
Development and Evaluation of a Highly
Scalable News Recommender System

Ilya Verbitskiy1, Patrick Probst2, and Andreas Lommatzsch3

1 Complex and Distributed IT Systems, CIT
Technische Universität Berlin, Einsteinufer 17, D-10587 Berlin, Germany

ilya.verbitskiy@campus.tu-berlin.de
2 Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany

patrick.c.probst@campus.tu-berlin.de
3 Agent Technologies in Business Applications and Telecommunication Group, AOT

Technische Universität Berlin, Ernst-Reuter-Platz 7, D-10587 Berlin, Germany
andreas.lommatzsch@tu-berlin.de

Abstract. The development of highly scalable recommender systems,
able to deliver recommendations in real time, is a challenging task. In
contrast to traditional recommender systems, recommending news en-
tails additional requirements. These requirements include tight response
times, heavy load peaks, and continuously changing collections of users
and items. In this paper we describe our participation at the CLEF-
NewsREEL challenge 2015. We present our highly scalable implemen-
tation of a news recommendation algorithm. The developed approach
alleviates all the specific challenges of news recommender systems. We
use the Akka framework to build an asynchronous, distributable system
able to run concurrently on multiple machines. Based on the framework
a time window-based, most popular algorithm for recommending news
articles is implemented. The evaluation shows that our system imple-
mented using the Akka framework scales well with the restrictions and
outperforms the recommendation precision of the baseline recommender.

Keywords: recommender system, scalability, akka framework, most pop-
ular recommender, stream-based recommender

1 Introduction

Nowadays, recommender systems are frequently used to support users in navigat-
ing through data-rich contents. Helping users to discover relevant information
in the overwhelming mess of data is an important task in many applications
scenarios. In web applications (such as online shops, forums, news, video and
music portals recommendation) algorithms support users in finding new content
relevant according to the user context and the current user profile.

Recommending news articles is a hard task due to the highly dynamic en-
vironment. News items are updated frequently and user’s news preferences are
often very diverse and difficult to track. Therefore, recommender algorithms for
news portals must be able to process a continuous incoming stream of data in



real time. The complex requirements make the news recommendation scenario
an interesting field of research.

1.1 The CLEF-NewsREEL 2015 Challenge

The CLEF-NewsREEL 2015 challenge is a competition held yearly giving re-
searchers the opportunity to analyze and evaluate news recommendation algo-
rithms based on real-life data. The task in the NewsREEL challenge is rec-
ommending news articles from different publishers to users. It is organized in
cooperation with plista4, a company that offers recommendations as a service.
The company cooperates with different news publishers and discussion board
websites. The CLEF challenge provides an online [4] and an offline task [6]. We
will discuss the specific requirements of both tasks in the following paragraphs.

The Online Scenario For task 1, plista provides an interface to the online
news recommendation service [1]. Participants can register their recommenda-
tion engines. The communication favors the HTTP protocol and JSON data
descriptions5. The system emits four types of messages. Recommendation re-
quests expect a list of item references in return. Impressions and item updates
let participants keep up with the system activity. Error messages inform about
technical issues. Recommendations have to be returned within not more than
100 ms. The system presents them to visitors and tracks the user’s reactions.
Participants can monitor the performances of their own team as well as the
performance of other participants in terms of number of clicks, number of re-
quests, and Click-Through-Rate (CTR). The system visualizes these statistics
on a leaderboard.

The Offline Scenario For the offline task (task 2) a previously recorded
data set of item updates and event notification is used [5]. Participants ought to
predict interactions between users and news articles using a sliding window ap-
proach. Additionally, the evaluation considers technical qualities including scal-
ability and responsiveness during load peaks. The offline task allows researchers
to analyze the scalability and the performance of the implemented algorithms in
a reproducible setting. Thus, different approaches for the concurrent handling of
messages as well as strategies for the running algorithms on a cluster of different
machines can be evaluated based on the provided dataset.

1.2 The Structure of the Paper

The remaining paper is structured as follows: Section 2 explains the analyzed
problems in detail and discusses the addressed challenges. In Section 3 we present

4 http://www.plista.com
5 See the official protocol description for further details:
http://orp.plista.com/documentation/download

http://www.plista.com
http://orp.plista.com/documentation/download


our approach. We introduce the used framework and explain the developed sys-
tem architecture. The evaluation of the implemented system is discussed in Sec-
tion 4. Finally, Section 5 gives an conclusion and an outlook to future work.

