
fp = up = {up,vp,w,} between a control point p in the fixed image F' and moving image M.
Edges between nodes used for inference of the pair-wise regularisation costs R(fp, fq) (p,q € £) are
modelled by a minimum spanning tree (MST) for computational efficiency. The displacement field
is regularised using the squared differences of the displacements of neighbouring control points:

R(fp7 fq) = Z

(p,g)e€

Hup_uq||2

|[xp — x4l

(1)

For the image similarity (data term) self-similarity descriptors are used [HJP*13]. The self-
similarity context is based on local patch distances within each image and invariant to contrast
change, robust to noise and modality independent. The dissimilarity metric D, the L; norm be-
tween 64 bit binary descriptor representations SSCp (for fixed image) and SSCjs (for moving
image) at two locations x and x + u, can be efficiently calculated in the Hamming space:

D(xp,up) = 1/[P| Z E{SSCr(xp +y) ® SSCu(xp +up +y)} (2)
yeP

where @ defines an exclusive OR, = a population count and y € P the local patch coordinates.
The combined energy function with regularisation parameter a becomes: E(f) = ZpEV D(f,) +
o) Z(p, Qes R(fp, fq). Belief propagation [FH06] on the MST (our relaxed graphical) is employed to
find the global minimum without iterations in only two passes.

Prior to the deformable registration, a block-matching based linear registration using also the
SSC metric is employed as detailed in [HPSH14].!

3 Experiments

The deformations between different anatomies make a large number of degrees of freedoms nec-
essary. As pre-processing the images are resampled to an isotropic resolution of 1.8 x 1.8 x 1.8
mm? and padded or cropped to have same dimensions. For the affine pre-registration, three scales
of control-point grids with spacings of [9,8,7] voxels are used. The displacement label space is
defined by two parameters: number of steps lnax and quantisation step g, which together define
the label space £ = q- {0, %1, ..., £lnax}> voxels. We used lnax = [6,5,4] and ¢ = [5, 4, 3] voxels.
For the deformable registration four scale levels with spacings of [8,7,6,5], numbers of steps of
Imax = [6,5,4, 3] and quantisations of ¢ = [4, 3,2, 1] voxels were used. The number of random sam-
ples and the regularisation weight were left at their default parameters 50 and 2. Inverse consistent
is improved by employing a symmetric calculation of deformations (see [HJP*13]).

To asses the impact of the similarity metric, we additionally performed experiments using mutual
information (MI) and normalised gradient fields (NGF) [HMO5]. For a more detailed comparison of
the optimisation, we also applied the popular continuous-optimisation based framework NiftyReg
[MRT*10] (which uses a B-spline parameterisation) with an affine initialisation [ORPAOQO].

'Our software is publicly available for download at www.mpheinrich.de (deedsRegSSC)



Table 1: Experimental results for training dataset of VISCERAL Anatomy 3 challenge. Dice
volume overlap for the 7 most common organs (psoas major muscles are abbreviated by pmm)
in abdominal and thorax scans when using majority voting. The results of [GSG14] are from a
different subset of the challenge (Anatomy 2), so there are not directly comparable.

method liver spleen bladder r kidney 1kidney rpmm 1pmm | avg
deeds+SSC CT-CT 0.92 0.84 0.82 0.91 0.91 0.85 0.84 | 0.872
deeds+MI MR-CT 0.77  0.66 0.16 0.52 0.85 0.69 0.64 | 0.610
deeds+NGF MR-CT | 0.77  0.74 0.31 0.55 0.86 0.75 0.73 | 0.673
deeds+SSC MR-CT | 0.82  0.78 0.44 0.62 0.88 0.80 0.79 | 0.732
NiftyReg+MI MR-MR, | 0.81  0.79 0.05 0.58 0.77 0.52 0.36 | 0.554
[GSG14] MR-MR 0.83 0.66 0.21 0.88 0.85 0.64 0.677
deeds+SSC MR-MR | 0.80  0.82 0.63 0.55 0.88 0.79 0.76 | 0.744
proposed Test MR-MR | 0.79  0.71 0.36 0.78 0.83 0.76 0.78 | 0.714
4 Results

Our results are summarised in Table 1 for a subset of 10 training scans of the contrast enhanced
(ce) abdominal MRI modality (or thorax/adominal ceCT) and a leave-one-out validation. It can
be seen that MRI segmentation is substantially more challenging yielding average results of Dice
overlap for 7 organs of at most 0.744, while the results for the same setting for CT scans are ~0.13
higher. Either of the two compared discrete optimisation strategies, by Gass et al. [GSG14] and
our framework [HJBS13], outperforms the continuous optimisation approach of [MRT*10]. Using
SSC as similarity metric improves the segmentation by 0.12 compared to MI and by 0.06 compared
to NGF within the same framework. The multi-modal segmentation, for which we used MRI
scans as fixed and CT scans as moving atlas scans, shows nearly identical accuracy to using same
modality priors. This is an interesting finding, which could be employed for generating synthetic
CT scans from MRI scans, e.g. for MR-PET reconstruction [HSST08]. Due to time limitations
only preliminary results for the hidden test datasets could be computed (last row of Table 1), for
which we employed only three atlas scans each. We anticipate further improvements for our final
results, which will subsequently be published on the VISCERAL leaderboard. The run-time of our
algorithm on the virtual machine was on average 4 minutes per registration, which can be reduced
with an optimised CPU implementation to less than a minute.

5 Conclusion

We have demonstrated that deformable registration using discrete optimisation enables accurate
automatic MRI organ segmentation. Choosing both a robust similarity metric and optimisation
strategy has been found to be important for achieving high overlap. Local similarity-weighted
atlas performance estimation and advanced label fusion [AL13] may further improve the results.
While machine learning techniques alone may not achieve the same accuracy as registration-based
approaches for MRI segmentation, the combination of both can boost the performance. In initial
experiments, we found that an RDF trained with both atlas-based priors and intensity features
[MWG™15] improves the segmentation overlap of liver, spleen and kidneys by =~0.06.
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