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Abstract. This paper presents a new fine-grained audio classification
technique designed and experimented in the context of the LifeCLEF
2015 bird species identification challenge. Inspired by recent works on
fine-grained image classification, we introduce a new match kernel based
on the shared nearest neighbors of the low level audio features extracted
at the frame level. To make such strategy scalable to the tens of millions
of MFCC features extracted from the tens of thousands audio recordings
of the training set, we used high-dimensional hashing techniques coupled
with an efficient approximate nearest neighbors search algorithm with
controlled quality. Further improvements are obtained by (i) using a
sliding window for the temporal pooling of the raw matches (ii) weighting
each low level feature according to the semantic coherence of its nearest
neighbors. Results show the effectiveness of the proposed technique which
ranked 2nd among the 7 research groups participating to the LifeCLEF
bird challenge.

1 Introduction

Building accurate knowledge of the identity, the geographic distribution and the
evolution of living species is essential for a sustainable development of human-
ity as well as for biodiversity conservation. In this context, using multimedia
identification tools is considered as one of the most promising solution to help
bridging the taxonomic, i.e. the difficulty for common people to name observed
living organisms and then produce or access to useful knowledge. The LifeCLEF
[10] lab proposes to evaluate this challenge in the continuity of the image-based
plant identification task was run within ImageCLEF the years before but with
a broader scope (considering birds and fish in addition to plants and audio and
video contents in addition to images). This paper particularly reports the par-
ticipation of Inria ZENITH research group to the audio-based bird identification
task. Inspired by some recent works on fine-grained image classification [12], we
introduce a new match kernel based on the shared nearest neighbors of the low
level audio features extracted at the frame level. Section 2 describes the pre-
liminary audio processing and features extraction steps. Section 3 then presents



our new match kernel and the resulting explicit representations to be further
classified thanks to a linear supervised classifier (section 4). Section 5 and ??
finally reports and discuss the results we obtained within the LifeCLEF 2015
challenge .

2 Pre-processing and features extraction

The dataset used for this challenge is composed of 33,203 audio recordings be-
longing to 999 bird species from Brazil area. As various recording devices are
used, and because it is difficult to capture these sounds as birds are often far
away from the recording devices, many recordings contains a lot of noise. To
overcome this problem, we used SoX, the ”Swiss Army knife of sound process-
ing programs”4. As a first step, we used the noisered specialised filter, to filter
out noise from the audio, and then we reduce the length of large (i.e. > 0.1s)
silent passages from audio files to 0.1s. In order to obtain audio files with ide-
ally no more noise but still enough signal, we tried removing as much noise as
possible (using the noisered amount parameter) while guaranteeing that the re-
sulting audio file was at least 20% the size of the initial audio record. After this
pre-processing step, we used an open source software framework, marsyas5, to
extract MFCC features with parameters based on the provided audio features
in the Birdclef task : MFCC are computed on windows of 11.6 ms, each 3.9
ms, and we additionally derive their speed resulting in 26-dimensional feature
vectors (13+13) for each frame.

3 Shared Nearest Neighbors Match Kernel

We consider two recordings Ix and Iy represented by sets of 26-dimensional
MFCC features X = {x} and Y = {y}. We then build on the normalized sum
match kernel proposed by [13] to compare feature sets:

K(X,Y ) = Φ(X)TΦ(Y ) =
1

|X| |Y |
∑
x

∑
y

k(x,y) (1)

where k() is itself a Mercer kernel allowing to compare two individual local
features x and y. In our case, k() is however not defined as a direct matching
between x and y but rather as the degree of correlation of their matches in a large
training set. Let denote as Z such a training set composed of N 26-dimensional
MFCC feature vectors z. We introduce the following shared nearest neighbors
(SNN) match kernel :

KS(X,Y ) =
1

|X| |Y |
∑
x

∑
y

∑
z

ϕx(z).ϕy(z) (2)

4 http://sox.sourceforge.net/
5 http://marsyas.info/



with ϕx(z) a rank-based activation function given by :