2 Problem Description

In contrast to “traditional” recommender systems trained on static datasets, a
news recommender system must be able to handle a steadily changing set of items
as well as a continuously changing environment. Special requirements emerge
as we seek to efficiently provide recommendations in a stream-based scenario.
Firstly, the quantity of received recommendation requests can be very high, just
as the number of impressions. Since the item set is permanently changing, the
model for computing the most relevant items must be adapted frequently. This
leads to the question of choosing algorithms able to find relevant items under
these circumstances. Furthermore, the load characteristics and the usage of news
portals depends on the daytime and involves high peaks during certain times [7].
That is why it is necessary to resist these peak loads. In addition to that, there is
only a short time window for answering recommendation requests. This timing
constraint is a hard challenge and can impede very time consuming calculations
if not handled dexterously as [3,8] pointed out. The approaches for solving these
problems are described in the following section.

3 Approach

In this section we motivate the implemented algorithms. Subsequently, we ex-
plain the architecture of our system and discuss the applied methods.

3.1 Most Popular Recommender

In order to handle the requirements according to recommendation precision
based on steadily changing collections of items, a suitable algorithm must be
implemented. In addition, we have to keep in mind the technical requirements
making sure that the algorithm fulfills the expectations according to scalability
and response time.

Collaborative Filtering has been established as an out-of-the-box recommen-
dation technique. But the technical restrictions disallow its application in real-
time settings (cf. [9,2]). Therefore, we searched for alternative approaches. We
asked ourselves how traditional “analog” newspapers present their contents. Typ-
ically, important news articles cover large parts of the title page. Less significant
novelties are spread across the later pages. Following this method, we decided to
implement a most popular recommender. We expect users to focus their atten-
tion on current as well as important news. We determine articles’ importance in
terms of their popularity in the last m minutes. Thus, we decided implementing
a most-popular recommender taking into account only the most current news
articles.



3.2 Technical Requirements

We expect our systems to face hard demands with respect to response time and
load peaks inducing scalability problems. We propose to alleviate this issue by
means of concurrent message passing. The Akka framework6 supports concur-
rently passing messages between so-called actors. Thereby, the system enables
us to distribute computations across several machines. Thus, we manage to de-
crease response times and deal with load peaks. Response times decrease as the
system routes requests on nodes with idle resources. The system can handle load
peaks by adding additional nodes when necessary.

3.3 Realization of a Distributed Most-Popular Recommendation
Algorithm with the Akka Framework

The Akka framework is chosen from a set of different distributed computing
frameworks. Being a distributed real time engine, the Apache Storm framework7

is an alternative but Akka provides a more flexible programming model. Es-
pecially in the context of recommender systems a less restrictive programming
model is important simplifying the implementation. Our architecture starts with
a cluster of computers. The nodes are divided into one master node and n worker
nodes (see Figure 1). All requests are distributed along the worker nodes using
a load balancer.

Worker Actor The actor is responsible for handling the requests sent to the
worker node. The system transforms incoming HTTP requests to Akka mes-
sages and forwards them to the actor. When an actor starts, it registers itself
on the master node. This dynamically extends the cluster. The actor may have
multiple child actors to scale assigned work across the cores of a machine. The
actor’s main task is to create intermediate rankings of clicked items (e.g. news
articles). In our scenario the items are sorted by the amount of clicks received by
users. Furthermore, the actor collects information about which items should be
filtered and not recommended to users. This is true for the items that the user has
already retrieved and the items that have been marked as non-recommendable.
The worker actor ensures that the master node keeps track of resource usage
(CPU, memory, request throughput) of the workers. Data about the resource
usage is sent to the statistics aggregator. The statistics built based on the ag-
gregated data are used for ensuring an optimal automatic scaling (e.g. during
peak loads).

Most Popular Merger The merger is the key component in the distributed
system. Every fixed time interval the merger asks all registered workers for their
rankings and filters. The received rankings and filters are then merged into one

6 http://akka.io/
7 https://storm.apache.org/

http://akka.io/
https://storm.apache.org/


Load 
Balancer 

Scalable Recommendation System Architecture 

Worker Node 1 HTTP 
Server 

Public API 

Worker 
Actor 

Master Node 

Merger Statistics 
Manager 

Statistics 
Aggregator 

Worker Node n 

Fig. 1. This scheme visualizes the architecture of our scalable recommender system.
A load balancer distributes requests to n machines (worker nodes). The worker nodes
calculate intermediate rankings and filters. The intermediate results are sent to the
master node. The master node is responsible for merging the intermediate results and
sending it back to all worker nodes.

global ranking and filter. Subsequently the aggregated “global” information is
sent back to all workers. Thus, every worker will hold the merged results and can
respond to recommendation requests using the “global” knowledge. All workers
cache the results until updated data are received from the merger node. Our
approach has two important advantages. Firstly, the master node is relieved from
receiving requests as every worker can answer requests. In addition, the merger
runs only periodically (every fixed time interval), preventing the master from
becoming a bottleneck. Secondly, the caching of the result on each worker node
enables the system to answer requests very quickly (as our evaluation shows).

