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Abstract. We address the tasks of image classification and tagging
through a transductive approach that automatically learns to project the
different images onto a common latent space. This learned representation
is then used to classify the images. We construst a graph between images
and concepts using the deep representations given by ImageCLEF and
WordNet database, and we exploit the idea that two connected nodes
will tend to have a similar latent representation. This assumption allows
us to learn correlations between the labels of connected images.
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1 Introduction

The ImageCLEF 2015[3] image annotation [2] is composed of two subtasks :
the Image Concept detection and localisation, and the Generation of Textual
Descriptions of Images. We have participated in the former, whose objective is
to predict which concepts are present in an image given in input. Use of labeled
data is allowed, and we therefore used the available ImageNET Convolutional
Neural Network (CNN).

The system we propose is based on a model [?] that projects nodes of a graph
within a vector space (typically, of dimension 100-200). This model requires
that some nodes be labeled, and uses this information within the embedding
process. To leverage ImageNet data, where no relationship links images together,
we had to build a graph. We experimented with different ways to construct a
simple graph based on the output of the ImageNET CNN representations and
the WordNet database[1], and presents results on the CLEF task corresponding
to the settings of different hyperparameters of the model.

The article is organized as follows: Section 2 presents an overview of our
model and how we construct the graph based on the images and the WordNet
database, Section 3 the representation and the classifier learning, Section 4 our
algorithm, and Section 5 outlines our results and conclusions.



2 Overview and graph construction

We propose a solution that relies on the exploitation of the correlations that
exists between images that have a similar 1000 dimensional activations of the
fc8 layer of Oxford VGGs 16-layer Convolutional Neural Network model (OV-
CNN) given in the ImageCLEF challenge. It aims at taking directly into account
the correlations between the CNN-labels of connected images. The underlying
idea of this model is the following:

– We construct a graph mixing images and concepts based on the CNN-
representation and the WordNet database.

– Each node is mapped onto a latent representation in a vectorial space RZ .
The latent space is common to all node types (images and concepts).

– This latent representation defines a metric in RZ such that two connected
nodes tend to have a close representation (smoothness assumption).

– All the nodes and relations are not equal w.r.t. their position in the graph,
their number of neighbors, etc. We use two functions, ψi and φi,j , to model
the importance of nodes and the relationships in the embedding process.

– A classification function is learned for the images. It takes as input a latent
image representation and computes associated class labels.

All the notation used in this working note are summarized in Table 1.

Notation Meaning

xi Node of the graph
Ak 1000 dimensional activations of the fc8 layer of an image k
zi Latent representation of node xi
zcopyi Numerical copy of zi
T Set of possible nodes types
T Number of nodes types
ti Type of node xi
r(i, j) Relation type between node xi and xj
i

r→ j Relation of type r from i to j
R Number of relation’s type
N Number of nodes
x1 · · ·x` Labeled nodes used for the classification task
Nr

j Number of neighbors of xj considering the relation r
E Total number of edges
Er Total number of edges of type r
Yt Set of categories associated to the type of node t
Ct Cardinality of Yt

yi Vector of categories for the node xi
yci Value of category c for the node xi

Table 1. Notations



2.1 Gaph construction

To apply our method, we need to construct a graph. The resulting graph is
composed of nodes of two types, images and (WordNet) concepts. To construct
the graph, we connect images to a subset of the concepts and then enrich this
graph using Wordnet relationships between concepts.

We first directly use the representation Ak of an image, i.e. the 1000 dimen-
sional activations of the OV-CNN. Each dimension of this vector corresponds to
a label, and we suppose that an image is labeled by the ith label if its corre-
sponding component is above a threshold µ ∈ R. In that case, each label being
a precise WordNet concept, we connect the image to the corresponding concept
in the graph.

We then use WordNet to connect concepts together. We selected two rela-
tionships that may be important when trying to label images: the hypernym-
hyponym relationship (“is-a”) and the meronymy relationship (“part of”). In
order to keep the graph size manageable, we started from the concepts of the
CNN representation and added all the concepts that would be necessary to link
the different concepts together. For example, in the figure below, we have four
images. Two are classified ”bomber” by the VO-CNN two ”jet plane”. Both
concepts are hyponyms of airplane. We thus have the corresponding graph :

  

bomber

airplane

jet plane

The final graph has 25,730,835 image-concept edges and 4,309 concept-concept
edges.

2.2 Training set

The initial training set for subtask 1 contains 1,979 labeled images (there are
500,000 images in the entire dataset) for 250 concepts. That give us 7.9 images
per concept on average, which is a relatively small number.
To increase the number of training examples, we again used the Ak representa-
tion and the corresponding OV-CNN concepts. We used another threshold ν ∈ R
to determine when an image should be labeled with a given OV-CNN concept.



In practice, given an image k, if the i-th component of Ak is bigger than ν we
check if the corresponding OV-CNN concept is an hypernym of an ImageCLEF
concept Cclef . If then, we add the image k to the training set labeled with Cclef .

When ν = 20, the labeled images in our training set contains 43.970 images
(175.9 images per concept), and when ν = 10, 446.130 images (1784.5 images
per concept).

3 Learning latent node representations

3.1 Classifier

The mapping onto the latent space is learned so that the labels for each type of
node can be predicted from the latent representations. For that, we consider a
linear classification function for each type of node k denoted by fkθ . This function
takes as input a node representation and outputs the predicted label(s).