ϕx(z) =

√
log(K)− log(rx(z))

log(K)
(3)

where rx(z) : Z → R+ is a ranking function returning the rank of an item
z ∈ Z according to its distance to x and K is the maximum number of items
returned by this ranking function. The distance itself could be a L2 metric in the
original feature space but, as we will see in section 3, we use in practice a more
efficient Hamming embedding scheme. Whatever the distance used, the intuition
of the SNN match kernel is that it counts the number of common neighbors in
the neighborhood of x and in the one of y. The product kz(x,y) = ϕx(z).ϕy(z)
is actually equal to one if z is the nearest neighbor of both x and y and close to
zero if z is not in the top neighbors of either x or y.
Using this shared nearest neighbors kernel instead of a more classical distance
in the feature space has several justifications and advantages. First, shared-
neighbors techniques are known to overcome several shortcomings of traditional
metrics. They are notably less sensitive to the dimensionality curse, more robust
to noisy data and more stable over unusual features distribution [2, 5] . Measur-
ing the similarity between features by the degree to which their neighbourhoods
in the training set resemble one another is actually a form of generative met-
ric learning. Features belonging to dense clusters are actually more likely to
share neighbors than uniformly distributed and isolated features. So that their
contribution in the global kernel will be enhanced. Secondly, using an indirect
matching rather than a direct one allows to have en explicit formulation of the
embedded space Φ(X). By factorizing equation 3, it is actually easy to show that
KS(X,Y ) = ΦS(X)TΦS(Y ) with:

ΦS(X) =

N∑
i=1

1

|X|
∑
x

ϕx(zi).−→ei (4)

So that, the explicit N-dimensional feature vector Φ(X) representing each audio
recording in the training set can be computed before training a simple linear
classifier on top of them. This principle of this approach was already introduced
in the intermediate matching kernel of [1] and further re-used in many methods
including the NBNN kernel of [15]. Such methods did however rely on the dis-
tance between the features of the candidate object X and the ones of the training
set Z so that they did not benefit from the nice properties of the SNN-kernel.
Last but not least, one of the main advantage of the SNN match kernel is that
is that it can be easily converted to a sparse representation as the ratio of the
number of values close to zeros is very high. Only the features z lying in the top
neighbors of both x and y lead to consistent component values. In practice, it is
therefore sufficient to consider only the top-m neighbors of each feature x and
y to get a good approximation of K(X,Y ). This allows using efficient nearest
neighbors search techniques to construct the explicit representations Φ(X) and
to use an efficient sparse encoding when training linear classifiers on top of them.



Temporal pooling of the raw SNN-based representations As elegant as
the explicit representations ΦS(X) is, it does not conduct to good classification
results in practice. It’s very high dimensionality, equals to the number of features
in the training set (often millions), actually leads to strong overfitting even when
using L2 regularizers with high values of the regularization control parameter
λ. It is therefore required to group the individual matches of the SNN kernel
before deriving an effective explicit representation. In this work, we do focus
on the temporal pooling of the raw matches rather than aggregating them in
the feature space as done in many popular image representations such as BoW,
Fisher Vectors or VLAD. We consequently loose some generalization capacity in
the feature space compared to these methods but on the other side we strongly
boost the locality, the interpretability and the discrimination of the trained audio
patterns.
Practically, our temporal pooling algorithm first aggregates the raw matches
within a sliding window (centered around each frame) and then keep the max
score over the whole record. More formally, we can reformulate our explicit
formulation of Equation 4 as:

Φw
S (X) =

M∑
m=1

 max
ti∈[1,Tm]

ti+(w/2)∑
t=ti−(w/2)

∑
x∈X

ϕx(zmt )

 .−→em (5)

where M is the number of audio recordings in the training set, Tm the number
of frames of the m-th recording and zmt the MFCC feature of the t-th frame of the
m-th recording. The size w of the sliding window was trained by cross-validation
and then fixed to w = 1000 frames (resulting in a sliding window of 3.9 seconds).

Approximate K-NN search scheme In practice, to speed up the computa-
tion of our SNN based representations, the ranking function rx(z) : Z → R+

is implemented as an approximate nearest neighbors search algorithm based on
hashing and probabilistic accesses in the hash table. It takes as input each query
feature x of the audio recording Ix to be described and returns a set of K ap-
proximated neighbors in Z with an approximated rank r′x(z). The exact ranking
function rx(z) is simply replaced by this approximated ranking function in all
equations above. Note that the features z ∈ Z that are not returned in the top-K
approximated nearest neighbors are simply removed from the SNN match ker-
nels equations conducting to a considerable reduction of the computation time.
Consequently, they are implicitly considered as having a rank-based activation
function ϕx(z) equal to zero which is a good approximation as their rank is
supposed to be higher than K.

Let us now describe more precisely our approximate nearest neighbors in-
dexing and search method. It first compresses the original feature vectors z ∈ Z
into compact binary hash codes h(z) of length b. This is done by using RMMH
[8], a recent data-dependent hash function family, in order to embed the original



feature vectors in compact binary hash codes of b = 128 bits (the parameter M
of RMMH was fixed to M = 32). The distance between any two features x and
z can then be efficiently approximated by the Hamming distance between their
respective 128-length hash codes h(z) and h(x). According to our experiments,
this hashing method provides in our context better performances than several
other tested methods, including random projections or hamming embedding [6]
(orthogonal random projections).