Statistics Aggregator and Manager The statistics aggregator collects statis-
tics about the worker and passes them every second to the central statistics
manager on the master node. The statistics manager prepares the received in-
formation for a detailed analysis. This information can be used to track cluster
status or to implement an automatic deployment (during load peaks) and un-
deployment (during low load) of worker nodes.



3.4 Discussion of the Architectural Design

As explained above, the architecture of our system ensures that the system scales
well without the master node becoming a bottle neck. But with the increasing
amount of worker nodes, the merging becomes more expensive. If increasing
the time interval between two merging steps is not an option, this design can
be enhanced, whereby the merger will be distributed as well. Therefore multiple
mergers are deployed. Each merger is responsible for a set of workers. Thus, these
mergers produce intermediate merged rankings. The intermediate rankings are
then merged by another merger (“cascading mergers”).

In this section we discussed the high-level concepts and strategies. Imple-
mentation details are explained in the source code available on GitHub8.

4 Evaluation

The system design is evaluated live with regard to recommendation precision
(CTR). In addition, we evaluated the scalability of our system offline, using the
data set provided for the NewsREEL task 2. Based on the previously recorded
stream of messages, we analyzed the response time of the system in situations
characterized by a high load.

4.1 Online Plista Challenge

We have analyzed the recommendation precision of our system in June 2015.
Our algorithm achieved a CTR of 1.37 %. The algorithm outperforms the two
baseline recommenders (Table 1). The variance of the measured CTR is low,
similar to the baseline algorithms, showing that our algorithm provides robust
recommendations.

Table 1. The table shows the CTR and the variance of our most popular and the
two baseline algorithms. The results show that our algorithm outperforms the base-
lines. The CTR variance of our algorithm is similar to the variance of the baseline
recommenders.

Algorithm ∅ CTR in June 2015 CTR variance

Our algorithm – Most Popular 1.37 % 0.00196 · 10−4

Riemannzeta – baseline 1.21 % 0.00226 · 10−4

Gaussiannoise – baseline 0.97 % 0.00168 · 10−4

4.2 Offline Load Testing

For the evaluation of the scalability a small cluster of three computers is used.
All machines have identical specifications: Intel(R) Xeon(R) CPU E5-2650L v3

8 https://github.com/verbit/orp

https://github.com/verbit/orp


Fig. 2. This figure visualizes the throughput using one worker node during the bench-
mark. The benchmark starts with a 4-minute long warmup phase followed by a 10-
minute long load phase.

Fig. 3. This figure visualizes the throughput using two worker nodes during the bench-
mark. The benchmark starts with a 4-minute long warmup phase followed by a 10-
minute long load phase.



Fig. 4. This box plot compares the throughput of 1 (Worker 1/1) vs. 2 (Worker 1/2 +
2/2) worker nodes during the load phase. A red line indicates the median. A red square
visualizes the average. With one node we could reach an average of 774 requests/s, with
two nodes an average of 1550 requests/s.

0 5 10 15 20
Respone Time [ms]

0.0

0.1

0.2

0.3

0.4

0.5

R
e
la

ti
v
e
 F

re
q
u
e
n
cy

Worker Actor's Response Time

Fig. 5. This histogram shows the distribution of the worker actor’s response times. This
is the time it takes a worker actor to answer the HTTP server with a recommendation.
The response times were measured during the benchmark with two worker nodes. The
histogram is cut at the value of 20 ms (exclusive) displaying 99.07 % of all realized
response times.



@ 1.80GHz x 2, 2048 MB RAM. An Nginx server on the master node serves
as the load balancer. The merging rate is set to 2 seconds to achieve near real
time rankings. The cluster is benchmarked with one and two worker nodes,
respectively. For the scalability evaluation, the offline data set is used9.