The f -functions can be learned by minimizing a loss on labeled data as
follows:

∑̀
i=1

ψi∆(f tiθ (zi), yi) (1)

where ∆(f tiθ (zxi ), yi) is the loss of predicting labels f tiθ (zi) instead of observed
labels yi. Here ψi represents the relative importance of node i in the graph. For
example, ψi = 1/N would define a model where all nodes have the same impor-
tance.

In our case, in order to set the value of ψi, we think our model should consider
that all nodes have not the same importance, so we should be able to empha-
sis on more central nodes with regard to different relations. To do so, we use
what makes a node more important is it has many neighbors of different types

: ψi = 1
R

∑R
r=1

Nr
i

Er

In our implementation, we use a hinge-loss function for ∆:

∆(f tθ(z), y) =

Ct∑
k=1

max(0; 1− ykf t,kθ (z)) (2)

where yk is the desired score of category k for node x (−1 or +1) and f t,kθ (z) is
the predicted score of category k by the model.

3.2 Transductive classification model

Let us denote by zi ∈ RZ the hidden representation of node xi which is a
vector of size Z. When updating zi, in order to capture the graph metric in the



latent space, we use the following loss which embodies the metric smoothness
assumption and forces linked nodes to have similar representations:∑

j

φi,j ||zi − z′j ||2 (3)

We are using an L2 norm in the latent space, but other metrics could be used
as well. Furthermore, φi,j aims at considering the importance of an edge w.r.t.
the hole graph and the shape of it around this specific edge.

We assume that all the edges of the graph should have the same impact
regardless of their predominance (φi,j ∝ 1

Er(i,j) ). Then, as in the PageRank
algorithm, we assume that the information coming from a neighbor j of i should
be divided equally through his neighbors of the same type as i (φi,j ∝ 1

N
r(i,j)
j

).

Thus we set

φi,j =
1

RN
r(i,j)
j Er(i,j)

3.3 Loss Function

The final expected objective loss of our model combines the classification and
regularization losses 1 and 3:

L(z, θ) =
∑̀
i=1

ψi∆(f tiθ (zi), yi) + λ
∑
i,j

φi,j ||zi − z′j ||2 (4)

The minimization of this function aims at finding a trade-off between the smooth-
ness over the latent representations of correlated nodes Z and the predicted
observed labels in Yk. Optimizing this loss allows us to learn:

– The projection zi of each node xi in the latent space.
– The classification functions fkθ for each nodes type k which transform the

latent space to categories scores.

4 Algorithm

Learning consists in minimizing the loss function defined in Equation 4. Different
optimization methods can be considered. We have used a Stochastic Gradient
Descent Method to learn the latent representations.

Furthermore, we can remark that the φi,j and ψi can also be understood
as a specific way of sampling during the SGD. Actually, if we firstly choose
uniformly the type of edge then choose uniformly an edge given that type and
pick the nodes from the chosen edge we update a given representation zi in

expectation 1
R

∑R
r=1

Nr
i

Er times for the classification term and 1
R

∑R
r=1

Nr
i

Er times
for the graph regularization one. Adding the PageRank division in the graph
regularization, we find out our previous assumptions. The algorithm is detailed
below.



For a fixed number of iterations

Choose r in R at random.

Pick randomly an edge i
r→ j.

If (i ≤ `)
θ ← θ + ε∇θ∆(f tiθ (zi), yi)

zi ← zi + ε∇zi∆(f tiθ (zi), yi)
If (j ≤ `)
θ ← θ + ε∇∆(f

tj
θ (zj), yj)

zj ← zj + ε∇zj∆(f
tj
θ (zj), yj)

zi ← zi + ελ∇zi ||zi − zj ||2
zj ← zj + ελ∇zj ||zi − zj ||2

The algorithm chooses iteratively, with the sampling method explained above,
a pair of connected nodes and then make a gradient update over the parameters
of the model. If one of the chosen nodes is part of the first labeled training set,
the algorithm first performs an update according to the first term of Equation
1. This update – lines 5-6 and 9-10 – consists in successively modifying the pa-
rameters of the classification function θ and of the latent representations zi and
zj so as to minimize the classification loss term.

Here, ε is the gradient step, and λ is the trade-off between the classification
and smoothness terms.

5 Results

As our model is not able to localize a concept in a given image we only present
the results of the mean average precision with zero overlap (MAP-0).

Model MAP 0 overlap

N = 250, ν = 10, λ = 50 0.057422

N = 100, ν = 10, λ = 50 0.056822

N = 250, ν = 10, λ = 150 0.05625

N = 100, ν = 10, λ = 150 0.056141

N = 250, ν = 20, λ = 150 0.052665

N = 250, ν = 20, λ = 50 0.052585

As we can see, the bigger the training set is (ν is small) the better our model
performs. As the graph has many edges our model needs a bigger dimension (N)
in order to adapt to the graph topology. Furthermore we can see that the more
we constrain (λ is big) the representations of two nodes to be close, the worst
the performances get.

The results are quite low compared to other opproaches, but we did not
exploit (at least directly) any image related feature. Compared to a random ap-
proach, we are still able to extract some information from a graph constructed



using some basic information about the classification of an image and the rela-
tionship between the labels/concepts.

Our methodology would benefit from a real graph linking the images (e.g.
a social network), and results would be much improved if using image-based
features.

In future work, we will combine this approach with image features to check
whether they can bring some further information.
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