To avoid scanning the whole dataset, the hash codes h(z) derived from the
local features of the training set Z are then indexed in a hash table whose keys
are the t-length prefix of the hash codes h(z). At search time, the hash code h(x)
of a query feature x is computed as well as its t-length prefix. We then use a
probabilistic multi-probe search algorithm inspired by the one of [7] to select the
buckets of the hash table that are the most likely to contain exact nearest neigh-
bors. This is done by using a probabilistic search model that is trained offline on
the exact m-nearest neighbors of M sampled features z ∈ Z. We however use a
simpler search model than the one of [7]. We actually use a normal distribution
with independent components parameterized by a single vector σ that is trained
over the exact nearest neighbors of the training samples. At search time, we also
use a slightly different probabilistic multi-probe algorithm trading stability for
time. Instead of probing the buckets by decreasing probabilities, we rather use
a greedy algorithm that computes the probability of neighboring buckets and
select only the ones having a probability greater than a threshold ζ that is fixed
over all queries. The value of ζ is trained offline on M training samples and their
exact nearest neighbors so as to reach on average cumulative probability α over
the visited buckets. In our experiments, we always used α = 0.80 meaning that
on average we retrieve 80% of the exact nearest neighbors in the original feature
space. Once the most probable buckets have been selected, the refinement step
computes the Hamming distance between h(x) and the h(z)’s belonging to the
selected buckets and keep only the top-m matches thanks to a max heap.

Weak semantic weighting As we are in the case of weakly annotated audio
recordings with multiple classes (primary and secondary species) and highly
cluttered contexts, we suggest improving our SNN match kernel by weighting the
query features according to the semantic coherence of their k nearest neighbours.
We therefore compute a discrimination score f(x) for all MFCC features x ∈ X
of a given audio recording IX . A weak label l(x) is first estimated for each x as
the most represented label within the k-nearest neighbors of x in the training set
(actually the ones computed by the hash-based k-nn search method described
in section 3). The semantic weight f(x) is then computed as the percentage of
the k-nearest neighbors having the same weak label than the feature itself (i.e.
the percentage of k-nearest neighbors whose label is equal to l(x)). Finally, our
representation of a given audio recording IX becomes:



Φw
S
′(X) =

M∑
m=1

 max
ti∈[1,Tm]

ti+(w/2)∑
t=ti−(w/2)

∑
x∈X

f(x).ϕx(zmt )

 .−→em (6)

4 Training and classification

To achieve an effective supervised classification task, we trained a linear dis-
criminant model on top of our proposed SNN matching-based representations
(cf. Equation 5). This requires first building the representations of all audio
recordings in the training set and then in learning as many linear classifiers as
the number of species in the training set. The resulting linear classifiers are of
the form:

h(Φw
S
′(X)) = ωT .Φw

S
′(X) + b

so that they interestingly affect weights ωj to each audio recording in the train-
ing set according to its relevance for the targeted class (rather than affecting
weights to the individual MFCC features as in the raw representation of Equa-
tion 4). In our experiments, we used a linear support vector machine for training
these discriminant linear models. We more precisely used the LibLinear imple-
mentation of the scikit-learn library with a squared hinge loss function and a L2

penalty. The C parameter of the SVM was fixed to C = 100.0 ∗ weight(class)
where weight(class) is a class-dependent weight that is automatically adjusted
to be inversely proportional to the class frequency. Finally, the scores returned
by the SVM are converted into probabilities using the following p-value test:

P (class) =
1

2

(
1 + erf

(
1√
(2)

s(class)− µ(class)

σ(class)

))

where erf is the Gauss error function and µ(class) and σ(class) are respec-
tively the mean and the standard deviation of the SVM score across the con-
sidered class. We will see in the experiments that this conversion provides a
noticeable accuracy improvement.

5 Experiments and results

5.1 Dataset and task

The LifeCLEF 2015 bird dataset [3] is built from the Xeno-canto collaborative
database 6 involving at the time of writing more than 140k audio records covering
8700 bird species observed all around the world thanks to the active work of more
than 1400 contributors. The subset of Xeno-canto data used for the 2015 edition

6 http://www.xeno-canto.org/



of the task contains 33,203 audio recordings belonging to 999 bird species in
Brazil area, i.e. the ones having the more recordings in Xeno-canto database. The
dataset contains minimally 14 recordings per species and minimally 10 different
recordists per species.Audio records are associated to various metadata such
as the type of sound (call, song, alarm, flight, etc.), the date and localization
of the observations (from which rich statistics on species distribution can be
derived), some textual comments of the authors, multilingual common names
and collaborative quality ratings (more details can be found in [3]). The task was
evaluated as a bird species retrieval task. A part of the collection was delivered as
a training set available a couple of months before the remaining data is delivered.
The goal was to retrieve the singing species among the top-k returned for each
of the undetermined observation of the test set. Participants were allowed to use
any of the provided metadata complementary to the audio content but we did
not in our own submissions.