The requests are sent from a fourth server with a rate high enough to fully
utilize the resources of the worker nodes. Figures 2 and 3 show the throughput
when using one and two worker nodes, respectively. Figure 4 shows a comparison
between one and two worker nodes during the load phase. Figure 5 shows the
distribution of the response time in case of two workers. It is important to
note that the response time was measured on the server side. Therefore the
measurement does not take into account the latencies between the plista servers
and the cluster. Keeping this fact in mind it is strongly recommended to deploy
the cluster in a location near to the plista servers.

Overall, the offline evaluation shows that our system is able to handle load
peaks, ensuring a high throughput.

5 Conclusion and Outlook

In this paper we presented a highly scalable recommender system for news por-
tals. The evaluation shows that the implemented system outperforms the base-
line recommenders according to CTR in the online evaluation. In addition, the
offline evaluation (task 2) shows that our news recommender system is highly
scalable. We doubled the system’s throughput as we doubled the worker nodes.
The distribution of the response time is similar between one and two workers.
It originates from the fact that recommendation request are cached and thus re-
turned instantly. Worker nodes can be deployed dynamically. Therewith, we can
resist peak loads. This dynamic allocation uses resources efficiently and reduces
costs.

Although the aim of building a highly scalable system is reached, some fur-
ther improvements can be made. Firstly, our recommendation algorithm could
not reach an as high CTR as compared to some other teams. It determines
popularity for certain news articles because they are often clicked. Thus it only
recommends articles which are already popular. One improvement could be to
predict trends. Therefore, we could learn from what had been popular in the
past to determine future popular articles or mix in recently created articles. An-
other promising improvement is applying different recommendation algorithms
for certain publishers. Especially for discussion forums (less focused on the lat-
est news) content-based recommender algorithms seems to be more powerful
approaches [7].

9 http://data.dai-labor.de/corpus/clef-newsreel-2015/raw/

CLEF-2015-Task2-Json07.tar

http://data.dai-labor.de/corpus/clef-newsreel-2015/raw/CLEF-2015-Task2-Json07.tar
http://data.dai-labor.de/corpus/clef-newsreel-2015/raw/CLEF-2015-Task2-Json07.tar


Acknowledgement

This research is supported by funding from the European Commission’s 7th
Framework Program (FP7/2007-2013) under grant agreement number 610594.

References

1. Torben Brodt and Frank Hopfgartner. Shedding light on a living lab: The clef
newsreel open recommendation platform. In IIiX’14: Proceedings of the Information
Interaction in Context Conference, pages 223–226. ACM, 08 2014.

2. Fidel Cacheda, Vı́ctor Carneiro, Diego Fernández, and Vreixo Formoso. Comparison
of collaborative filtering algorithms: Limitations of current techniques and proposals
for scalable, high-performance recommender systems. ACM Transactions on the
Web (TWEB), 5(1):2, 2011.

3. Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. Google
news personalization: scalable online collaborative filtering. In Proceedings of the
16th international conference on World Wide Web, pages 271–280. ACM, 2007.

4. Frank Hopfgartner, Benjamin Kille, Andreas Lommatzsch, Till Plumbaum, Torben
Brodt, and Tobias Heintz. Benchmarking news recommendations in a living lab. In
CLEF’14: Proceedings of the 5th International Conference of the CLEF Initiative,
LNCS, pages 250–267. Springer Verlag, 09 2014.

5. Benjamin Kille, Frank Hopfgartner, Torben Brodt, and Tobias Heintz. The plista
dataset. In NRS’13: Proceedings of the International Workshop and Challenge on
News Recommender Systems, ICPS, pages 14–22. ACM, 10 2013.

6. Benjamin Kille, Andreas Lommatzsch, Roberto Turrin, Andras Sereny, Martha Lar-
son, Torben Brodt, Jonas Seiler, and Frank Hopfgartner. Stream-based recommen-
dations: Online and offline evaluation as a service. In Proceedings of the 6th Inter-
national Conference of the CLEF Initiative, CLEF’15, 2015.

7. Andreas Lommatzsch and Sahin Albayrak. Real-time recommendations for user-
item streams. In Proc. of the 30th Symposium On Applied Computing, SAC 2015,
SAC ’15, pages 1039–1046, New York, NY, USA, 2015. ACM.

8. Alan Said, Alejandro Belloǵın, Jimmy Lin, and Arjen de Vries. Do recommenda-
tions matter?: news recommendation in real life. In Proceedings of the companion
publication of the 17th ACM conference on Computer supported cooperative work &
social computing, pages 237–240. ACM, 2014.

9. Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Scalable
collaborative filtering approaches for large recommender systems. The Journal of
Machine Learning Research, 10:623–656, 2009.


	Development and Evaluation of a Highly Scalable News Recommender System