Run Name MAP 2(without Background Species) MAP 2 (with Background Species)

MNB TSA Run 4 0.454 0.414

MNB TSA Run 3 0.442 0.411

MNB TSA Run 2 0.442 0.405

MNB TSA Run 1 0.424 0.388

INRIA ZENITH Run 2 0.334 0.291

QMUL Run 1 0.302 0.262

INRIA ZENITH Run 3 0.292 0.259

INRIA ZENITH Run 1 0.265 0.240

GOLEM Run 2 0.171 0.149

GOLEM Run 1 0.161 0.139

CHIN. AC. SC. Run 1 0.01 0.009

CHIN. AC. SC. Run 3 0.009 0.01

CHIN. AC. SC. Run 2 0.007 0.008

MARF Run 1 0.006 0.005

MARF Run 2 0.003 0.002

MARF Run 3 0.005 0.005

MARF Run 4 0.000 0.000
Table 1. Official results of LifeCLEF 2015 Bird Task - Our runs are referred as INRIA
Zenith Run 1, INRIA Zenith Run 2 and INRIA Zenith Run 3



5.2 Submitted runs and results

We submitted three runs to be evaluated within the LifeCLEF 2015 challenge:

INRIA Zenith Run 1: This run was not based on the method described in
this paper, but on our former instance-based classification method [9] evaluated
within the 2014 BirdCLEF challenge [4]. This allows us measuring progresses
between that former approach and the new one proposed in this paper. It ba-
sically relied on a very similar matching process than the one described in this
paper but it did not train any supervised classifier on top of the resulting match-
ing score. It actually only computed the top-30 most similar training records of
each query and then used a simple vote on the labels of the retrieve records as
classifier. It however included a pre-filtering of the training set that removed the
less discriminant MFCC features from the training set.

INRIA Zenith Run 2: The new approach described in this paper.

INRIA Zenith Run 3: The same approach than Run 2 (i.e. the main con-
tribution of that paper), but without the conversion of the SVM scores into
probabilities (see section 4).

The results of the whole challenge, including our own results as well as the
results of the other participating research groups, are reported in Figure 1 and
Table 1.

5.3 Discussion and perspectives

Our system globally achieved very good performance and ranked as the second
best one among the 7 participating research groups. Our best run, i.e. the one
based on the method proposed in this paper, achieved a mAP of 0, 334 when
considering only the primary species of each test recording. This is 3 points
better than the state-of-the-art approach of the QMUL research group which
makes use of unsupervised feature learning as described in [14] whereas we used
classical MFCC features. Also, compared to the mAP of our first run (equals to
0.265), it shows that training discriminant models using our SNN match kernel
is much more effective than using our former semantic pruning and instance-
based classification approach. The weights learned by the SVM on the pooled
matches actually compensate most of the bias involved by the heterogeneity of
the noise level in the recordings and the heterogeneity of the recordings length.
The intermediate performance of INRIA Zenith Run 3 shows, however, that the
conversion of the SVM scores into probabilities plays an important role in the
performance of Run2. Our interpretation of this phenomenon is related to the
fact that the number of training records per species follows an heavily tailed
distribution (as in most biodiversity data). The SVM scores are consequently
boosted for the most populated species to the detriment of the less populated
ones. Our p-value normalization allows compensating this bias by normalizing



the distribution across all classes.

Now, the performance of our approach is still much lower than the best per-
forming system of MNB TSA which has a mAP equal to 0.453. Note that their
approach is in essence not so far from ours as they also represent the audio
recordings thanks to their matching score in a reference set of audio segments
[11]. A major difference however is that they pre-compute a clean set of rel-
evant audio segments whereas we use all the recordings of the training set as
vocabulary. They notably consider only the audio recordings with the highest
user ratings in the metadata, and, then extract only the segments that are likely
to contain a bird song (thanks to bandwidth considerations). A second differ-
ence is that their matching is computed at the signal level whereas we are using
MFCC features that might loose some important information. We believe that
integrating these two additional paradigms within our framework could make
it competitive with their approach. Investigating more in depth the semantic
pruning strategy that we introduced in [9] but in the context of our new SNN
match kernel might for instance be an effective way of further improving the
quality of the reference set.

Fig. 1. Official results of LifeCLEF 2015 Bird Task - Our runs are referred as INRIA
Zenith Run 1, INRIA Zenith Run 2 and INRIA Zenith Run 3
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